Skip to main content

Endothelial Dysfunction, Nitric Oxide Bioavailability, and Asymmetric Dimethyl Arginine

  • Chapter
Cardiorenal Syndrome

Abstract

Endothelial dysfunction is common to various pathophysiological conditions and disease states. This dysfunction encompasses alterations in various processes that are modulated by the endothelium, including thrombosis, inflammation, control of vascular tone, and vessel growth and remodelling. Although this term has been used commonly to refer to an impairment of endothelium-dependent vasorelaxation secondary to reduced nitric oxide (NO) bioactivity, the clinical and scientific relevance of endothelial dysfunction rests on its global impact on the integrity of the arterial system and on its fundamental role in cardiovascular and renal diseases. Low NO availability is indeed a critical factor in hypertension, hypercholesterolemia, aging, diabetes, and heart failure and represents the basic mechanism whereby some environmental factors, such as smoking and small particulate matter, cause cardiovascular disease. A decline in NO bioavailability may be caused by decreased expression of endothelial NO synthase (eNOS), reduced substrate or cofactors for this enzyme, alterations of cellular signalling, eNOS inhibition by asymmetric dimethyl arginine (ADMA), and accelerated NO degradation by reactive oxygen species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moncada S, Higgs A (1993) The L-arginine-nitric oxide pathway. N Engl J Med 329:2002–2012

    Article  CAS  PubMed  Google Scholar 

  2. Zembowicz A, Hecker M, Macarthur H et al (1991) Nitric oxide and another potent vasodilator are formed from NG-hydroxy-L-arginine by cultured endothelial cells. Proc Natl Acad Sci U S A 88:11172–11176

    Article  CAS  PubMed  Google Scholar 

  3. Stroes E, Hijmering M, van ZM et al (1998) Origin of superoxide production by endothelial nitric oxide synthase. FEBS Lett 438:161–164

    Article  CAS  PubMed  Google Scholar 

  4. Blair A, Shaul PW, Yuhanna IS et al (1999) Oxidized low density lipoprotein displaces endothelial nitric-oxide synthase (eNOS) from plasmalemmal caveolae and impairs eNOS activation. J Biol Chem 274:32512–32519

    Article  CAS  PubMed  Google Scholar 

  5. Vallance P, Leone A, Calver A et al (1992) Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 339:572–575

    Article  CAS  PubMed  Google Scholar 

  6. Cooke JP, Andon NA, Girerd XJ et al (1991) Arginine restores cholinergic relaxation of hypercholesterolemic rabbit thoracic aorta. Circulation 83:1057–1062

    CAS  PubMed  Google Scholar 

  7. Böger RH, Bode-Böger SM, Brandes RP et al (1997) Dietary L-arginine reduces the progression of atherosclerosis in cholesterol-fed rabbits: comparison with lovastatin. Circulation 96:1282–1290

    PubMed  Google Scholar 

  8. Tsikas D, Böger RH, Sandmann J et al (2000) Endogenous nitric oxide synthase inhibitors are responsible for the L-arginine paradox. FEBS Lett 478:1–3

    Article  CAS  PubMed  Google Scholar 

  9. Scalera F, Borlak J, Beckmann B et al (2004) Endogenous nitric oxide synthesis inhibitor asymmetric dimethyl L-arginine accelerates endothelial cell senescence. Arterioscler Thromb Vasc Biol 24:1816–1822

    Article  CAS  PubMed  Google Scholar 

  10. Clarke S (1993) Protein methylation. Curr Opin Cell Biol 5:977–983

    Article  CAS  PubMed  Google Scholar 

  11. Taddei S, Virdis A, Ghiadoni L et al (2001) Endothelial dysfunction in hypertension. J Cardiovasc Pharmacol 38(Suppl 2):S11–S14

    CAS  PubMed  Google Scholar 

  12. Rask-Madsen C, King GL (2007) Mechanisms of Disease: endothelial dysfunction in insulin resistance and diabetes. Nat Clin Pract Endocrinol Metab 3:46–56

    Article  CAS  PubMed  Google Scholar 

  13. Deanfield J, Donald A, Ferri C et al (2005) Endothelial function and dysfunction. Part I: Methodological issues for assessment in the different vascular beds: a statement by the Working Group on Endothelin and Endothelial Factors of the European Society of Hypertension. J Hypertens 23:7–17

    Article  CAS  PubMed  Google Scholar 

  14. Zoccali C (2006) Asymmetric dimethylarginine (ADMA): a cardiovascular and renal risk factor on the move. J Hypertens 24:611–619

    Article  CAS  PubMed  Google Scholar 

  15. Zoccali C, Kielstein JT (2006) Asymmetric dimethylarginine: a new player in the pathogenesis of renal disease? Curr Opin Nephrol Hypertens 15:314–320

    Article  CAS  PubMed  Google Scholar 

  16. Kielstein JT, Simmel S, Bode-Böger SM et al (2004) Subpressor dose asymmetric dimethylarginine modulates renal function in humans through nitric oxide synthase inhibition. Kidney Blood Press Res 27:143–147

    Article  CAS  PubMed  Google Scholar 

  17. Brenner BM, Garcia DL, Anderson S (1988) Glomeruli and blood pressure. Less of one, more the other? Am J Hypertens 1:335–347

    CAS  PubMed  Google Scholar 

  18. Fujii S, Zhang L, Igarashi J, Kosaka H (2003) L-arginine reverses p47phox and gp91phox expression induced by high salt in Dahl rats. Hypertension 42:1014–1020

    Article  CAS  PubMed  Google Scholar 

  19. Matsuoka H, Itoh S, Kimoto M et al (1997) Asymmetrical dimethylarginine, an endogenous nitric oxide synthase inhibitor, in experimental hypertension. Hypertension 29:242–247

    CAS  PubMed  Google Scholar 

  20. Hisaki R, Fujita H, Saito F, Kushiro T (2005) Tempol attenuates the development of hypertensive renal injury in Dahl salt-sensitive rats. Am J Hypertens 18:707–713

    Article  CAS  PubMed  Google Scholar 

  21. Perticone F, Sciacqua A, Maio R et al (2005) Asymmetric dimethylarginine, L-arginine, and endothelial dysfunction in essential hypertension. J Am Coll Cardiol 46:518–523

    Article  CAS  PubMed  Google Scholar 

  22. Paiva H, Laakso J, Laine H et al (2002) Plasma asymmetric dimethylarginine and hyperemic myocardial blood flow in young subjects with borderline hypertension or familial hypercholesterolemia. J Am Coll Cardiol 40:1241–1247

    Article  CAS  PubMed  Google Scholar 

  23. Surdacki A, Nowicki M, Sandmann J et al (1999) Reduced urinary excretion of nitric oxide metabolites and increased plasma levels of asymmetric dimethylarginine in men with essential hypertension. J Cardiovasc Pharmacol 33:652–658

    Article  CAS  PubMed  Google Scholar 

  24. Goonasekera CD, Rees DD, Woolard P et al (1997) Nitric oxide synthase inhibitors and hypertension in children and adolescents. J Hypertens 15:901–909

    Article  CAS  PubMed  Google Scholar 

  25. Fujiwara N, Osanai T, Kamada T et al (2000) Study on the relationship between plasma nitrite and nitrate level and salt sensitivity in human hypertension: modulation of nitric oxide synthesis by salt intake. Circulation 101:856–861

    CAS  PubMed  Google Scholar 

  26. Perticone F, Sciacqua A, Maio R et al (2005) Asymmetric dimethylarginine, L-arginine, and endothelial dysfunction in essential hypertension. J Am Coll Cardiol 46:518–523

    Article  CAS  PubMed  Google Scholar 

  27. Scuteri A, Stuehlinger MC, Cooke JP et al (2003) Nitric oxide inhibition as a mechanism for blood pressure increase during salt loading in normotensive postmenopausal women. J Hypertens 21:1339–1346

    Article  CAS  PubMed  Google Scholar 

  28. Hill C, Lateef AM, Engels K et al (1997) Basal and stimulated nitric oxide in control of kidney function in the aging rat. Am J Physiol 272:R1747–R1753

    CAS  PubMed  Google Scholar 

  29. Tan D, Cernadas MR, Aragoncillo P et al (1998) Role of nitric oxide-related mechanisms in renal function in ageing rats. Nephrol Dial Transplant 13:594–601

    Article  CAS  PubMed  Google Scholar 

  30. Xiong Y, Yuan LW, Deng HW et al (2001) Elevated serum endogenous inhibitor of nitric oxide synthase and endothelial dysfunction in aged rats. Clin Exp Pharmacol Physiol 28:842–847

    Article  CAS  PubMed  Google Scholar 

  31. Reckelhoff JF, Kellum JA, Blanchard EJ et al (1994) Changes in nitric oxide precursor, L-arginine, and metabolites, nitrate and nitrite, with aging. Life Sci 55:1895–1902

    Article  CAS  PubMed  Google Scholar 

  32. Kielstein JT, Bode-Böger SM, Frolich JC et al (2003) Asymmetric dimethylarginine, blood pressure, and renal perfusion in elderly subjects. Circulation 107:1891–1895

    Article  PubMed  Google Scholar 

  33. Scalera F, Borlak J, Beckmann B et al (2004) Endogenous nitric oxide synthesis inhibitor asymmetric dimethyl L-arginine accelerates endothelial cell senescence. Arterioscler Thromb Vasc Biol 24:1816–1822

    Article  CAS  PubMed  Google Scholar 

  34. Ravani P, Tripepi G, Malberti F et al (2005) Asymmetrical dimethylarginine predicts progression to dialysis and death in patients with chronic kidney disease: a competing risks modeling approach. J Am Soc Nephrol 16:2449–2455

    Article  CAS  PubMed  Google Scholar 

  35. Zoccali C, Bode-Böger S, Mallamaci F et al (2001) Plasma concentration of asymmetrical dimethylarginine and mortality in patients with end-stage renal disease: a prospective study. Lancet 358:2113–2117

    Article  CAS  PubMed  Google Scholar 

  36. Böger RH, Sullivan LM, Schwedhelm E et al (2009) Plasma asymmetric dimethylarginine and incidence of cardiovascular disease and death in the community. Circulation 119:1592–1600

    Article  PubMed  Google Scholar 

  37. Maas R, Xanthakis V, Polak JF et al (2009) Association of the endogenous nitric oxide synthase inhibitor ADMA with carotid artery intimal media thickness in the Framingham Heart Study offspring cohort. Stroke 40:2715–2719

    Article  CAS  PubMed  Google Scholar 

  38. Mann JF, Schmieder RE, Dyal L et al (2009) Effect of telmisartan on renal outcomes: a randomized trial. Ann Intern Med 151:1–2

    PubMed  Google Scholar 

  39. Leiper J, Nandi M, Torondel B et al (2007) Disruption of methylarginine metabolism impairs vascular homeostasis. Nat Med 13:198–203

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Italia

About this chapter

Cite this chapter

Zoccali, C. (2010). Endothelial Dysfunction, Nitric Oxide Bioavailability, and Asymmetric Dimethyl Arginine. In: Berbari, A.E., Mancia, G. (eds) Cardiorenal Syndrome. Springer, Milano. https://doi.org/10.1007/978-88-470-1463-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1463-3_17

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1462-6

  • Online ISBN: 978-88-470-1463-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics