Skip to main content

Diabetes Mellitus: Is the Presence of Nephropathy Important as a Cardiovascular Risk Factor for Cardioneral Syndrome?

  • Chapter
Book cover Cardiorenal Syndrome

Abstract

Diabetes mellitus is a well established risk factor for cardiovascular diseases (CVD). In addition, a significant proportion of diabetic patients go on to develop nephropathy. Moreover, the presence of nephropathy further increases the risk of CVD in patients with all stages of diabetic nephropathy, including microalbuminuria, macroalbuminuria, and renal failure. The fibrogenic cytokine transforming growth factor beta (TGF-β) and the vascular endothelial growth factor (VEGF) are implicated in the development of cardinal features of diabetic nephropathy, namely, mesangial expansion and albuminuria, respectively. The pathogenesis of CVD in diabetes is multifactorial and can be affected by metabolic factors, such as oxidative stress, glycoxidation, procoagulant states, and inflammation. Furthermore, endothelial dysfunction may lead to simultaneous development and progression of renal and cardiac pathology in diabetes. The risk of microvascular complications can be reduced by intensive glycemic control, whereas cardiovascular benefit is less clear. Intensified intervention involving other vascular risk factors, such as hypertension and dyslipidemia, demonstrated benefits in terms of both macrovascular and microvascular complications. In addition, treatment with angiotensin-converting enzyme inhibitors (ACEIs) or angiotensin II receptor antagonists is associated with a significant reduction in the risk for renal disease progression in diabetes, which parallels the reduced cardiovascular risk. Moreover, changes in microalbuminuria translate into parallel changes in renal and cardiovascular risk. Nephropathy in diabetic patients is, therefore, important in determining the risk for and outcomes from CVD, the improved understanding of the pathogenesis of renal and vascular disease in diabetes, and as a crucial factor in planning a comprehensive treatment approach to reducing CVD morbidity and mortality in diabetic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Ronco C, House A, Haapio M (2008) Cardiorenal and renocardiac syndromes: the need for a comprehensive classification and consensus. Nature Clin Practice Nephrol 4:310–311

    Article  Google Scholar 

  2. Sicree R, Shaw J, Zimmet P (2006) Diabetes and impaired glucose tolerance. In: Gan D (ed) Diabetes atlas, 3rd edn. International Diabetes Federation, Belgium, pp 15–103

    Google Scholar 

  3. United States Renal Data System. USRDS (2007) Annual Data Report. Bethesda, MD. http://www.kidney.niddk.nih.gov. Accessed 10 Sept 2008

    Google Scholar 

  4. Molitch ME, DeFronzo RA, Franz MJ et al (2004) Nephropathy in diabetes. Diabetes Care 27(Suppl. 1) pp S79–S83

    PubMed  Google Scholar 

  5. Pavkov ME, Knowler WC, Hanson RL et al (2008) Predictive power of sequential measures of albuminuria for progression to ESRD or death in Pima Indians with type 2 diabetes. Am. J. Kidney Dis. 51:759–766

    Article  PubMed  Google Scholar 

  6. Buse JB, Ginsberg HN, Bakris GL et al (2007) Primary prevention of cardiovascular diseases in people with diabetes mellitus: a scientific statement from the American Heart Association and the American Diabetes Association. Circulation 115:114–126

    Article  PubMed  Google Scholar 

  7. Evans JMM, Wang J, Morris AD et al (2002) Comparison of cardiovascular risk between patients with type 2 diabetes and those who had had a myocardial infarction: cross sectional and cohort studies. BMJ 324:939–942

    Article  PubMed  Google Scholar 

  8. Simons LA, Simons J, Engler RL et al (1998) Diabetes and coronary heart disease. N Engl J Med 339:1714–1716

    Article  CAS  PubMed  Google Scholar 

  9. Avogaro A, Giorda C, Maggini M et al (2007) Incidence of coronary heart disease in type 2 diabetic men and women: impact of microvascular complications, treatment, and geographic location. Diabetes Care 30:1241–1247

    Article  PubMed  Google Scholar 

  10. Amin R, Widmer B, Prevost AT et al (2008) Risk of microalbuminuria and progression to macroalbuminuria in a cohort with childhood onset type 1 diabetes: prospective observational study. BMJ 336:697–701

