Antibiotic Policy in Critically Ill Patients

  • F. Alvarez Lerma
  • M. Palomar Martínez


Antimicrobials are pharmaceutical drugs very frequently prescribed in the intensive care unit (ICU) setting. In the last decade, there is a growing body of evidence showing that early and appropriate use of antimicrobials has a short-term favorable impact on the course of critically ill patients [1, 2, 3, 4], whereas in the long-term, antimicrobials facilitate the appearance of emerging flora and changes in resistance patterns of pathogens that form part of the hospital ecosystem [5, 6]. Over the years, a number of guidelines and strategies have been proposed to improve and optimize the use of antimicrobials in ICU patients, which have been collectively named “antibiotic policy.”


Intensive Care Unit Nosocomial Pneumonia Critical Patient Intensive Care Unit Setting Selective Decontamination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alvarez-Lerma F, ICU-Acquired Pneumonia Study Group (2006) Modification of empiric antibiotic treatment in patients with pneumonia acquired in intensive care unit. Intensive Care Med 22:387–394.CrossRefGoogle Scholar
  2. 2.
    Luna CL, Vujacich P, Niederman MS et al (1997) Impact of BAL data on the therapy ant outcome of ventilator-associated pneumonia. Chest 111:676–685.CrossRefPubMedGoogle Scholar
  3. 3.
    Kollef MH (1999) Inadequate antimicrobial treatment of infections: a risk factor for hospital mortality among critically ill patients. Chest 115:462–474CrossRefPubMedGoogle Scholar
  4. 4.
    Ibrahim EH, Sherman G, Ward S et al (2000) The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting. Chest 118:146–155CrossRefPubMedGoogle Scholar
  5. 5.
    Rahal JJ, Urban C, Horn D et al (1998) Class restriction of cephalosporin use to control total cephalosporin resistance in nosocomial Klebsiella. JAMA 14:1233–1237CrossRefGoogle Scholar
  6. 6.
    Fridkin SK, Edwards JR, Tenover FC et al (2001) Intensive Care Antimicrobial Resistance Epidemiology (ICARE) Project. National Nosocomial Infections Surveillance (NNIS) System Hospitals. Antimicrobial resistance prevalence rates in hospital antibiograms reflect prevalence rates among pathogens associated with hospital-acquired infections. Clin Infect Dis 33:324–330CrossRefPubMedGoogle Scholar
  7. 7.
    American College of Chest Physicians and Society of Critical Care Medicine Consensus Conference Committee (1992) Definitions for sepsis and organ failure and guidelines for use of innovative therapies in sepsis. Crit Care Med 20:864–874CrossRefGoogle Scholar
  8. 8.
    European Society of Intensive Care Medicine (1994) The problem of sepsis—An expert report of the European Society of Intensive Care Medicine. Intensive Care Med 20:300–304CrossRefGoogle Scholar
  9. 9.
    Vandenbroucke-Grauls CMJE, Vandenbroucke JP (1991) Effect of selective decontamination of the digestive tract on respiratory tract infections and mortality in the intensive care unit. Lancet 338:859–862CrossRefPubMedGoogle Scholar
  10. 10.
    Digestive Tract Trialists’ Collaborative Group (1993) Meta-analysis of randomised controlled trials of selective decontamination of the digestive tract. Selective decontamination of the digestive tract trials. Br Med J 307:525–532CrossRefGoogle Scholar
  11. 11.
    Kollef MH (1994) The role of selective digestive tract decontamination on mortality and respiratory tract infections. A meta-analysis. Chest 105:1101–1108CrossRefPubMedGoogle Scholar
  12. 12.
    Silvestri L, van Saene HK, Milanese M et al (2007) Selective decontamination of the digestive tract reduces bacterial bloodstream trials. J Hosp Infect 165(3):187–203CrossRefGoogle Scholar
  13. 13.
    Silvestri L, van Saene HK, Thomann C, Peri? M (2007) Selective decontaimination of the digestive tract reduces pneumonia and mortality without resistance emerging. Am J Infect Control 35:354–357CrossRefPubMedGoogle Scholar
  14. 14.
