Advertisement

Neonatology pp 621-628 | Cite as

Kernicterus, Bilirubin Induced Neurological Dysfunction and New Treatments for Unconjugated Hyperbilirubinemia

  • Deirdre E. van Imhoff
  • Frans J. C. Cuperus
  • Peter H. Dijk
  • Claudio Tiribelli
  • Christian V. Hulzebos

Abstract

In the 19th century it was already known that unconjugated hyperbilirubinemia could potentially harm the central nervous system of jaundiced newborn infants. Yellow staining of deep brain nuclei in jaundiced infants was first reported in 1847. The term kernicterus (in German, kern = nucleus; in Greek, ikterus = yellow) was first denoted in 1903 to describe the pathological findings of this specific yellow staining pattern [1]. Nowadays, kernicterus is not only used to describe the pathological findings, but also to describe the clinical findings of acute and/or chronic bilirubin encephalopathy in jaundiced infants [2, 3]. Although acute kernicterus is an unambiguous clinical disorder in severely jaundiced newborn infants with the possibility of permanent sequelae, subtle forms of bilirubin encephalopathy referred to as bilirubin-induced neurological dysfunction, also known as BIND have evolved more recently [4]. This chapter aims to describe the pathophysiology of bilirubin neurotoxicity, its clinical spectrum and diagnostic tools. Novel treatment modalities to prevent infants from developing severe unconjugated hyperbilirubinemia and bilirubin neurotoxicity will be highlighted.

