• Marzia Marrollo
  • Alessandro Armuzzi
  • Fabio Zannoni
Part of the Updates in Surgery book series (UPDATESSURG)


Although the etiology of Crohn’s disease (CD) remains largely unexplained, there have been major advances in our understanding of the pathogenic mechanisms underlying intestinal inflammation. There is general agreement with regard to the multifactorial character of the disease, in which a genetic predisposition, the external environment, intestinal microbial flora, and the immune system are all involved. Together, they result in the generation and maintenance of the chronic intestinal inflammatory reaction [1].


Inflammatory Bowel Disease Th17 Cell Paneth Cell Commensal Bacterium Mucosal Immune System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Xavier RJ, Podolsky DK (2007) Unravelling the pathogenesis of inflammatory bowel disease. Nature 448:427–433CrossRefPubMedGoogle Scholar
  2. 2.
    Cohen ML (2000) Changing patterns of infectious disease Nature 406:762–767CrossRefPubMedGoogle Scholar
  3. 3.
    Gent AE, Hellier MD, Grace RH et al (1994) Inflammatory bowel disease and domestic hygiene in infancy. Lancet 343:766–767CrossRefPubMedGoogle Scholar
  4. 4.
    Bach JF (2002) The effect of infections on susceptibility to autoimmune and allergic disease. N Engl J Med 347:911–920CrossRefPubMedGoogle Scholar
  5. 5.
    Danese S, Fiocchi C (2006) Etiopathogenesis of inflammatory bowel disease. World J Gastroenterol 12(30):4807–4812PubMedGoogle Scholar
  6. 6.
    Mahid SS, Minor KS, Stromberg AJ, Galandiuk S (2007) Active and passive smoking in childhood is related to the development of inflammatory disease. Inflamm Bowel Dis 13:431–438CrossRefPubMedGoogle Scholar
  7. 7.
    Lindberg E, Jarnerot G, Huitfeldt B (1992) Smoking in Crohn’s disease: effect on localization and clinical course. Gut 33:779–782CrossRefPubMedGoogle Scholar
  8. 8.
    Russel M, Volovics A, Schoon E et al (1988) Inflammatory bowel disease: is there any relationship between smoking status and disease presentation? European Collaborative IBD Study Group. Inflammatory Bowel Dis 4:182–186CrossRefGoogle Scholar
  9. 9.
    Cottone M, Rosselli M, Orlando A et al (1994) Smoking habits and recurrence in Crohn’s disease. Gastroenterology 106:643–648PubMedGoogle Scholar
  10. 10.
    Jones DT, Osterman MT, Bewtra M, Lewis JD (2008) Passive smoking and inflammatory bowel disease: a meta-analysis. Am J Gastroenterol 103(9):2382–2393CrossRefPubMedGoogle Scholar
  11. 11.
    King TE Jr, Savici D, Campbell PA (1988) Phagocytosis and killing of Listeria monocytogenes by alveolar macrophages: smokers versus nonsmokers. J Infect Dis 158:1309–1316PubMedGoogle Scholar
  12. 12.
    Green JT, Richardson C, Marshall RW et al (2000) Nitric oxide mediates a therapeutic effect of nicotine in ulcerative colitis. Aliment Pharmacol Ther 14:1429–1434CrossRefPubMedGoogle Scholar
  13. 13.
    Suenaert P, Bulteel V, Den Hond E et al (2000) The effects of smoking and indomethacin on small intestinal permeability. Aliment Pharmacol Ther 14:819–822CrossRefPubMedGoogle Scholar
  14. 14.
    Danese S (2007) Inflammation and the mucosal microcirculation in inflammatory bowel disease: the ebb and flow. Curr Opin Gastroenterol 23:384–389CrossRefPubMedGoogle Scholar
  15. 15.
    Hatoum OA, Binion DG, Otterson MF et al (2003) Acquired microvascular dysfunction in inflammatory bowel disease: loss of nitric oxide-mediated vasodilatation. Gastroenterology 125:58–69CrossRefPubMedGoogle Scholar
  16. 16.
    Timmer A, Sutherland LR, Martin F (1998) Oral contraceptive use and smoking are risk factors for relapse in Crohn’s disease. The Canadian Mesalamine for Remission of Crohn’s Disease Study Group. Gastroenterology 114:1143–1150CrossRefPubMedGoogle Scholar
  17. 17.
    Wakefield AJ, Sawyerr AM, Hudson M et al (1991) Smoking, the oral contraceptive pill, and Crohn’s disease. Dig Dis Sci 36:1147–1150CrossRefPubMedGoogle Scholar
  18. 18.
    Corrao G, Tragnone A, Caprilli R et al (1998) Risk of inflammatory bowel disease attributable to smoking, oral contraception and breastfeeding in Italy: a nationwide case-control study. Int J Epidemiol 27:397–404CrossRefPubMedGoogle Scholar
  19. 19.
    Sears MR, Greene JM, Willan AR et al (2002) Long-term relation between breastfeeding and development of atopy and asthma in children and young adults: a longitudinal study. Lancet 360:901–907CrossRefPubMedGoogle Scholar
  20. 20.
    Kucharzik T, Maaser C, Lugering A et al (2006) Recent understanding of IBD pathogenesis: implications for future therapies. Inflamm Bowel Dis 12:1068–1083CrossRefPubMedGoogle Scholar
  21. 21.