    Article  PubMed  Google Scholar 

  11. Hovind P, Tarnow L, Rossing P et al (2004) Predictors for the development of microalbuminuria and macroalbuminuria in patients with type 1 diabetes: inception cohort study. BMJ 328:1105–1109

    Article  PubMed  Google Scholar 

  12. Adler AI, Stevens RJ, Manley SE et al (2003) Development and progression of nephropathy in type 2 diabetes: The United Kingdom Prospective Diabetes Study (UKPDS 64). 63:225–232

    Google Scholar 

  13. Gerstein HC, Mann JFE, Yi Q et al, for the HOPE study investigators (2001) Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA 286:421–426

    Article  CAS  PubMed  Google Scholar 

  14. Rossing P, Hougaard P, Borch-Johnsen K et al (1996) Predictors of mortality in insulin dependent diabetes: 10 year observational follow up study. BMJ 313:779–784

    CAS  PubMed  Google Scholar 

  15. Dinneen SF, Gerstein HC (1997) The association of microalbuminuria and mortality in noninsulin-dependent diabetes mellitus: a systematic overview of the literature. Arch Intern Med 157:1413–1418

    Article  CAS  PubMed  Google Scholar 

  16. Gerstein HC, Mann JF, Yi Q et al (2001) Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA 286:421–426

    Article  CAS  PubMed  Google Scholar 

  17. Lindholm LH, Ibsen H, Dahlof B et al The LIFE study group (2002) Cardiovascular morbidity and mortality in patients with diabetes in the Losartan Intervention For Endpoint Reduction in Hypertension study (LIFE): A randomised trial against atenolol. Lancet 359:1004–1010

    Article  CAS  PubMed  Google Scholar 

  18. Culleton BF, Larson MG, Wilson PWF et al (1999) Cardiovascular disease and mortality in a community-based cohort with mild renal insufficiency. Kidney Int 56:2214–2219

    Article  CAS  PubMed  Google Scholar 

  19. Mann JFE, Gerstein HC, Pogue J et al, for the HOPE investigators (2001) Renal insufficiency as a predictor of cardiovascular outcomes and the impact of ramipril: the HOPE randomized trial. Ann Intern Med 134:629–636

    CAS  PubMed  Google Scholar 

  20. Manjunath G, Tighiouart H, Ibrahim H et al (2003) Level of kidney function as a risk factor for atherosclerotic cardiovascular outcomes in the community. J Am Coll Cardiol 41:47–55

    Article  PubMed  Google Scholar 

  21. Ruilope LM, Salvetti A, Jamerson K et al (2001) Renal Function and Intensive Lowering of Blood Pressure in Hypertensive Participants of the Hypertension Optimal Treatment (HOT) Study. J Am Soc Nephrol 12:218–225

    CAS  PubMed  Google Scholar 

  22. Shlipak MG, Fried LF, Crump C et al (2002) Cardiovascular disease risk status in elderly persons with renal insufficiency. Kidney Int 62:997–1004

    Article  PubMed  Google Scholar 

  23. Reis SE, Olson MB, Fried L et al (2002) Mild renal insufficiency is associated with angiographic coronary artery disease in women. Circulation 105:2826–2829

    Article  PubMed  Google Scholar 

  24. Levy D, Garrison RJ, Savage DD et al (1990) Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 322:1561–1566

    Article  CAS  PubMed  Google Scholar 

  25. Foley RN, Parfrey PS, Sarnak MJ (1998) Clinical epidemiology of cardiovascular disease in chronic renal disease. Am J Kidney Dis 32:S112–S119

    Article  CAS  PubMed  Google Scholar 

  26. Go AS, Chertow GM, Fan D et al (2004) Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 351:1296–1305

    Article  CAS  PubMed  Google Scholar 

  27. Cheung AK, Sarnak MJ, Yan G et al (2000) Atherosclerotic cardiovascular disease risks in chronic hemodialysis patients. Kidney Int 58:353–362

    Article  CAS  PubMed  Google Scholar 

  28. Schramm TK, Gislason GH, Kober L et al (2008) Diabetes patients requiring glucose-lowering therapy and nondiabetics with a prior myocardial infarction carry the same cardiovascular risk: a population study of 3.3 million people. Circulation 117:1945–1954

