Neonatology pp 629-640 | Cite as

Treatment of Hyperbilirubinemia

  • M. Jeffrey Maisels
  • Jon F. Watchko


The indications for the treatment of hyperbilirubinemia and the methods used for treatment vary according to the individual circumstances. Thus, treatment of hyperbilirubinemia can be prophylactic, when the purpose is to prevent further increase in the total serum bilirubin (TSB) level, or therapeutic, where the objective is to rapidly decrease a TSB level that is a threat to the infant. In some units, phototherapy is initiated soon after birth in all infants whose birth weight is <1000 g, irrespective of the TSB level. The TSB level can be lowered (or prevented from increasing further) in one of three ways: a) exchange transfusion, which removes bilirubin mechanically; b) phototherapy, which converts bilirubin to products that can bypass the liver’s conjugating system and be excreted in the bile or the urine without further metabolism and c) pharmacologic agents that interfere with heme degradation and bilirubin production, accelerate the normal metabolic pathways for bilirubin clearance, or inhibit the enterohepatic circulation of bilirubin.


Total Serum Bilirubin Exchange Transfusion Total Serum Bilirubin Level Neurodevelopmental Impairment Bilirubin Encephalopathy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ip S, Chung M, Kulig J et al (2004) An evidence-based review of important issues concerning neonatal hyperbilirubinemia. Pedi-atrics 114: e130–e153Google Scholar
  2. 2.
    Ip S, Glicken S, Kulig J et al (2003) Management of neonatal hyperbilirubinemia. AHRQ Publication, Rockville, MDGoogle Scholar
  3. 3.
    Newman TB, Liljestrand P, Jeremy RJ et al (2006) Outcomes among newborns with total serum bilirubin levels of 25 mg per deciliter or more. N Engl J Med 354: 1889–1900PubMedCrossRefGoogle Scholar
  4. 4.
    Newman TB, Maisels MJ (1990) Does hyperbilirubinemia damage the brain of healthy full-term infants? Clin Perinatol 17: 331–358PubMedGoogle Scholar
  5. 5.
    Maisels MJ, Watchko JF (2003) Treatment of jaundice in low birthweight infants. Arch Dis Child Fetal Neonatol Ed 88: F459–F463CrossRefGoogle Scholar
  6. 6.
    Rennie JM, Sehgal A, De A et al (2009) Range of UK practice regarding thresholds for phototherapy and exchange transfusion in neonatal hyperbilirubinaemia. Arch Dis Child Fetal Neonatol Ed 94: F323–F327CrossRefGoogle Scholar
  7. 7.
    Morris BH, Oh W, Tyson JE et al (2008) Aggressive vs. conservative phototherapy for infants with extremely low birth weight. New Eng J Med 359: 1885–1896PubMedCrossRefGoogle Scholar
  8. 8.
    Sugama S, Soeda A, Eto Y (2001) Magnetic resonance imaging in three children with kernicterus. Pediatr Neurol 25: 328–331PubMedCrossRefGoogle Scholar
  9. 9.
    Okumura A, Kidokoro H, Shoji H et al (2009) Kernicterus in preterm infants. Pediatrics 123: e1052–e1058PubMedCrossRefGoogle Scholar
  10. 10.
    Bhutani VK, Johnson LH, Shapiro SM (2004) Kernicterus in sick and preterm infants (1999–2002). A need for an effective preventive approach. Semin Perinatol 28: 319–325Google Scholar
  11. 11.
    Oh W, Tyson JE, Fanaroff AA et al (2003) Association between peak serum bilirubin and neurodevelopmental outcomes in extremely low birth weight infants. Pediatrics 112: 773–779PubMedCrossRefGoogle Scholar
  12. 12.
    Gkoltsiou K, Tzoufi M, Counsell S et al (2008) Serial brain MRI and ultrasound findings; relation to gestational age, bilirubin level, neonatal neurologic stages and neurodevelopmental outcome in infants at risk of kernicterus. Early Hum Dev 84: 829–838PubMedCrossRefGoogle Scholar
  13. 13.
    Govaert P Lequin M, Swarte R et al (2003) Changes in globus pallidus with (pre) term kernicterus. Pediatrics 112: 1256–1263PubMedCrossRefGoogle Scholar
  14. 14.