    Baumgart DC, Carding SR (2007) Inflammatory bowel disease: cause and immunobiology. Lancet 369:1627–1640CrossRefPubMedGoogle Scholar
  22. 22.
    Nenci A, Becker C, Wullaert A (2007) Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 446:557–561CrossRefPubMedGoogle Scholar
  23. 23.
    Wehkamp J, Salzman NH, Porter E (2005) Reduced Paneth cell α-defensins in ileal Crohn’s disease. Proc Natl Acad Sci 102:18129–18134CrossRefPubMedGoogle Scholar
  24. 24.
    McVay LD, Keilbaugh SA, Wong TM (2006) Absence of bacterially induced RELMβ reduces injury in the dextran sodium sulphate model of colitis. J Clin Invest 116:2914–2923CrossRefPubMedGoogle Scholar
  25. 25.
    Van der Sluis M, De Koning BA, De Bruijn AC (2006) Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 131:117–129CrossRefPubMedGoogle Scholar
  26. 26.
    Cobrin GM, Abreu MT (2005) Defects of mucosal immunity leading to Crohn’s disease. Immunol Rev 206:277–295CrossRefPubMedGoogle Scholar
  27. 27.
    Targan SR, Karp LC (2005) Defects of mucosal immunity leading to ulcerative colitis. Immunol Rev 206:296–305CrossRefPubMedGoogle Scholar
  28. 28.
    Cho JH (2008) The genetics and immunopathogenesis of inflammatory bowel disease. Nature Rev Immunol 8:458–465CrossRefGoogle Scholar
  29. 29.
    Hedl M, Li J, Cho JH, Abraham C (2007) Chronic stimulation of Nod2 mediates tolerance to bacterial products. Proc Natl Acad Sci 104:19440–19445CrossRefPubMedGoogle Scholar
  30. 30.
    Rioux JD, Xavier RJ, Taylor KD (2007) Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet 39:596–604CrossRefPubMedGoogle Scholar
  31. 31.
    Weaver CT, Hatton RD, Mangan PR, Harrington LE (2007) IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol 25:851–852CrossRefGoogle Scholar
  32. 32.
    Jiang H, Chess L (2004) An integrated view of suppressor T cell subsets in immunoregulation. J Clin Invest 114:1198–1208PubMedGoogle Scholar
  33. 33.
    Himmel ME, Hardenberg G, Piccirillo CA et al (2008) The role of T-regulatory cells and Toll-like receptors in the pathogenesis of human inflammatory bowel disease. Immunology 125:145–153CrossRefPubMedGoogle Scholar
  34. 34.
    Steinman L (2007) A brief history of Th17, the first major revision in the Th1/Th2 hypothesis of T cell-mediated tissue damage. Nat Med 13:139–145CrossRefPubMedGoogle Scholar
  35. 35.
    Annunziato F, Cosmi L, Santarlasci V et al (2007) Phenotypic and functional features of human Th17 cells. J Exp Med 204:1849–1861CrossRefPubMedGoogle Scholar
  36. 36.
    Fuss IJ, Becker C, Yang Z (2006) Both IL-12p70 and IL-23 are synthesized during active Crohn’s disease and are down-regulated by treatment with anti-IL-12 p40 monoclonal antibody. Inflamm Bowel Dis 12:9–15CrossRefPubMedGoogle Scholar
  37. 37.
    Sartor RE (2004) Microbial influences in inflammatory bowel disease: role in pathogenesis and clinical implications. In: Sartor RB and Sandborn WJ (eds) Kirsner’s inflammatory bowel diseases. Elsevier, Philadelphia, pp 138–162Google Scholar
  38. 38.
    Moran JP et al (2006) Bifidobacterium animalis causes mild inflammatory bowel disease in interleukin-10 knockout mice [abstract]. Gastroenterology 130:A6CrossRefGoogle Scholar
  39. 39.
    Sartor RB (2004) Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics and prebiotics. Gastroenterology 26:1620–1633CrossRefGoogle Scholar
  40. 40.
    Sartor RB (2005) Does Mycobacterium avium subspecies paratuberculosis cause Crohn’s disease? Gut 54:896–898CrossRefPubMedGoogle Scholar
  41. 41.
    Shafran I, Kugler L, El-Zaatari FA et al (2002) Open clinical trial of rifabutin and clarithromycin therapy in Crohn’s disease. Dig Liver Dis 34:22–28CrossRefPubMedGoogle Scholar
  42. 42.
    Swidsinski, Ladhoff A, Pernthaler A et al (2002) Mucosal flora in inflammatory bowel disease. Gastroenterology 122:44–54CrossRefPubMedGoogle Scholar
  43. 43.
    Liu Y, Liu Y, van Kruiningen HJ, West AB et al (1995) Immunocytochemical evidence of Listeria, Escherichia coli, and Streptococcus antigens in Crohn’s disease. Gastroenterology 108:1396–1404CrossRefPubMedGoogle Scholar
  44. 44.
    Hisamatsu T, Suzuki M, Reinecker HC et al (2003) CARD15/NOD2 functions as an anti-bacterial factor in human intestinal epithelial cells. Gastroenterology 124:993–1000CrossRefPubMedGoogle Scholar
  45. 45.
    Loftus EV Jr (2004) Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology 126:1504–1517CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2010

Authors and Affiliations

  • Marzia Marrollo
    • 1
  • Alessandro Armuzzi
    • 1
  • Fabio Zannoni
    • 1
  1. 1.Gastroenterology UnitSan Camillo-Forlamini HospitalRomeItaly

Personalised recommendations