    Sirvent JM, Torres A, El-Ebiary M et al (1997) Prospective effect of intravenously administered cefuroxime against nosocomial pneumonia in patients with structural coma. Am J Respir Crit Care Med 155:1729–1734PubMedGoogle Scholar
  15. 15.
    Safdar N, Said A, Lucey MR (2004) The role of selective digestive decontamination for reducing infection in patients undergoing liver transplantation: a systematic review and metaanalysis. Liver Transpl 10:817–827CrossRefPubMedGoogle Scholar
  16. 16.
    Tetteroe GW, Wagenvoort JH, Castelein A et al (1990) Selective decontamination to reduce gram-negative colonization and infections after aesophageal resection. Lancet 335:704–707CrossRefGoogle Scholar
  17. 17.
    Nathens AB, Marshall JC (1999) Selective decontamination of degestive tract in surgical patients. A systematic review of the evidence. Arch Surg 134:170–176CrossRefPubMedGoogle Scholar
  18. 18.
    Pederzoli P, Bassi C, Vesentini S, Campedelli A (1993) A randomized multicenter clinical trial of antibiotic prophylaxis of septic complications in acute necrotizing pancreatistis with imipenem. Surg Gynecol Obstet 176:480–483PubMedGoogle Scholar
  19. 19.
    Dellinger EP, Tellado JM, Soto NE et al (2007) Early antibiotic treatment for severe acute necrotizing pancreatitis: a randomized, double-blind, placebo-controlled study. Ann Surg 245:674–683CrossRefPubMedGoogle Scholar
  20. 20.
    Jorda R, Parras F, Ibañez J et al (1993) Diagnosis of nosocomial pneumonia in mechanically ventilated patients by the blind protected telescoping catheter. Intensive Care Med 19:377–383CrossRefPubMedGoogle Scholar
  21. 21.
    Pugin J, Auckenthaler R, Mili A et al (1991) Diagnosis of ventilator-associated pneumonia by bacteriologic anlysis of bronchoscopic and nonbronchoscopic “blind”fbronchoalveolar lavage fluid. Am Rev Respir Dis 143:1121–1129PubMedGoogle Scholar
  22. 22.
    Sánchez Carrillo C, Guerrero Gómez C (2003) Recogida, transporte y procesamiento general de muestra de laboratorio de Microbiolagía. In: Cercenado E, Cantón R (eds) Procedimientos de microbiología clínica. Recomendaciones de la Sociedad Españo la de Enfermedades Infecciosasy Microbiología Clínica (SEIMC). Scholar
  23. 23.
    Ribes JA, Limper AH, Espy MJ, Smith TF (1997) PCR detection of Pneumocystis carinii in bronchoalveolar lavage specimens: analysis of sensitivity and specificity. J Clin Microbiol 35:830–835PubMedGoogle Scholar
  24. 24.
    Sandhu GS, Kline BC, Stockman L, Roberts GD (1995) Molecular probes for diagnosis of fungal infections. J Clin Microbiol 33:2913–2919PubMedGoogle Scholar
  25. 25.
    Coll P, Coque MT, Dominguez MA et al (2005) Métodos moleculares de tipificación epidemiológica en bacteriologìa. In: Cercenado E, Cantón R (eds) Procedimientos de microbiología clínica. Recomendaciones de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC) Scholar
  26. 26.
    Fink MP, Snydman DR, Niederman MS et al (1994) Treatment of severe pneumonia in hospitalized patients: results of a multicenter randomized, double-blind trial comparing intravenous ciprofloxacin with imipenem-cilastatin. Antimicrob Agents Chemother 38:547–557PubMedGoogle Scholar
  27. 27.
    Menéndez R, Perpiñá M, Torres A (2003) Evaluation of nonresolving and progressive pneumonia. Semin Respir Infect 18:103–111PubMedGoogle Scholar
  28. 28.
    Pea F, Furlanut M (2001) Pharmacokinetic aspects of treating infections in the intensive care unit: focus on drug interactions. Clin Pharmacokinet 40:833–868CrossRefPubMedGoogle Scholar
  29. 29.
    Foxworth J (1997) Recognizing and preventing antibiotic-associated complications in the critical care setting. Crit Care Nurs Q 20:1–11PubMedGoogle Scholar
  30. 30.
