Predicting the Success of Defibrillation and Cardiopulmonary Resuscitation

  • G. Ristagno


Ventricular fibrillation (VF) remains the primary rhythm in many instances of sudden cardiac death, and defibrillation by electrical counter-shock represents the treatment of choice for this otherwise lethal arrhythmia. There is no doubt that the duration of VF remains one of the principal determinants for the likelihood of successful defibrillation. When the interval between the estimated onset of VF and the delivery of the first shock is less than 5 min, there is evidence that an immediate electrical shock would be successful [1]. When the duration of untreated VF exceeds 5 min, however, both human and animal studies demonstrate that initial CPR, with chest compression, prior to delivery of a defibrillation attempt, improves the likelihood of restoration of spontaneous circulation (ROSC) [2, 3].


Cardiac Arrest Ventricular Fibrillation Cardiopulmonary Resuscitation Chest Compression Coronary Perfusion Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Valenzuela TD, Roe DJ, Nichol G et al (2000) Outcomes of rapid defibrillation by security officers after cardiac arrest in casinos. N Engl J Med 343:1206–1209CrossRefPubMedGoogle Scholar
  2. 2.
    Wik L, Hansen TB, Fylling F et al (2003) Delaying defibrillation to give basic cardiopulmonary resuscitation to patients with out-of-hospital ventricular fibrillation. JAMA 289:1389–1395CrossRefPubMedGoogle Scholar
  3. 3.
    Berg RA, Hilwig RW, Ewy GA et al (2004) Precountershock cardiopulmonary resuscitation improves initial response to defibrillation from prolonged ventricular fibrillation: a randomized, controlled swine study. Crit Care Med 32:1352–1357CrossRefPubMedGoogle Scholar
  4. 4.
    Chen PS, Wu TJ, Ting CT et al (2003) A tale of two fibrillations. Circulation 108:2298–2303CrossRefPubMedGoogle Scholar
  5. 5.
    Klouche K, Weil MH, Sun S et al (2002) Evolution of the stone heart after prolonged cardiac arrest. Chest 122:1006–1011CrossRefPubMedGoogle Scholar
  6. 6.
    Peatfield RC, Sillett RW, Taylor D et al (1977) Survival after cardiac arrest in the hospital. Lancet 1:1223–1225CrossRefPubMedGoogle Scholar
  7. 7.
    DeBard ML (1981) Cardiopulmonary resuscitation: analysis of six years’ experience and review of the literature. Ann Emerg Med 10:408–416CrossRefPubMedGoogle Scholar
  8. 8.
    Schenenberger RA, von Planta M, von Planta I (1994) Survival after failed out of hospital resuscitation. Are further therapeutic efforts in the emergency department futile? Arch Intern Med 154:2433–2437CrossRefGoogle Scholar
  9. 9.
    Xie J, Weil MH, Sun S et al (1997) High-energy defibrillation increases the severity of postresuscitation myocardial dysfunction. Circulation 96:683–688PubMedGoogle Scholar
  10. 10.
    Tang W, Weil MH, Sun S et al (2004) The effects of biphasic waveform design on post-resuscitation myocardial function. J Am Coll Cardiol 43:1228–1235CrossRefPubMedGoogle Scholar
  11. 11.
    Berg RA, Sanders AB, Kern KB et al (2001) Adverse hemodynamic effects of interrupting chest compressions for rescue breathing during cardiopulmonary resuscitation for ventricular fibrillation cardiac arrest. Circulation 104:2465–2470CrossRefPubMedGoogle Scholar
  12. 12.
    Yu T, Weil MH, Tang W et al (2002) Adverse outcome of interrupted precordial compression during automated defibrillation. Circulation 106:368–372CrossRefPubMedGoogle Scholar
  13. 13.
    Steen S, Liao Q, Pierre L et al (2003) The critical importance of minimal delay between chest compressions and subsequent defibrillation: a haemodynamic explanation. Resuscitation 58:249–258CrossRefPubMedGoogle Scholar
  14. 14.
