Skip to main content

Predicting the Success of Defibrillation and Cardiopulmonary Resuscitation

  • Chapter
Intensive and Critical Care Medicine
  • 1821 Accesses

Abstract

Ventricular fibrillation (VF) remains the primary rhythm in many instances of sudden cardiac death, and defibrillation by electrical counter-shock represents the treatment of choice for this otherwise lethal arrhythmia. There is no doubt that the duration of VF remains one of the principal determinants for the likelihood of successful defibrillation. When the interval between the estimated onset of VF and the delivery of the first shock is less than 5 min, there is evidence that an immediate electrical shock would be successful [1]. When the duration of untreated VF exceeds 5 min, however, both human and animal studies demonstrate that initial CPR, with chest compression, prior to delivery of a defibrillation attempt, improves the likelihood of restoration of spontaneous circulation (ROSC) [2, 3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Valenzuela TD, Roe DJ, Nichol G et al (2000) Outcomes of rapid defibrillation by security officers after cardiac arrest in casinos. N Engl J Med 343:1206–1209

    Article  CAS  PubMed  Google Scholar 

  2. Wik L, Hansen TB, Fylling F et al (2003) Delaying defibrillation to give basic cardiopulmonary resuscitation to patients with out-of-hospital ventricular fibrillation. JAMA 289:1389–1395

    Article  PubMed  Google Scholar 

  3. Berg RA, Hilwig RW, Ewy GA et al (2004) Precountershock cardiopulmonary resuscitation improves initial response to defibrillation from prolonged ventricular fibrillation: a randomized, controlled swine study. Crit Care Med 32:1352–1357

    Article  PubMed  Google Scholar 

  4. Chen PS, Wu TJ, Ting CT et al (2003) A tale of two fibrillations. Circulation 108:2298–2303

    Article  PubMed  Google Scholar 

  5. Klouche K, Weil MH, Sun S et al (2002) Evolution of the stone heart after prolonged cardiac arrest. Chest 122:1006–1011

    Article  PubMed  Google Scholar 

  6. Peatfield RC, Sillett RW, Taylor D et al (1977) Survival after cardiac arrest in the hospital. Lancet 1:1223–1225

    Article  CAS  PubMed  Google Scholar 

  7. DeBard ML (1981) Cardiopulmonary resuscitation: analysis of six years’ experience and review of the literature. Ann Emerg Med 10:408–416

    Article  CAS  PubMed  Google Scholar 

  8. Schenenberger RA, von Planta M, von Planta I (1994) Survival after failed out of hospital resuscitation. Are further therapeutic efforts in the emergency department futile? Arch Intern Med 154:2433–2437

    Article  Google Scholar 

  9. Xie J, Weil MH, Sun S et al (1997) High-energy defibrillation increases the severity of postresuscitation myocardial dysfunction. Circulation 96:683–688

    CAS  PubMed  Google Scholar 

  10. Tang W, Weil MH, Sun S et al (2004) The effects of biphasic waveform design on post-resuscitation myocardial function. J Am Coll Cardiol 43:1228–1235

    Article  PubMed  Google Scholar 

  11. Berg RA, Sanders AB, Kern KB et al (2001) Adverse hemodynamic effects of interrupting chest compressions for rescue breathing during cardiopulmonary resuscitation for ventricular fibrillation cardiac arrest. Circulation 104:2465–2470

    Article  CAS  PubMed  Google Scholar 

  12. Yu T, Weil MH, Tang W et al (2002) Adverse outcome of interrupted precordial compression during automated defibrillation. Circulation 106:368–372

    Article  PubMed  Google Scholar 

  13. Steen S, Liao Q, Pierre L et al (2003) The critical importance of minimal delay between chest compressions and subsequent defibrillation: a haemodynamic explanation. Resuscitation 58:249–258

    Article  PubMed  Google Scholar 

  14. Deshmukh HG, Weil MH, Gudipati CV et al (1989) Mechanism of blood flow generated by precordial compression during CPR, I: studies on closed chest precordial compression. Chest 95:1092–1099

    Article  CAS  PubMed  Google Scholar 

  15. Sanders AB, Ogle M, Ewy GA (1985) Coronary perfusion pressure during cardiopulmonary resuscitation. Am J Emerg Med 2:11–14