    Joannidis M (2004) Drug-induced renal failure in the ICU. Int J Artif Organs 27:1034–1042PubMedGoogle Scholar
  31. 31.
    Debord J, Voultoury JC, Lachatre G et al (1994) Pharmacokinetics and dosage regimens of amikacin in intensive care unit patients. Int J Biomed Comput 36:135–137CrossRefPubMedGoogle Scholar
  32. 32.
    Dworzak DL, Pugsley MP, Sanders CL, Horowitt EA (1987) Emergence of resistance in Gramnegative bacteria during therapy with extended-spectrum cephalosporin. Eur J Clin Microbiol 6:456–459CrossRefGoogle Scholar
  33. 33.
    Neuhauser MM, Weinstein RA, Rydman R et al (2003) Antibiotic resistance among Gramnegative bacilli in US Intensive Care Units. Implications for fluoroquinolone use. JAMA 289:885–888CrossRefPubMedGoogle Scholar
  34. 34.
    Akinci E, Colpan A, Bodur H et al (2005) Risk factors for ICU-acquired imipenem-resistant gram-negative bacterial infections. J Hosp Infect 59:317–323CrossRefPubMedGoogle Scholar
  35. 35.
    Meyer E, Schwab F, Gastmeier P et al (2006) Stenotrophomonas maltophilia and antibiotic use in German intensive care units: data from Project SARI (Surveillance of Antimicrobial Use and Antimicrobial Resistance in German Intensive Care Units. J Hosp Infect 64:238–243CrossRefPubMedGoogle Scholar
  36. 36.
    Chastre J, Wolff M, Fagon JY et al (2003) Comparison of 8 vs. 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: a randomized trial. JAMA 290:2588–2598CrossRefPubMedGoogle Scholar
  37. 37.
    Kollef MH (2001) Hospital-acquired pneumonia and de-escalation of antimicrobial treatment. Crit Care Med 29:1473–1475CrossRefPubMedGoogle Scholar
  38. 38.
    Ibrahim EH, Ward S, Sherman G et al (2001) Experience with a clinical guide line for the treatment of ventilator-associated pneumonia. Crit Care Med 29(6):1109–1115CrossRefPubMedGoogle Scholar
  39. 39.
    Rello J, Vidaur L, Sandiumenge A et al (2004) De-escalation therapy in ventilator-associated pneumonia. Crit Care Med 32(11):2183–2190PubMedGoogle Scholar
  40. 40.
    Álvarez-Lerma F, Alvarez B, Luque P et al (2006) Empiric broad-spectrum antibiotic therapy of nosocomial pneumonia in the intensive care unit: a prospective observational study. Crit Care 10:R78CrossRefPubMedGoogle Scholar
  41. 41.
    Leone M, Garcin F, Bouvenot J et al (2007) Ventilator-associated pneumonia: breaking the vicious circle of antibiotic overuse. Crit Care Med 35:379–385CrossRefPubMedGoogle Scholar
  42. 42.
    Giantsou E, Liratzopoulos N, Efraimidou E et al (2007) De-escalation therapy rates are significantly higher by bronchoalveolar lavage than by tracheal aspirate. Intensive Care Med 33:1533–1540CrossRefPubMedGoogle Scholar
  43. 43.
    Gerding DN, Larson TA, Hughes RA et al (1991) Aminoglycoside resistance and aminoglycoside usage: ten years of experience in one hospital. Antimicrob Agents Chemother 35:1284–1290PubMedGoogle Scholar
  44. 44.
    Kollef MH, Vlasnik J, Sharpless L et al (1997) Scheduled change of antibiotic classes. A strategy to decrease the incidence of ventilator-associated pneumonia. Am J Respir Crit Care Med 156:1040–1048PubMedGoogle Scholar
  45. 45.
    Gruson D, Hibert G, Vargas F et al (2000) Rotation and restricted use of antibiotics in a medical intensive care unit: impact on the incidence of ventilator-associated penumonia caused by antibiotic-resistant gram-negative bacteria. Am J Respir Crit Care Med 162:837–843PubMedGoogle Scholar
  46. 46.