    McDonagh AF, Maisels MJ (2006) Bilirubin unbound: deja vu all over again? Pediatrics 117: 523–525PubMedCrossRefGoogle Scholar
  15. 15.
    Wennberg RP, Ahlfors CE, Bhutani V et al (2006) Toward understanding kernicterus: a challenge to improve the management of jaundiced newborns. Pediatrics 117: 474–485PubMedCrossRefGoogle Scholar
  16. 16.
    Cashore WJ, Oh W (1982) Unbound bilirubin and kernicterus in low birthweight infants. Pediatrics 69: 481–485PubMedGoogle Scholar
  17. 17.
    Nakamura H, Yonetani M, Uetani Y et al (1992) Determination of serum unbound bilirubin for prediction of kernicterus in low birth weight infants. Acta Paediatr Jpn 54: 642–647Google Scholar
  18. 18.
    Funato M, Tamai H, Shimada S, Nakamura H (1994) Vigintiphobia, unbound bilirubin, and auditory brainstem responses. Pediatrics 93: 50–53PubMedGoogle Scholar
  19. 19.
    Amin SB, Ahlfors CE, Orlando MS et al (2001) Bilirubin and serial auditory brainstem responses in premature infants. Pediatrics 107: 664–670PubMedCrossRefGoogle Scholar
  20. 20.
    Daood MJ, McDonagh AF, Watchko JF (2009) Calculated free bilirubin levels and neurotoxicity. J Perinatol 29: S14–S19PubMedCrossRefGoogle Scholar
  21. 21.
    Ahlfors CE (1994) Criteria for exchange transfusion in jaundiced newborns. Pediatrics 93: 488–494PubMedGoogle Scholar
  22. 22.
    Maisels MJ, Baltz RD, Bhutani V et al (2004) Management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. Pediatrics 114: 297–316CrossRefGoogle Scholar
  23. 23.
    Hulzebos CV, van Imhoff DE, Bos AF et al (2008) Usefulness of the bilirubin/albumin ratio for predicting bilirubin-induced neurotoxicity in premature infants. Arch Dis child Fetal Neonatal Ed 93: F384–F388PubMedCrossRefGoogle Scholar
  24. 24.
    Cashore WJ (1980) Free bilirubin concentrations and bilirubin-binding affinity in term and preterm infants. J Pediatr 96: 521–527PubMedCrossRefGoogle Scholar
  25. 25.
    Cashore WJ, Oh W, Brodersen R (1983) Reserve albumin and bilirubin toxicity index in infant serum. Acta Paediatr Scand 72: 415–419PubMedCrossRefGoogle Scholar
  26. 26.
    Ebbesen F, Brodersen R (1982) Risk of bilirubin acid precipitation in preterm infants with respiratory distress syndrome: Considerations of blood/brain bilirubin transfer equilibrium. Early Hum Dev 6: 341–355Google Scholar
  27. 27.
    Esbjorner E (1991) Albumin binding properties in relation to bilirubin and albumin concentrations during the first week of life. Acta Paediatr Scand 80: 400–405PubMedCrossRefGoogle Scholar
  28. 28.
    Ebbesen F, Nyboe J (1983) Postnatal changes in the ability of plasma albumin to bind bilirubin. Acta Paediatr Scand 72: 665–670PubMedCrossRefGoogle Scholar
  29. 29.
    Bender GJ, Cashore WJ, Oh W (2007) Ontogeny of bilirubin-binding capacity and the effect of clinical status in premature infants born at less than 1300 grams. Pediatrics 120: 1067–1073PubMedCrossRefGoogle Scholar
  30. 30.
    Scheidt PC, Graubard BI, Nelson KB et al (1991) Intelligence at six years in relation to neonatal bilirubin level: follow-up of the National Institute of Child Health and Human Development Clinical Trial of Phototherapy. Pediatrics 87: 797–805PubMedGoogle Scholar
  31. 31.
    Watchko JF (2006) Kernicterus and the molecular mechanisms of bilirubin-induced CNS injury in newborns. NeuroMolecular Med 8: 513–529CrossRefGoogle Scholar
  32. 32.
    Wennberg RP (1991) Cellular basis of bilirubin toxicity. NY State J Med 91: 493–496Google Scholar
  33. 33.