    Article  Google Scholar 

  16. Paradis NA, Martin GB, Rosenberg J et al (1990) Coronary perfusion pressure and the return of spontaneous circulation in human cardiopulmonary resuscitation. JAMA 263:1106–1113

    Article  CAS  PubMed  Google Scholar 

  17. Weil MH, Bisera J, Trevino RP, Rackow EC (1985) Cardiac output and end-tidal carbon dioxide. Crit Care Med 13:907–909

    Article  CAS  PubMed  Google Scholar 

  18. Falk JL, Rackow EC, Weil MH (1988) End-tidal carbon dioxide concentration during cardiopulmonary resuscitation. N Engl J Med 318:607–611

    CAS  PubMed  Google Scholar 

  19. Niemann JT, Criley JM, Rosborough JP et al (1985) Predictive indices of successful cardiac resuscitation after prolonged arrest and experimental cardiopulmonary resuscitation. Ann Emerg Med 14:521–528

    Article  CAS  PubMed  Google Scholar 

  20. Ristagno G, Tang W, Chang YT et al (2007) The quality of chest compressions during cardiopulmonary resuscitation overrides importance of timing of defibrillation. Chest 132:70–75

    Article  PubMed  Google Scholar 

  21. Gudipati CV, Weil MH, Bisera J et al (1988) Expired carbon dioxide: a noninvasive monitor of cardiopulmonary resuscitation. Circulation 77:234–239

    CAS  PubMed  Google Scholar 

  22. von Planta M, von Planta I, Weil MH et al (1989) End tidal carbon dioxide as an haemodynamic determinant of cardiopulmonary resuscitation in the rat. Cardiovasc Res 23:364–368

    Article  Google Scholar 

  23. Grmec S, Klemen P (2001) Does the end-tidal carbon dioxide (EtCO2) concentration have prognostic value during out-of hospital cardiac arrest? Eur J Emerg Med 8:263–269

    Article  CAS  PubMed  Google Scholar 

  24. Cantineau JP, Lambert Y, Merckx P et al (1996) End-tidal carbon dioxide during cardiopulmonary resuscitation in humans presenting mostly with asystole: a predictor of outcome. Crit Care Med 24:791–796

    Article  CAS  PubMed  Google Scholar 

  25. Kolar M, Krizmaric M, Klemen P et al (2008) Partial pressure of end-tidal carbon dioxide successful predicts cardiopulmonary resuscitation in the field: a prospective observational study. Crit Care 12:R115

    Article  PubMed  Google Scholar 

  26. Li Y, Bisera J, Geheb F et al (2008) Identifying potentially shockable rhythms without interrupting cardiopulmonary resuscitation. Crit Care Med 36:198–203

    Article  PubMed  Google Scholar 

  27. Snyder DE, White RD, Jorgenson DB (2007) Outcome prediction for guidance of initial resuscitation protocol: shock first or CPR first. Resuscitation 72:45–51

    Article  PubMed  Google Scholar 

  28. Weaver MD, Cobb LA, Dennis D et al (1985) Amplitude of ventricular fibrillation waveform and outcome after cardiac arrest. Ann Intern Med 102:53–55

    CAS  PubMed  Google Scholar 

  29. Brown CG, Griffith RF, Van Ligten P et al (1991) Median frequency: a new parameter for predicting defibrillation success rate. Ann Emerg Med 20:787–789

    Article  CAS  PubMed  Google Scholar 

  30. Dalzell GW, Adgey AA (1991) Determinants of successful transthoracic defibrillation and outcome in ventricular fibrillation. Br Heart J 65:311–316

    Article  CAS  PubMed  Google Scholar 

  31. Callaham M, Braun O, Valentine W et al (1993) Prehospital cardiac arrest treated by urban first-responders; profile of patient response and prediction of outcome by ventricular fibrillation waveform. Ann Emerg Med 22:1664

    Article  CAS  PubMed  Google Scholar 

  32. Strohmenger HU, Lindner KH, Brown CG (1997) Analysis of the ventricular fibrillation ECG signal amplitude and frequency parameters as predictors of countershock success in humans. Chest 111:584–589