Keywords

Auditory Brainstem Response Total Serum Bilirubin Unconjugated Bilirubin Auditory Neuropathy Unconjugated Hyperbilirubinemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hansen TW (2000) Pioneers in the scientific study of neonatal jaundice and kernicterus. Pediatrics 106: E15PubMedCrossRefGoogle Scholar
  2. 2.
    Watchko JF, Maisels MJ (2003) Jaundice in low birthweight infants: pathobiology and outcome. Arch Dis Child Fetal Neonatal Ed 88: F455–F458PubMedCrossRefGoogle Scholar
  3. 3.
    American Academy of Pediatrics Subcommittee on Hyperbilirubinemia (2004) Management of hyperbilirubinemia in the new-born infant 35 or more weeks of gestation. Pediatrics 114: 297–316CrossRefGoogle Scholar
  4. 4.
    Shapiro SM (2005) Definition of the clinical spectrum of kernicterus and bilirubin-induced neurologic dysfunction (BIND). J Perinatol 25: 54–59PubMedCrossRefGoogle Scholar
  5. 5.
    Ostrow JD, Pascolo L, Shapiro SM, Tiribelli C (2003) New concepts in bilirubin encephalopathy. Eur J Clin Invest 33: 988–997PubMedCrossRefGoogle Scholar
  6. 6.
    Wennberg R, Ahlfors C, Bhutani V et al (2006) Toward understanding kernicterus: a challenge to improve the management of jaundiced newborns. Pediatrics 117: 474–485PubMedCrossRefGoogle Scholar
  7. 7.
    Ahlfors CE, Shapiro SM (2001) Auditory brainstem response and unbound bilirubin in jaundiced (jj) Gunn rat pups. Biol Neonate 80: 158–162PubMedCrossRefGoogle Scholar
  8. 8.
    Ostrow JD, Pascolo L, Tiribelli C (2003) Reassessment of the unbound concentrations of unconjugated bilirubin in relation to neurotoxicity in vitro. Pediatr Res 54: 98–104PubMedCrossRefGoogle Scholar
  9. 9.
    Calligaris SD, Bellarosa C, Giraudi P et al (2007) Cytotoxicity is predicted by unbound and not total bilirubin concentration. Pediatr Res 62: 576–80PubMedCrossRefGoogle Scholar
  10. 10.
    Ostrow JD, Pascolo L, Brites D, Tiribelli C (2004) Molecular basis of bilirubin-induced neurotoxicity. Trends Mol Med 10: 65–70PubMedCrossRefGoogle Scholar
  11. 11.
    Pearlman MA, Gartner LM, Lee K et al (1980) The association of kernicterus with bacterial infection in the newborn. Pediatrics 65: 26–29PubMedGoogle Scholar
  12. 12.
    Kim MH, Yoon JJ, Sher J, Brown AK (1980) Lack of predictive indices in kernicterus: a comparison of clinical and pathologic factors in infants with or without kernicterus. Pediatrics 66: 852–858PubMedGoogle Scholar
  13. 13.
    Turkel SB, Guttenberg ME, Moynes DR, Hodgman JE (1980) Lack of identifiable risk factors for kernicterus. Pediatrics 66: 502–506PubMedGoogle Scholar
  14. 14.
    Lucey JF (1972) Neonatal jaundice and phototherapy. Pediatr Clin North Am 19: 827–839PubMedGoogle Scholar
  15. 15.
    Maisels MJ, Watchko JF (2003) Treatment of jaundice in low birth-weight infants. Arch Dis Child Fetal Neonatal Ed 88: F459–F463PubMedCrossRefGoogle Scholar
  16. 16.
    Amin SB (2004) Clinical assessment of bilirubin-induced neurotoxicity in premature infants. Semin Perinatol 28: 340–347PubMedCrossRefGoogle Scholar
  17. 17.
    Shapiro SM (2003) Bilirubin toxicity in the developing nervous system. Pediatr Neurol 29: 410–421PubMedCrossRefGoogle Scholar
  18. 18.
    Volpe JJ (2009) Bilirubin and brain injury. In: Neurology of the Newborn 5th edn. Saunders Elsevier, Philadelphia, pp 619–651Google Scholar
  19. 19.
    Oh W, Tyson JE, Fanaroff AA et al (2003) Association between peak serum bilirubin and neurodevelopmental outcomes in extremely low birth weight infants. Pediatrics 112: 773–779PubMedCrossRefGoogle Scholar
  20. 20.
    Ip S, Chung M, Kulig J et al (2004) An evidence-based review of important issues concerning neonatal hyperbilirubinemia. Pediatrics 114: e130–e153PubMedCrossRefGoogle Scholar
  21. 21.
    Newman TB, Klebanoff MA (1993) Neonatal hyperbilirubinemia and long-term outcome: another look at the Collaborative Perinatal Project. Pediatrics 92: 651–657PubMedGoogle Scholar
  22. 22.
    Grimmer I, Berger-Jones K, Buhrer C et al (1999) Late neurological sequelae of non-hemolytic hyperbilirubinemia of healthy term neonates. Acta Paediatr 88: 661–663PubMedCrossRefGoogle Scholar
  23. 23.
    Manning D, Todd P, Maxwell M, Jane PM (2007) Prospective surveillance study of severe hyperbilirubinaemia in the newborn in the UK and Ireland. Arch Dis Child Fetal Neonatal Ed 92: F342–F346PubMedCrossRefGoogle Scholar
  24. 24.
    Shapiro SM (2010) Chronic bilirubin encephalopathy: diagnosis and outcome. Semin Fetal Neonatal Med 15: 157–163PubMedCrossRefGoogle Scholar
  25. 25.
    Ahlfors CE, Wennberg RP (2004) Bilirubin-albumin binding and neonatal jaundice. Semin Perinatol 28: 334–339PubMedCrossRefGoogle Scholar
  26. 26.
    Ahlfors CE, Parker AE (2005) Evaluation of a model for brain bilirubin uptake in jaundiced newborns. Pediatr Res 58: 1175–1179PubMedCrossRefGoogle Scholar
  27. 27.