    Hughes MG, Evans HL, Chong TW et al (2004) Effect of an intensive care unit rotating empiric antibiotic schedule on the development of hospital-acquired infections on the non-intensive care unit ward. Crit Care Med 32:53–60CrossRefPubMedGoogle Scholar
  47. 47.
    Merz LR, Warren DK, Kollef MH, Fraser VJ (2004) Effects of an antibiotic cycling program on antibiotic prescribing practices in an intensive care unit. Anitmicrob Agents Chemother 48:2861–2865CrossRefGoogle Scholar
  48. 48.
    Martínez JA, Nicolás JM, Marco F et al (2006) Comparison of antimicrobial cycling and mixing strategies in two medical intensive care units. Crit Care Med 34(2):329–336CrossRefPubMedGoogle Scholar
  49. 49.
    Sandiumenge A, Diaz E, Rodríguez A et al (2006) Impact of diversity of antibiotic use on the development of antimicrobial resistance. J Antimicrob Chemother 57:1197–1204CrossRefPubMedGoogle Scholar
  50. 50.
    Brown E, Nathwani D (2005) Antibiotic cycling or rotation: a systematic review of the evidence of efficacy. J Antimicrob Chemother 55:6–9CrossRefPubMedGoogle Scholar
  51. 51.
    Masterton RG (2005) Antibiotic cycling: more than it might seem? J Antimicrob Chemother 55:1–5CrossRefPubMedGoogle Scholar
  52. 52.
    Kollef MH (2006) Is antibiotic cycling the answer to preventing the emergence of bacterial resistance in the Intensive Care Unit? Clin Infect Dis 43(Suppl 2): S82–S88.)CrossRefPubMedGoogle Scholar
  53. 53.
    Maertens J, Theunissen K, Verhoef G et al (2005) Galactomannan and computed tomographybased preemptive antifungal therapy in neutropenic patients at high risk for invasive fungal infection: a prospective feasibility study. Clin Infect Dis 41:1242–1250CrossRefPubMedGoogle Scholar
  54. 54.
    Pittet D, Monod M, Suter PM et al (1994) Candida colonization and subsequent infections in critically ill surgical patients. Ann Surg 220:751–758CrossRefPubMedGoogle Scholar
  55. 55.
    León C, Ruiz-Santana S, Saavedra P et al (2006) A bedside scoring system (“Candida score”) for early antifungal treatment in nonneutropenic critically ill patients with Candida colonization. Crit Care Med 34:730–737CrossRefPubMedGoogle Scholar
  56. 56.
    Blondeu JM, Hansen G, Metzler K, Hedlin P (2004) The role of PK/PD parameters to avoid and increase of resistance: mutant prevention concentration. J Chemother 16(Suppl) 3: 1–19Google Scholar
  57. 57.
    Preston SL, Drusano GL, Berman AL et al (1998) Pharmacodynamics of levofloxacin: a new paradigm for early clinical trials. JAMA 279:159–160CrossRefGoogle Scholar
  58. 58.
    Forrest A, Nix DE, Ballow CH et al (1993) Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother 37:1073–1081PubMedGoogle Scholar
  59. 59.
    Thomas JK, Forrest A, Bhavnani SM et al (1998) Pharmacodynamic evaluation of factors associated with development of bacteria resistance in acutely ill patients during therapy. Antimicrob Agents Chemother 42:521–527PubMedGoogle Scholar
  60. 60.
    Pea F, Furlanut M (2001) Pharmacokinetic aspects of treating infections in the intensive care unit: focus on drug interactions. Clin Pharmacokinet 40:833–868CrossRefPubMedGoogle Scholar
  61. 61.
    Grau S, Alvarez-Lerma F, Domínguez-Gil A (2007) Pharmacokinetic/pharmacodynamic indices: are we ready to use them in daily practice? Expert Rev Anti Infect Ther 5:913–916CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2009

Authors and Affiliations

  • F. Alvarez Lerma
    • 1
  • M. Palomar Martínez
    • 1
  1. 1.Servicio de Medicina IntensivaHospital Vall d’HebrónBarcelonaSpain

Personalised recommendations