    Article  CAS  PubMed  Google Scholar 

  33. Noc M, Weil MH, Gazmuri RJ et al (1994) Ventricular fibrillation voltage as a monitor of the effectiveness of cardiopulmonary resuscitation. J Lab Clin Med 124:421–426

    CAS  PubMed  Google Scholar 

  34. Brown CG, Dzwonczyk R, Werman HA et al (1989) Estimating the duration of ventricular fibrillation. Ann Emerg Med 18:1181–1185

    Article  CAS  PubMed  Google Scholar 

  35. Brown CG, Griffith RF, Van Ligten P et al (1991) Median frequency: a new parameter for predicting defibrillation success rate. Ann Emerg Med 20:787–789

    Article  CAS  PubMed  Google Scholar 

  36. Strohmenger HU, Lindner KH, Lurie KG et al (1994) Frequency of ventricular fibrillation as predictor of defibrillation success during cardiac surgery. Anesth Analg 79:434–438

    Article  CAS  PubMed  Google Scholar 

  37. Brown CG, Dzwonczyk R (1996) Signal analysis of the human electrocardiogram during ventricular fibrillation: frequency and amplitude parameters as predictors of successful countershock. Ann Emerg Med 27:184–188

    Article  CAS  PubMed  Google Scholar 

  38. Stewart AJ, Allen JD, Adgey AA (1992) Frequency analysis of ventricular fibrillation and resuscitation success. Q J Med 85:761–769

    CAS  PubMed  Google Scholar 

  39. Amann A, Achleitner U, Antretter H et al (2001) Analysing ventricular fibrillation ECG-signals and predicting defibrillation success during cardiopulmonary resuscitation employing N(alpha)-histograms. Resuscitation 50:77–85

    Article  CAS  PubMed  Google Scholar 

  40. Eftestol T, Sunde K, Aase SO et al (2001) “Probability of successful defibrillation” as a monitor during CPR in out-of-hospital cardiac arrested patients. Resuscitation 48:245–254

    Article  CAS  PubMed  Google Scholar 

  41. Watson JN, Uchaipichat N, Addison PS et al (2004) Improved prediction of defibrillation success for out-of-hospital VF cardiac arrest using wavelet transform methods. Resuscitation 63:269–275

    Article  PubMed  Google Scholar 

  42. Neurauter A, Eftestøl T, Kramer-Johansen J et al (2008) Improving countershock success prediction during cardiopulmonary resuscitation using ventricular fibrillation features from higher ECG frequency bands. Resuscitation 79:453–459

    Article  PubMed  Google Scholar 

  43. Pernat AM, Weil MH, Tang W et al (2001) Optimizing timing of ventricular defibrillation. Crit Care Med 29:2360–2365

    Article  PubMed  Google Scholar 

  44. Povoas HP, Weil MH, Tang W et al (2002) Predicting the success of defibrillation by electrocardiographic analysis. Resuscitation 53:77–82

    Article  PubMed  Google Scholar 

  45. Young C, Bisera J, Gehman S et al (2004) Amplitude spectrum area: measuring the probability of successful defibrillation as applied to human data. Crit Care Med 32:S356–S358

    Article  PubMed  Google Scholar 

  46. Ristagno G, Gullo A, Berlot G et al (2008) Electrocardiographic analysis for prediction of successful defibrillation in human victims of out of hospital cardiac arrest. Anaesth Intensive Care 36:46–50

    CAS  PubMed  Google Scholar 

  47. Fries M, Weil MH, Chang YT et al (2006) Microcirculation during cardiac arrest and resuscitation. Crit Care Med 34:S454–S457

    Article  PubMed  Google Scholar 

  48. Ristagno G, Cho JH, Yu T et al (2008) Non-invasive measurements for predicting duration of untreated cardiac arrest. Circulation 118:S664

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Italia

About this chapter

Cite this chapter

Ristagno, G. (2009). Predicting the Success of Defibrillation and Cardiopulmonary Resuscitation. In: Gullo, A., Lumb, P.D., Besso, J., Williams, G.F. (eds) Intensive and Critical Care Medicine. Springer, Milano. https://doi.org/10.1007/978-88-470-1436-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1436-7_15

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1435-0

  • Online ISBN: 978-88-470-1436-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics