Bubble Behavior Testing (BBT) System for Ultrasound Contrast Agent Characterization

  • Francesco Guidi
  • Riccardo Mori
  • Hendrik J. Vos
  • Piero Tortoli


The acoustic characterization of Ultrasound Contrast Agents (UCA) can only be based on equipment having high sensitivity (to be able to detect the echoes produced by single microbubbles) and flexibility (to adapt to a variety of experimental conditions). In this chapter, the Bubble Behavior Testing (BBT) system is presented, and shown as an ideal tool to report on the behavior of UCA in ultrasound fields. First, its basic configuration is described (including the front-end circuits to-from two single-element transducers as well as the digital resources for transmission of arbitrary signals and processing of received echoes). Two applications of the BBT system are then discussed. The interrogation of microbubbles freely floating in a water tank, is shown to be useful to characterize the UCA by observing their response to ultrasound force. Coupling of the BBT system to a synchronized high-speed optical camera is finally demonstrated to be capable of tracking the echoes of a single deflating bubble, i.e. with variable diameter.


Field Programmable Gate Array Radiation Force Ultrasound Contrast Agent Harmonic Amplitude Single Bubble 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bloch SH, Wan M, Dayton PA and Ferrara KA (2004) Optical observation of lipid-and polymer-shelled ultrasound microbubble contrast agents. Appl Phys Lett 84(4):631–633CrossRefGoogle Scholar
  2. 2.
    Borden MA et al. (2004) Surface behavior and microstructure of lipid/ PEGemulsifier monolayer-coated microbubbles. Colloids Surf B 35:209–223CrossRefGoogle Scholar
  3. 3.
    Borden MA et al. (2005) Influence of lipid shell physicochemical properties on ultrasound-induced microbubble destruction. IEEE Trans Ultrason Ferroelectr Freq Control 52(11):1992–2002CrossRefGoogle Scholar
  4. 4.
    Bouakaz A, Versluis M and de Jong N (2005) High-speed optical observations of contrast agent destruction. Ultrasound Med Biol 31(3):391–399CrossRefGoogle Scholar
  5. 5.
    Chatterjee D and Sarkar K (2005) A newtonian rehological model for the interface of microbubble contrast agents. Ultrasound Med Biol 29(12):1749–1757CrossRefGoogle Scholar
  6. 6.
    Chomas JE et al. (2001) Mechanism of contrast agent destruction., IEEE Trans Ultrason Ferroel Freq Contr 48(1):232–248CrossRefGoogle Scholar
  7. 7.
    Chomas JE et al. (2001) Threshold of fragmentation for ultrasonic contrast agents. J Biomed Opt 6(2):141–150CrossRefGoogle Scholar
  8. 8.
    Dayton PA, Allen JS and Ferrara KW (2002) The magnitude of radiation force on ultrasound contrast agents. J Acoust Soc Am 112(5):2183–2192CrossRefGoogle Scholar
  9. 9.
    Dayton PA et al. (1999) Optical and acoustical observation of the effects of ultrasound on contrast agents. IEEE Trans Ultrason Ferroelectr Freq Contr 46(1):220–232CrossRefGoogle Scholar
  10. 10.
    de Jong N et al. (2007) “Compression-only behavior” of phospholipid-coated contrast bubbles. Ultrasound Med Biol 33:653–656CrossRefGoogle Scholar
  11. 11.
    Doinikov A (1998) Acoustic radiation force on a bubble: Viscous and thermal. J Acoust Soc Am 103(1):143–147CrossRefGoogle Scholar
  12. 12.
    Eller A (1968) Force on a bubble in a standing acoustic wave. J Acoust Soc Am 43(1):170–171CrossRefGoogle Scholar