    Deshmukh HG, Weil MH, Gudipati CV et al (1989) Mechanism of blood flow generated by precordial compression during CPR, I: studies on closed chest precordial compression. Chest 95:1092–1099CrossRefPubMedGoogle Scholar
  15. 15.
    Sanders AB, Ogle M, Ewy GA (1985) Coronary perfusion pressure during cardiopulmonary resuscitation. Am J Emerg Med 2:11–14CrossRefGoogle Scholar
  16. 16.
    Paradis NA, Martin GB, Rosenberg J et al (1990) Coronary perfusion pressure and the return of spontaneous circulation in human cardiopulmonary resuscitation. JAMA 263:1106–1113CrossRefPubMedGoogle Scholar
  17. 17.
    Weil MH, Bisera J, Trevino RP, Rackow EC (1985) Cardiac output and end-tidal carbon dioxide. Crit Care Med 13:907–909PubMedCrossRefGoogle Scholar
  18. 18.
    Falk JL, Rackow EC, Weil MH (1988) End-tidal carbon dioxide concentration during cardiopulmonary resuscitation. N Engl J Med 318:607–611PubMedGoogle Scholar
  19. 19.
    Niemann JT, Criley JM, Rosborough JP et al (1985) Predictive indices of successful cardiac resuscitation after prolonged arrest and experimental cardiopulmonary resuscitation. Ann Emerg Med 14:521–528CrossRefPubMedGoogle Scholar
  20. 20.
    Ristagno G, Tang W, Chang YT et al (2007) The quality of chest compressions during cardiopulmonary resuscitation overrides importance of timing of defibrillation. Chest 132:70–75CrossRefPubMedGoogle Scholar
  21. 21.
    Gudipati CV, Weil MH, Bisera J et al (1988) Expired carbon dioxide: a noninvasive monitor of cardiopulmonary resuscitation. Circulation 77:234–239PubMedGoogle Scholar
  22. 22.
    von Planta M, von Planta I, Weil MH et al (1989) End tidal carbon dioxide as an haemodynamic determinant of cardiopulmonary resuscitation in the rat. Cardiovasc Res 23:364–368CrossRefGoogle Scholar
  23. 23.
    Grmec S, Klemen P (2001) Does the end-tidal carbon dioxide (EtCO2) concentration have prognostic value during out-of hospital cardiac arrest? Eur J Emerg Med 8:263–269CrossRefPubMedGoogle Scholar
  24. 24.
    Cantineau JP, Lambert Y, Merckx P et al (1996) End-tidal carbon dioxide during cardiopulmonary resuscitation in humans presenting mostly with asystole: a predictor of outcome. Crit Care Med 24:791–796CrossRefPubMedGoogle Scholar
  25. 25.
    Kolar M, Krizmaric M, Klemen P et al (2008) Partial pressure of end-tidal carbon dioxide successful predicts cardiopulmonary resuscitation in the field: a prospective observational study. Crit Care 12:R115CrossRefPubMedGoogle Scholar
  26. 26.
    Li Y, Bisera J, Geheb F et al (2008) Identifying potentially shockable rhythms without interrupting cardiopulmonary resuscitation. Crit Care Med 36:198–203CrossRefPubMedGoogle Scholar
  27. 27.
    Snyder DE, White RD, Jorgenson DB (2007) Outcome prediction for guidance of initial resuscitation protocol: shock first or CPR first. Resuscitation 72:45–51CrossRefPubMedGoogle Scholar
  28. 28.
    Weaver MD, Cobb LA, Dennis D et al (1985) Amplitude of ventricular fibrillation waveform and outcome after cardiac arrest. Ann Intern Med 102:53–55PubMedGoogle Scholar
  29. 29.
    Brown CG, Griffith RF, Van Ligten P et al (1991) Median frequency: a new parameter for predicting defibrillation success rate. Ann Emerg Med 20:787–789CrossRefPubMedGoogle Scholar
  30. 30.
    Dalzell GW, Adgey AA (1991) Determinants of successful transthoracic defibrillation and outcome in ventricular fibrillation. Br Heart J 65:311–316CrossRefPubMedGoogle Scholar
  31. 31.
    Callaham M, Braun O, Valentine W et al (1993) Prehospital cardiac arrest treated by urban first-responders; profile of patient response and prediction of outcome by ventricular fibrillation waveform. Ann Emerg Med 22:1664CrossRefPubMedGoogle Scholar
  32. 32.