    Amin SB, Ahlfors C, Orlando MS et al (2001) Bilirubin and serial auditory brainstem responses in premature infants. Pediatrics 107: 664–670PubMedCrossRefGoogle Scholar
  28. 28.
    Scheidt PC, Graubard BI, Nelson KB et al (1991) Intelligence at six years in relation to neonatal bilirubin levels: follow-up of the National Institute of Child Health and Human Development Clinical Trial of Phototherapy. Pediatrics 87: 797–805PubMedGoogle Scholar
  29. 29.
    Ritter DA, Kenny JD, Norton HJ, Rudolph AJ (1982) A prospective study of free bilirubin and other risk factors in the development of kernicterus in premature infants. Pediatrics 69: 260–266PubMedGoogle Scholar
  30. 30.
    Govaert P, Lequin M, Swarte R et al (2003) Changes in globus pallidus with (pre)term kernicterus. Pediatrics 112 (6 Part 1): 1256–1263PubMedCrossRefGoogle Scholar
  31. 31.
    Hulzebos CV, Van Imhoff DE, Bos AF et al (2008) Usefulness of bilirubin/ albumin ratio for predicting bilirubin-induced neurotoxicity in premature infants. Arch Dis Child Fetal Neonatal Ed 93: F384–F388PubMedCrossRefGoogle Scholar
  32. 32.
    Okumus N, Turkyilmaz C, Onal EE et al (2008) Tau and S100B proteins as biochemical markers of bilirubin-induced neurotoxicity in term neonates. Pediatr Neurol 39: 245–252PubMedCrossRefGoogle Scholar
  33. 33.
    Amin SB, Orlando MS, Dalzell LE et al (1999) Morphological changes in serial auditory brain stem responses in 24 to 32 weeks’ gestational age infants during the first week of life. Ear Hear 20: 410–418PubMedCrossRefGoogle Scholar
  34. 34.
    Ahlfors CE, Amin SB, Parker AE (2009) Unbound bilirubin predicts abnormal automated auditory brainstem response in a diverse newborn population. J Perinatol 29: 305–309PubMedCrossRefGoogle Scholar
  35. 35.
    Groenendaal F, van der Grond J, de Vries LS (2004) Cerebral metabolism in severe neonatal hyperbilirubinemia. Pediatrics 114: 291–294Google Scholar
  36. 36.
    Bilirubin-induced Neurologic Dysfunction (BIND) Among Nigerian Infants. www.med.umn.edu/peds/global/research/prevalence_of_bilirubinemia/home.htmlGoogle Scholar
  37. 37.
    Johnson L, Brown AK, Bhutani VK (1999) BIND: A clinical score for bilirubin induced neurologic dysfunction in newborns. Pediatr Suppl 104: 746Google Scholar
  38. 38.
    Van Imhoff DE, Dijk PH, Hulzebos CV; on behalf of the BARTrial studygroup of the Netherlands Neonatal Research Network (2011) Uniform treatment thresholds for hyperbilirubinemia in preterm infants: background and synopsis of a national guideline. Early Hum Dev [Epub ahead of print]Google Scholar
  39. 39.
    Jangaard KA, Vincer MJ, Allen AC (2007) A randomized trial of aggressive versus conservative phototherapy for hyperbilirubinemia in infants weighing less than 1500 g: Short- and long-term outcomes. Paediatr Child Health 12: 853–858Google Scholar
  40. 40.
    Morris BH, Oh W, Tyson JE et al (2008) Aggressive vs. conservative phototherapy for infants with extremely low birth weight. N Engl J Med 359: 1885–1896PubMedCrossRefGoogle Scholar
  41. 41.
    Van Der Veere CN, Sinaasappel M, McDonagh AF et al (1996) Current therapy for Crigler-Najjar syndrome type 1: report of a world registry. Hepatology 24: 311–315PubMedCrossRefGoogle Scholar
  42. 42.
    Dennery PA, Seidman DS, Stevenson DK (2001) Neonatal hyperbilirubinemia. N Engl J Med 344: 581–590PubMedCrossRefGoogle Scholar
  43. 43.
    Cuperus FJ, Hafkamp AM, Hulzebos CV, Verkade HJ (2009) Pharmacological therapies for unconjugated hyperbilirubinemia. Curr Pharm Des 15: 2927–2938PubMedCrossRefGoogle Scholar
  44. 44.
    Suresh GK, Martin CL, Soll RF (2003) Metalloporphyrins for treatment of unconjugated hyperbilirubinemia in neonates. Cochrane Database Syst Rev 2:CD004207Google Scholar
  45. 45.
    Gupta S, Chowdhary JR (1992) Hepatocyte transplantation: back to the future. Hepatology 15: 156–162PubMedCrossRefGoogle Scholar
  46. 46.
    Ito M, Nagata H, Miyakawa S, Fox IJ (2009) Review of hepatocyte transplantation. J Hepatobiliary Pancreat Surg 16: 97–100PubMedCrossRefGoogle Scholar
  47. 47.
    Miranda PS, Bosma PJ (2009) Towards liver-directed gene therapy for Crigler-Najjar syndrome. Curr Gene Ther 9: 72–82PubMedCrossRefGoogle Scholar
  48. 48.
    Wu PY, Teilmann P Gabler M et al (1967) “Early” versus “late” feeding of low birth weight neonates: effect on serum bilirubin, blood sugar, and responses to glucagon and epinephrine tolerance tests. Pediatrics 39:733–739Google Scholar
  49. 49.
    Wennberg RP, Schwartz R, Sweet AY (1966) Early versus delayed feeding of low birth weight infants: effects on physiologic jaundice. J Pediatr 68: 860–866PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Deirdre E. van Imhoff
  • Frans J. C. Cuperus
  • Peter H. Dijk
  • Claudio Tiribelli
  • Christian V. Hulzebos
    • 1
  1. 1.Department of Pediatrics, Division of NeonatologyUniversity Medical Center GroningenGroningenThe Netherlands

Personalised recommendations