    Vreman HJ, Wong RJ, Stevenson DK (2004) Phototherapy: current methods and future directions. Semin Perinatol 28: 326–333PubMedCrossRefGoogle Scholar
  34. 34.
    Lightner DA, McDonagh AF (1984) Molecular mechanisms of phototherapy for neonatal jaundice. Acc Chem Res 17: 417–424CrossRefGoogle Scholar
  35. 35.
    Tan KL (1982) The pattern of bilirubin response to phototherapy for neonatal hyperbilirubinemia. Pediatr Res 16: 670–674PubMedCrossRefGoogle Scholar
  36. 36.
    Maisels MJ, Kring EA, DeRidder J (2007) Randomized controlled trial of light-emitting diode phototherapy. J Perinatol 27: 565–567PubMedCrossRefGoogle Scholar
  37. 37.
    Seidman DS, Moise J, Ergaz Z et al (2003) A prospective randomized controlled study of phototherapy using blue and blue-green light-emitting devices, and conventional halogen-quartz phototherapy. J Perinatol 23: 123–127PubMedCrossRefGoogle Scholar
  38. 38.
    Holtrop PC, Ruedisueli K, Maisels MJ (1992) Double versus single phototherapy in low birth weight newborns. Pediatrics 90: 674677Google Scholar
  39. 39.
    Tan KL (1997) Efficacy of bidirectional fiberoptic phototherapy for neonatal hyperbilirbinemia. Pediatrics 99: e13Google Scholar
  40. 40.
    Djokomuljanto S, Quah BS, Surini Y et al (2006) Efficacy of phototherapy for neonatal jaundice is increased by the use of low-cost white reflecting curtains. Arch Dis Child Neonatal Ed 91: F439–F442CrossRefGoogle Scholar
  41. 41.
    Shinwell ES, Sciaky Y, Karplus M (2002) Effect of position changing on bilirubin levels during phototherapy. J Perinatol 22: 226–229PubMedCrossRefGoogle Scholar
  42. 42.
    Yamauchi Y, Casa N, Yamanouchi I (1989) Is it necessary to change the babies’ position during phototherapy? Early Hum Dev 20: 221227Google Scholar
  43. 43.
    Brown AK, Kim MH, Wu PYK et al (1985) Efficacy of phototherapy in prevention and management of neonatal hyperbilirubinemia. Pediatrics 75: 393–400PubMedGoogle Scholar
  44. 44.
    Maurer HM, Kirkpatrick BV, McWilliams NB et al (1985) Phototherapy for hyperbilirubinemia of hemolytic disease of the newborn. Pediatrics (Suppl) 75: 407–412Google Scholar
  45. 45.
    Martinez JC, Maisels MJ, Otheguy L et al (1993) Hyperbilirubinemia in the breastfed newborn: a controlled trial of four interventions. Pediatrics 91: 470–473PubMedGoogle Scholar
  46. 46.
    American Academy of Pediatrics, Subcommittee on Hyperbilirubinemia (2004) Clinical practice guideline: Management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. Pediatrics 114: 297–316CrossRefGoogle Scholar
  47. 47.
    Newman TB, Kuzniewicz MW, Liljestrand P et al (2009) Numbers needed to treat with phototherapy according to american academy of pediatrics guidelines. Pediatrics 123: 1352–1359PubMedCrossRefGoogle Scholar
  48. 48.
    Haddock JH, Nadler HL (1970) Bilirubin toxicity in human cultivated fibroblasts and its modification by light treatment. Proc Soc Exp Biol Med 134: 45–48PubMedGoogle Scholar
  49. 49.
    Silberberg DH, Johnson L, Schutta H, Ritter L (1970) Effects of photodegradation products of bilirubin on myelinating cerebellum cultures. J Pediatr 77: 613–618PubMedCrossRefGoogle Scholar
  50. 50.
    Kopelman AE, Brown RS, Odell GB (1972) The “bronze” baby syndrome: A complication of phototherapy. J Pediatr 81: 466–472Google Scholar
  51. 51.
    Rubaltelli FF, Jori G, Reddi E (1983) Bronze baby syndrome: A new porphyrin-related disorder. Pediatr Res 17: 327–330Google Scholar
  52. 52.