  13. 13.
    Emmer M et al. (2007) The onset of microbubble vibration. Ultrasound Med Biol 33(6):941–949CrossRefGoogle Scholar
  14. 14.
    Garbin V et al. (2007) Changes in microbubble dynamics near a boundary revealed by combined optical micromanipulation and high speed imaging. J Appl Phys L 90(11):114103CrossRefGoogle Scholar
  15. 15.
    Guan J and Matula TJ (2004) Using light scattering to measure the response of individual ultrasound contrast microbubbles subjected to pulsed ultrasound in vitro. J Acoust Soc Am 116:2832–2842CrossRefGoogle Scholar
  16. 16.
    Guidi F et al. (2005) Acoustical imaging of individual microbubbles. Acoust Imag 28:257–265.CrossRefGoogle Scholar
  17. 17.
    Khismatullin DB (2004) Resonance frequency of microbubbles: effect of viscosity. J Acoust Soc Am 116(3):1463–1473CrossRefGoogle Scholar
  18. 18.
    Khismatullin DB and Nadim A (2002) Radial oscillation of ancapsulated microbubbles in viscoelastic liquids. Phys Fluids 14:3534–3557CrossRefGoogle Scholar
  19. 19.
    Leighton TG (1994) The acoustic bubble. Academic Press, LondonGoogle Scholar
  20. 20.
    Marmottant P, van der Meer SM, Emmer M, Versluis M, de Jong N, Hilgenfeldt S and Lohse D (2005) A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture. J Acoust Soc Am 118(6):3499–3505CrossRefGoogle Scholar
  21. 21.
    Postema M et al. (2004) Ultrasound-induced encapsulated microbubble phenomena. Ultrasound Med Biol 30(6):827–840CrossRefGoogle Scholar
  22. 22.
    Pu G, Borden MA and Longo ML (2006) Collapse and shedding transition in binary lipid monolayer. Langmuir (22):2993–2999CrossRefGoogle Scholar
  23. 23.
    Pu G, Longo Marjorie L and Borden MA (2005) Effects of microstructure on molecular oxygen permeation through condensed phospolipid monolayer. J Am Chem Soc 127:6524–6525CrossRefGoogle Scholar
  24. 24.
    Qiu H-H and Hsu CT (2004) The impact of high order refraction on optical micrdobubble sizing in multiphase flows. Exper Fluids 36:100–107CrossRefGoogle Scholar
  25. 25.
    Sboros V et al. (2004) An in vitro study of a microbubble contrast agent. Phys Med Biol 49:159–173CrossRefGoogle Scholar
  26. 26.
    Stride E and Saffari N (2003) Microbubble ultrasound contrast agents: a review. Proc Inst Mech Eng Proc Part H 217(H6):429–447CrossRefGoogle Scholar
  27. 27.
    Sun Y et al. (2006) High-frequency dynamics of ultrasound contrast agents. IEEE Trans Ultrason Ferroelect Freq Control 52(11):1981–1991Google Scholar
  28. 28.
    Tortoli P, Pratesi M and Michelassi V (2000) Doppler spectra from contrast agents crossing an ultrasound field. IEEE Trans Ultrason Ferroelectr Freq Contr 47(3):716–726CrossRefGoogle Scholar
  29. 29.
    van der Meer SM et al. (2007) Microbubble spectroscopy of ultrasound contrast agents. J Acoust Soc Am 121(1):648–656CrossRefMathSciNetGoogle Scholar
  30. 30.
    Vos HJ et al. (2007) Method for microbubble characterization using primary radiation force. IEEE Trans Ultrason Ferroelectr Freq Contr 54(7):1333–1345CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2010

Authors and Affiliations

  • Francesco Guidi
    • 1
  • Riccardo Mori
    • 1
  • Hendrik J. Vos
    • 2
  • Piero Tortoli
    • 1
  1. 1.Electronic Engineering DepartmentUniversity of FlorenceFlorenceItaly
  2. 2.Biomedical EngineeringThorax Centre, Erasmus MCRotterdamThe Netherlands

Personalised recommendations