    Strohmenger HU, Lindner KH, Brown CG (1997) Analysis of the ventricular fibrillation ECG signal amplitude and frequency parameters as predictors of countershock success in humans. Chest 111:584–589CrossRefPubMedGoogle Scholar
  33. 33.
    Noc M, Weil MH, Gazmuri RJ et al (1994) Ventricular fibrillation voltage as a monitor of the effectiveness of cardiopulmonary resuscitation. J Lab Clin Med 124:421–426PubMedGoogle Scholar
  34. 34.
    Brown CG, Dzwonczyk R, Werman HA et al (1989) Estimating the duration of ventricular fibrillation. Ann Emerg Med 18:1181–1185CrossRefPubMedGoogle Scholar
  35. 35.
    Brown CG, Griffith RF, Van Ligten P et al (1991) Median frequency: a new parameter for predicting defibrillation success rate. Ann Emerg Med 20:787–789CrossRefPubMedGoogle Scholar
  36. 36.
    Strohmenger HU, Lindner KH, Lurie KG et al (1994) Frequency of ventricular fibrillation as predictor of defibrillation success during cardiac surgery. Anesth Analg 79:434–438CrossRefPubMedGoogle Scholar
  37. 37.
    Brown CG, Dzwonczyk R (1996) Signal analysis of the human electrocardiogram during ventricular fibrillation: frequency and amplitude parameters as predictors of successful countershock. Ann Emerg Med 27:184–188CrossRefPubMedGoogle Scholar
  38. 38.
    Stewart AJ, Allen JD, Adgey AA (1992) Frequency analysis of ventricular fibrillation and resuscitation success. Q J Med 85:761–769PubMedGoogle Scholar
  39. 39.
    Amann A, Achleitner U, Antretter H et al (2001) Analysing ventricular fibrillation ECG-signals and predicting defibrillation success during cardiopulmonary resuscitation employing N(alpha)-histograms. Resuscitation 50:77–85CrossRefPubMedGoogle Scholar
  40. 40.
    Eftestol T, Sunde K, Aase SO et al (2001) “Probability of successful defibrillation” as a monitor during CPR in out-of-hospital cardiac arrested patients. Resuscitation 48:245–254CrossRefPubMedGoogle Scholar
  41. 41.
    Watson JN, Uchaipichat N, Addison PS et al (2004) Improved prediction of defibrillation success for out-of-hospital VF cardiac arrest using wavelet transform methods. Resuscitation 63:269–275CrossRefPubMedGoogle Scholar
  42. 42.
    Neurauter A, Eftestøl T, Kramer-Johansen J et al (2008) Improving countershock success prediction during cardiopulmonary resuscitation using ventricular fibrillation features from higher ECG frequency bands. Resuscitation 79:453–459CrossRefPubMedGoogle Scholar
  43. 43.
    Pernat AM, Weil MH, Tang W et al (2001) Optimizing timing of ventricular defibrillation. Crit Care Med 29:2360–2365CrossRefPubMedGoogle Scholar
  44. 44.
    Povoas HP, Weil MH, Tang W et al (2002) Predicting the success of defibrillation by electrocardiographic analysis. Resuscitation 53:77–82CrossRefPubMedGoogle Scholar
  45. 45.
    Young C, Bisera J, Gehman S et al (2004) Amplitude spectrum area: measuring the probability of successful defibrillation as applied to human data. Crit Care Med 32:S356–S358CrossRefPubMedGoogle Scholar
  46. 46.
    Ristagno G, Gullo A, Berlot G et al (2008) Electrocardiographic analysis for prediction of successful defibrillation in human victims of out of hospital cardiac arrest. Anaesth Intensive Care 36:46–50PubMedGoogle Scholar
  47. 47.
    Fries M, Weil MH, Chang YT et al (2006) Microcirculation during cardiac arrest and resuscitation. Crit Care Med 34:S454–S457CrossRefPubMedGoogle Scholar
  48. 48.
    Ristagno G, Cho JH, Yu T et al (2008) Non-invasive measurements for predicting duration of untreated cardiac arrest. Circulation 118:S664Google Scholar

Copyright information

© Springer-Verlag Italia 2009

Authors and Affiliations

  • G. Ristagno
    • 1
  1. 1.Weil Institute of Critical Care MedicineRancho MirageUSA

Personalised recommendations