    Mallon E, Wojnarowska F, Hope P, Elder G (1995) Neonatal bullous eruption as a result of transient porphyrinemia in a premature infant with hemolytic disease of the newborn. J Am Acad Dermatol 33: 333–336PubMedCrossRefGoogle Scholar
  53. 53.
    Paller AS, Eramo LR, Farrell EE et al (1997) Purpuric phototherapy-induced eruption in transfused neonates: relation to transient porphyrinemia. Pediatrics 100: 360–364PubMedCrossRefGoogle Scholar
  54. 54.
    Valaes T, Petmezaki S, Henschke C et al (1994) Control of jaundice in preterm newborns by an inhibitor of bilirubin production: Studies with tin-mesoporphyrin. Pediatrics 93: 1–11Google Scholar
  55. 55.
    Tonz O, Vogt J, Filippini L et al (1975) Severe light dermatosis following phototherapy in a newborn infant with congenital erythropoietic uroporphyria. Helv Paediatr Acta 30: 47–56PubMedGoogle Scholar
  56. 56.
    Csoma Z, Hencz P, Orvos H et al (2007) Neonatal blue-light phototherapy could increase the risk of dysplastic nevus development. Pediatrics 119: 1036–1037PubMedCrossRefGoogle Scholar
  57. 57.
    Bauer J, Buttner P, Luther H et al (2004) Blue light phototherapy of neonatal jaundice does not increase the risk for melanocytic nevus development. Arch Dermatol 140: 493–494PubMedCrossRefGoogle Scholar
  58. 58.
    Dollberg S, Atherton HD, Hoath SB (1995) Effect of different phototherapy lights on incubator characteristics and dynamics under three modes of servocontrol. Am J Perinatol 12: 55–60PubMedCrossRefGoogle Scholar
  59. 59.
    Maayan-Metzger A, Yosipovitch G, Hadad E, Sirota L (2001) Transepidermal water loss and skin hydration in preterm infants during phototherapy. Am J Perinatol 18: 393–396PubMedCrossRefGoogle Scholar
  60. 60.
    Messner KH, Maisels MJ, Leure-DuPree AE (1978) Phototoxicity to the newborn primate retina. Invest Ophthalmol Vis Sci 17: 178182Google Scholar
  61. 61.
    Maisels MJ, Kring EA (2006) Does intensive phototherapy produce hemolysis in newborns of 35 or more weeks gestation? J Perinatol 26: 498–500PubMedCrossRefGoogle Scholar
  62. 62.
    McDonagh AF (1990) Is bilirubin good for you? Clin Perinatol 17: 359–369PubMedGoogle Scholar
  63. 63.
    Sedlak TW, Snyder SH (2004) Bilirubin benefits: cellular protection by a biliverdin reductase antioxidant cycle. Pediatrics 113: 17761782Google Scholar
  64. 64.
    Jährig K, Jährig D, Meisel P (1982) Dependence of the efficiency of phototherapy on plasma bilirubin concentration. Acta Paediatr Scand 71: 293–299PubMedCrossRefGoogle Scholar
  65. 65.
    Hansen TWR (1997) Acute management of extreme neonatal jaundice—the potential benefits of intensified phototherapy and interruption of enterohepatic bilirubin circulation. Acta Paediatr 86: 843–846PubMedCrossRefGoogle Scholar
  66. 66.
    Maisels MJ, Kring E (2006) The contribution of hemolysis to early jaundice in normal newborns. Pediatrics 118: 276–279PubMedCrossRefGoogle Scholar
  67. 67.
    Maisels MJ, Kring E (2002) Rebound in serum bilirubin level following intensive phototherapy. Arch Pediatr Adolesc Med 156: 669–672PubMedGoogle Scholar
  68. 68.
    Kaplan M, Kaplan E, Hammerman C et al (2006) Post-phototherapy neonatal bilirubin rebound: a potential cause of significant hyperbilirubinaemia. Arch Dis Child 91: 31–34PubMedCrossRefGoogle Scholar
  69. 69.
    Yetman RJ, Parks DK, Huseby V et al (1998) Rebound bilirubin levels in infants receiving phototherapy. J Pediatr: 705–707Google Scholar
  70. 70.
    Cremer RJ, Perryman PW, Richards DH (1958) Influence of light on the hyperbilirubinemia of infants. Lancet 1: 1094–1097PubMedCrossRefGoogle Scholar
  71. 71.
    Slater L, Brewer MF (1984) Home versus hospital phototherapy for term infants with hyperbilirubinemia: A comparative study. Pediatrics 73: 515–519Google Scholar
  72. 72.
    Rogerson AG, Grossman ER, Gruber HS et al (1986) 14 years of experience with home phototherapy. Clin Pediatr 25: 296–299Google Scholar
  73. 73.
    Watchko JF (2000) Exchange transfusion in the management of neonatal hyperbilirubinemia. In: Maisels MJ, Watchko JF (eds) Neonatal Jaundice. Harwood Academic Publishers, London, pp 169–176Google Scholar
  74. 74.
    Maisels MJ (1996) Why use homeopathic doses of phototherapy? Pediatrics 98: 283–287PubMedGoogle Scholar
  75. 75.
    Patra K, Storfer-Isser A, Siner B (2004) Adverse events associated with neonatal exchange transfusion in the 1990s. J Pediatr 144: 626–631PubMedCrossRefGoogle Scholar
  76. 76.
    Rubo J, Albrecht K, Lasch P et al (1992) High-dose intravenous immune globulin therapy for hyperbilirubinemia caused by Rh hemolytic disease. J Pediatr 121: 93–97PubMedCrossRefGoogle Scholar
  77. 77.
    Dagoglu T, Ovali F, Samanci N, Bengisu E (1995) High-dose intravenous immunoglobulin therapy for haemolytic disease. J Int Med Res 23: 264–271PubMedGoogle Scholar
  78. 78.
    Hammerman C, Kaplan M, Vreman HJ, Stevenson DK (1996) Intravenous immune globulin in neonatal ABO isoimmunization: Factors associated with clinical efficacy. Biol Neonate 70: 69–74Google Scholar
  79. 79.
    Kappas A (2004) A method for interdicting the development of severe jaundice in newborns by inhibiting the production of bilirubin. Pediatrics 113: 119–123PubMedCrossRefGoogle Scholar
  80. 80.
    Rubaltelli FF, Guerrini P, Reddi E, Jori G (1989) Tin-protoporphyrin in the management of children with Crigler-Najjar disease. Pediatrics 84: 728–731PubMedGoogle Scholar
  81. 81.
    Kappas A, Drummond GS, Munson DP, Marshall JR (2001) Sn-mesoporphyrin interdiction of severe hyperbilirubinemia in Jehovah’s Witness newborns as an alternative to exchange transfusion. Pediatrics 108: 1374–1377PubMedCrossRefGoogle Scholar
  82. 82.
    Bratlid D (1990) How bilirubin gets into the brain. Clin Perinatol 17: 449–465PubMedGoogle Scholar
  83. 83.
    Eggert P, Stick C, Schroder H (1984) On the distribution of irradiation intensity in phototherapy. Measurements of effective irradiance in an incubator. Eur J Pediatr 142: 58–61Google Scholar
  84. 84.
    American Association of Blood Banks Technical Manual Committee (2002) Perinatal issues in transfusion practice. In: Brecher M (ed) Technical Manual, American Association of Blood Banks. Bethesda, MD, pp 497–515Google Scholar
  85. 85.
    Maisels MJ, McDonagh AF (2008) Phototherapy for neonatal jaundice. N Eng J Med 358: 920–928CrossRefGoogle Scholar
  86. 86.
    Maisels MJ (2005) Jaundice. In: MacDonald MG, Seshia MMK, Mullett MD (eds) Avery’s Neonatology. Lippincott, Philadelphia, PA, pp 768–846Google Scholar
  87. 87.
    Ives NK (1999) Neonatal jaundice. In: Rennie JM, Roberton NRC (eds) Textbook of Neonatology. Churchill Livingston, New York, pp 715–732Google Scholar
  88. 88.
    National Institute for Health and Clinical Excellence (2010) Neonatal jaundice. Scholar
  89. 89.
    Bratlid D, Nakstad B, Hansen TW (2011) National guidelines for treatment of jaundice in the newborn. Acta Paediatr 100: 499–505PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • M. Jeffrey Maisels
    • 1
    • 2
  • Jon F. Watchko
  1. 1.Department of PediatricsOakland University William Beaumont School of MedicineUSA
  2. 2.Division of NeonatologyBeaumont Children’s HospitalRoyal OakUSA

Personalised recommendations