    Article  CAS  PubMed  Google Scholar 

  29. Fuller JH, Stevens LK, Wang SL (2001) Risk factors for cardiovascular mortality and morbidity: the WHO Multinational Study of Vascular Disease in Diabetes. Diabetologia 44(Suppl. 2): S54–S64

    Article  CAS  PubMed  Google Scholar 

  30. Ravera M, Noberasco G, Re M et al (2009) Chronic kidney disease and cardiovascular risk in hypertensive type 2 diabetics: a primary care perspective. Nephrol Dial Transplant 24:1528–1533

    Article  PubMed  Google Scholar 

  31. Shulman NB, Ford CE, Hall WD et al (1989) Prognostic value of serum creatinine and effect of treatment of hypertension on renal function: results from the hypertension detection and follow-up program. The Hypertension Detection and Follow-up Program Cooperative Group. Hypertension 13(5 Suppl):I80–I93

    CAS  PubMed  Google Scholar 

  32. Manjunath G, Tighiouart H, Coresh J et al (2003) Level of kidney function as a risk factor for cardiovascular outcomes in the elderly. Kidney Int 63:1121–1129

    Article  PubMed  Google Scholar 

  33. O’Brien MM, Gonzales R, Shroyer AL et al (2002) Modest serum creatinine elevation affects adverse outcome after general surgery. Kidney Int 62:585–592

    Article  PubMed  Google Scholar 

  34. Foley RN, Parfrey PS, Harnett JD et al (1995) Clinical and echocardiographic disease in patients starting end-stage renal disease therapy. Kidney Int 47:186–192

    Article  CAS  PubMed  Google Scholar 

  35. Herzog CA, Ma JZ, Collins AJ (1998) Poor long-term survival after acute myocardial infarction among patients on long-term dialysis. N Engl J Med 339:799–805

    Article  CAS  PubMed  Google Scholar 

  36. Donahue RP, Goldberg RJ, Chen Z et al (1993) The influence of sex and diabetes mellitus on survival following acute myocardial infarction: A community-wide perspective. J Clin Epidemiol 46:245–252

    Article  CAS  PubMed  Google Scholar 

  37. Shlipak MG, Heidenreich PA, Noguchi H et al (2002) Association of renal insufficiency with treatment and outcomes after myocardial infarction in elderly patients. Ann Intern Med 137:555–562

    PubMed  Google Scholar 

  38. McCullough PA, Sandberg KR, Borzak S et al (2002) Benefits of aspirin and beta-blockade after myocardial infarction in patients with chronic kidney disease. Am Heart J 144:226–232

    Article  CAS  PubMed  Google Scholar 

  39. Keough-Ryan TM, Kiberd BA, Dipchand CS et al (2005) Outcomes of acute coronary syndrome in a large Canadian cohort: Impact of chronic renal insufficiency, cardiac interventions, and anemia. Am J Kidney Dis 46:845–855

    Article  PubMed  Google Scholar 

  40. Ziyadeh FN (2008) Different roles for TGF-β and VEGF in the pathogenesis of the cardinal features of diabetic nephropathy. Diabetes Res Clin Pract 82:S38–S41

    Article  CAS  PubMed  Google Scholar 

  41. Sonoki K, Yoshinari M, Iwase M et al (2002) Glycoxidized low-density lipoprotein enhances monocyte chemoattractant protein-1 mRNA expression in human umbilical vein endothelial cells: Relation to lysophosphatidylcholine contents and inhibition by nitric oxide donor. Metabolism 51:1135–1142

    Article  CAS  PubMed  Google Scholar 

  42. Pandolfi A, De Filippis EA (2007) Chronic hyperglycemia and nitric oxide bioavailability play a pivotal role in pro-atherogenic vascular modifications. Genes Nutr 2:195–208

    Article  CAS  PubMed  Google Scholar 

  43. Lin KY, Ito A, Asagami T et al (2002) Impaired nitric oxide synthase pathway in diabetes mellitus: role of asymmetric dimethylarginine and dimethylarginine dimethylaminohydrolase. Circulation 106:987–992

    Article  CAS  PubMed  Google Scholar 

  44. Satchell SC, Tooke JE (2008) What is the mechanism of microalbuminuria in diabetes: a role for the glomerular endothelium? Diabetologia 51:714–725

    Article  CAS  PubMed  Google Scholar 

  45. Schalkwijk CG, Poland DC, van Dijk W et al (1999) Plasma concentration of C-reactive protein is increased in type I diabetic patients without clinical macroangiopathy and correlates with markers of endothelial dysfunction: evidence for chronic inflammation. Diabetologia 42:351–357

    Article  CAS  PubMed  Google Scholar 

  46. Stehouwer CD, Gall MA, Twisk JW et al (2002) Increased urinary albumin excretion, endothelial dysfunction, and chronic low-grade inflammation in type 2 diabetes: progressive, interrelated, and independently associated with risk of death. Diabetes 51:1157–1165

    Article  CAS  PubMed  Google Scholar 

  47. Stehouwer CA, Zeldenrust GC, den Ottolander GH et al (1992) Urinary albumin excretion, cardiovascular disease, and endothelial dysfunction in non-insulin-dependent diabetes mellitus. Lancet 340:319–323

    Article  CAS  PubMed  Google Scholar 

  48. Astrup AS, Tarnow L, Pietraszek L et al (2008) Markers of endothelial dysfunction and inflammation in type 1 diabetic patients with or without diabetic nephropathy followed for 10 years: association with mortality and decline of glomerular filtration rate. Diabetes Care 31:1170–1176

    Article  CAS  PubMed  Google Scholar 

  49. The Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329:977–98641

    Article  Google Scholar 

  50. The UK Prospective Diabetes Study (UKPDS) Group (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352:837–853

    Article  Google Scholar 

  51. American Diabetes Association, Standards of medical care in diabetes (2008) Diabetes Care 31(Suppl 1):S12–S54

    Article  Google Scholar 

  52. Selvin E, Marinopoulos S, Berkenblit G et al (2004) Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann Intern Med 141:421–431

    CAS  PubMed  Google Scholar 

  53. Patel A, MacMahon S, Chalmers J et al, and ADVANCE Collaborative Group (2008) Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 358:2560–2572

    Article  CAS  PubMed  Google Scholar 

  54. Duckworth, William, Abraira et al, the VADT Investigators (2008) Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med 360:129–139

    Article  PubMed  Google Scholar 

  55. Gerstein H.C, Miller M.E, Byington R.P et al, and Action to Control Cardiovascular Risk in Diabetes Study Group (2008) Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 358: 2545–2559

    Article  CAS  PubMed  Google Scholar 

  56. Nathan D.M, Cleary P A, Backlund J Y et al (2005) Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med 353: 2643–2653

    Article  PubMed  Google Scholar 

  57. UK Prospective Diabetes Study (UKPDS) Group (1998) Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ 317:703–713

    Google Scholar 

  58. Hansson L, Zanchetti A, Carruthers SG et al (1998) Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomised trial. Lancet 351:1755–1762

    Article  CAS  PubMed  Google Scholar 

  59. Pyärälä K, Pedersen TR, Kjekshus J et al (1997) Cholesterol lowering with simvastatin improves prognosis of diabetic patients with coronary heart disease: a subgroup analysis of the Scandinavian Simvastatin Survival Study (4S). Diabetes Care 20:614–620

    Article  Google Scholar 

  60. Deferrari G, Ravera M, Deferrari L et al (2002) Renal and cardiovascular protection in type 2 diabetes mellitus: angiotensin ii receptor blockers. J Am Soc Nephrol 13:S224–229

    Article  Google Scholar 

  61. Araki S, Haneda M, Koya D et al (2007) Reduction in microalbuminuria as an integrated indicator for renal and cardiovascular risk reduction in patients with type 2 diabetes. Diabetes 56:1727–1730

    Article  CAS  PubMed  Google Scholar 

  62. Gaede P, Vedel P, Larsen N et al (2003) Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med 348:383–393

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Italia

About this chapter

Cite this chapter

Karnib, H.H., Ziyadeh, F.N. (2010). Diabetes Mellitus: Is the Presence of Nephropathy Important as a Cardiovascular Risk Factor for Cardioneral Syndrome?. In: Berbari, A.E., Mancia, G. (eds) Cardiorenal Syndrome. Springer, Milano. https://doi.org/10.1007/978-88-470-1463-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1463-3_11

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1462-6

  • Online ISBN: 978-88-470-1463-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics