Advertisement

Neonatology pp 50-54 | Cite as

The Fetus at Risk: Chorioamnionitis

  • Mikko Hallman
  • Tuula Kaukola

Abstract

Infection and inflammatory injury are the major threats during pregnancy. The extraembryonic tissues play important roles in protecting the fetus. From 10–12 days post conception (p.c.), yolk sack and allantoic vessels provide nutrition to the embryo. By 20 days conception p.c. fetal vessels are discernible in developing villi. They communicate with the embryo via a connecting stalk that later develops into the umbilical cord. By 40 days p.c. the embryo is completely surrounded by the amniotic cavity and attached via the umbilical cord to the hemo-monochorial placenta [1]. Upon complete adherence of the fetal membranes to the decidua at about 20 weeks of gestation, bacterial inflammation may directly penetrate the chorioamnion from any direction and contaminate the amniotic fluid [2, 3]. In high risk pregnancies the protective fetal chorioamnion and placental villi are challenged in multiple ways. These tissues respond by inflammation, producing mediators that may promote labor or affect the fetus in multiple ways. This chapter focuses only on the consequences of chorioamnionitis in the fetus comparing the affected fetuses to the gestation controls.

Keywords

Preterm Birth Umbilical Cord Amniotic Fluid Bacterial Vaginosis Fetal Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Benirschke K, Kaufmann P (2000) Pathology of the human placenta. Springer-Verlag, New York, pp 13–21, 180-190, 355-366Google Scholar
  2. 2.
    Goldenberg RL, Culhane JF (2003) Infection as a cause of preterm birth. Clin Perinatol 30:677–700PubMedCrossRefGoogle Scholar
  3. 3.
    Gravett MG, Hummel D, Eschenbach DA, Holmes KK (1986) Preterm labor associated with subclinical amniotic fluid infection and with bacterial vaginosis. Obstet Gynecol 67:229–237PubMedCrossRefGoogle Scholar
  4. 4.
    Salafia CM, Weigl C, Silberman L (1989) The prevalence and distribution of acute placental inflammation in uncomplicated term pregnancies. Obstet Gynecol 73:383–389PubMedGoogle Scholar
  5. 5.
    Hallman M, Bry K, Pitkänen O (1989) Ceramide lactoside in amniotic fluid: high concentration in chorioamnionitis and in preterm labor. Am J Obstet Gynecol 161:313–318PubMedGoogle Scholar
  6. 6.
    Bracci R, Buonocore G (2003) Chorioamnionitis: a risk factor for fetal and neonatal morbidity. Biol Neonate 83:85–96PubMedCrossRefGoogle Scholar
  7. 7.
    Steel JH, Malatos S, Kennea N et al (2005) Bacteria and inflammatory cells in fetal membranes do not always cause preterm labor. Pediatr Res 57:404–411PubMedCrossRefGoogle Scholar
  8. 8.
    Yoon BH, Romero R, Park JS et al (2000) The relationship among inflammatory lesions of the umbilical cord (funisitis), umbilical cord plasma interleukin 6 concentration, amniotic fluid infection, and neonatal sepsis. Am J Obstet Gynecol 183:1124–1129PubMedCrossRefGoogle Scholar
  9. 9.
    Goldenberg RL, Hauth JC, Andrews WW (2000) Intrauterine infection and preterm delivery. N Engl J Med 342:1500–1507PubMedCrossRefGoogle Scholar
  10. 10.
    Goffinet F (2005) Primary predictors of preterm labour. BJOG 112 Suppl 1:38–47PubMedGoogle Scholar
  11. 11.
    Sacco G, Carmagnola D, Abati S et al (2008) Minerva Stomatol 57:233–246, 246-250PubMedGoogle Scholar
  12. 12.
    Hutzal CE, Boyle EM, Kenyon SL et al (2008) Use of antibiotics for the treatment of preterm parturition and prevention of neonatal morbidity: a metaanalysis. Am J Obstet Gynecol 199:620.e1–8CrossRefGoogle Scholar
  13. 13.
    Benirschke K, Kauffmann P (2000) Infectious diseases. In: Benirschke K, Kauffmann P. Pathology of the human placenta. Springer-Verlag, New York, pp 542–635Google Scholar
  14. 14.
    Pinna GS, Skevaki CL, Kafetzis DA (2006) The significance of Ureaplasma urealyticum as a pathogenic agent in the paediatric population. Curr Opin Infect Dis 19:283–289PubMedCrossRefGoogle Scholar
  15. 15.
    Kim MJ, Romero R, Kim CJ et al (2009) Villitis of unknown etiology is associated with a distinct pattern of chemokine up-regulation in the feto-maternal and placental compartments: implications for conjoint maternal allograft rejection and maternal anti-fetal graft-versus-host disease. J Immunol 182:3919–3927PubMedCrossRefGoogle Scholar
  16. 16.
    Redline RW (2007) Villitis of unknown etiology: noninfectious chronic villitis in the placenta. Hum Pathol 38:1439–1446PubMedCrossRefGoogle Scholar
  17. 17.
    Salminen A, Paananen R, Vuolteenaho R et al (2008) Maternal endotoxin-induced preterm birth in mice: fetal responses in toll-like receptors, collectins, and cytokines. Pediatr Res 63:280–286PubMedCrossRefGoogle Scholar
  18. 18.
    Bry K, Lappalainen U, Hallman M (1997) Intraamniotic interleukin-1 accelerates surfactant protein synthesis in fetal rabbits and improves lung stability after premature birth. J Clin Invest 99:2992–2999PubMedCrossRefGoogle Scholar
  19. 19.
    Jobe AH, Newnham JP, Willet KE et al (2000) Effects of antenatal endotoxin and glucocorticoids on the lungs of preterm lambs. Am J Obstet Gynecol 182:401–408PubMedCrossRefGoogle Scholar
  20. 20.
    Thomas W, Speer CP (2011) Chorioamnionitis: important risk factor or innocent bystander for neonatal outcome? Neonatology 99:177–187PubMedCrossRefGoogle Scholar
  21. 21.
    Speer CP (1999) Inflammatory mechanisms in neonatal chronic lung disease. Eur J Pediatr 158 Suppl 1:S18–22PubMedCrossRefGoogle Scholar
  22. 22.
    Hagberg H, Mallard C, Jacobsson B (2005) Role of cytokines in preterm labour and brain injury. BJOG 112 Suppl 1:16–18PubMedGoogle Scholar
  23. 23.
    Anthony D, Dempster R, Fearn S et al (1998) CXC chemokines generate age-related increases in neutrophil-mediated brain inflammation and blood-brain barrier breakdown. Curr Biol 8:923–926PubMedCrossRefGoogle Scholar
  24. 24.
    Watterberg KL, Demers LM, Scott SM, Murphy S (1996) Chorioamnionitis and early lung inflammation in infants in whom bronchopulmonary dysplasia develops. Pediatrics 97:210–215PubMedGoogle Scholar
  25. 25.
    Kaukola T, Tuimala J, Herva R et al (2009) Cord immunoproteins as predictors of respiratory outcome in preterm infants. Am J Obstet Gynecol 200:100.e1–e8CrossRefGoogle Scholar
  26. 26.
    Paananen R, Husa AK, Vuolteenaho R et al (2009) Blood cytokines during the perinatal period in very preterm infants: relationship of inflammatory response and bronchopulmonary dysplasia. J Pediatr 154:39–43.e3PubMedCrossRefGoogle Scholar
  27. 27.
    Been JV, Zimmermann LJ (2009) Histological chorioamnionitis and respiratory outcome in preterm infants. Arch Dis Child Fetal Neonatal Ed 94:F218–225PubMedCrossRefGoogle Scholar
  28. 28.
    Kramer BW, Kallapur S, Newnham J, Jobe AH (2009) Prenatal inflammation and lung development. Semin Fetal Neonatal Med 14:2–7PubMedCrossRefGoogle Scholar
  29. 29.
    Hallman M, Aikio O (2004) Nitric oxide in critical respiratory failure of very low birth weight infants. Paediatr Respir Rev 5 Suppl A:S249–252PubMedCrossRefGoogle Scholar
  30. 30.
    Thébaud B, Abman SH (2007) Bronchopulmonary dysplasia: where have all the vessels gone? Roles of angiogenic growth factors in chronic lung disease. Am J Respir Crit Care Med 175:978–985PubMedCrossRefGoogle Scholar
  31. 31.
    Himmelmann K, Hagberg G, Beckung E et al (2005) The changing panorama of cerebral palsy in Sweden. IX. Prevalence and origin in the birth-year period 1995–1998. Acta Paediatr 94:287–294PubMedCrossRefGoogle Scholar
  32. 32.
    Kaukola T, Satyaraj E, Patel DD et al (2004) Cerebral palsy is characterized by protein mediators in cord serum. Ann Neurol 55:186–194PubMedCrossRefGoogle Scholar
  33. 33.
    Kaukola T, Herva R, Perhomaa M et al (2006) Population cohort associating chorioamnionitis, cord inflammatory cytokines and neurologic outcome in very preterm, extremely low birth weight infants. Pediatr Res 59:478–483PubMedCrossRefGoogle Scholar
  34. 34.
    Polam S, Koons A, Anwar M, Shen-Schwarz S, Hegyi T (2005) Effect of chorioamnionitis on neurodevelopmental outcome in preterm infants. Arch Pediatr Adolesc Med 159:1032–1035PubMedCrossRefGoogle Scholar
  35. 35.
    Andrews WW, Goldenberg RL, Faye-Petersen O et al (2006) The Alabama Preterm Birth study: polymorphonuclear and mononuclear cell placental infiltrations, other markers of inflammation, and outcomes in 23-to 32-week preterm newborn infants. J Obstet Gynecol 195:803–808CrossRefGoogle Scholar
  36. 36.
    Soraisham AS, Singhal N, McMillan DD, Sauve RS, Lee SK (2009) Canadian Neonatal Network. A multicenter study on the clinical outcome of chorioamnionitis in preterm infants. Am J Obstet Gynecol 200:372.e1–e6CrossRefGoogle Scholar
  37. 37.
    Neufeld MD, Frigon C, Graham AS, Mueller BA (2005) Maternal infection and risk of cerebral palsy in term and preterm infants. J Perinatol 25:108–113PubMedCrossRefGoogle Scholar
  38. 38.
    Andrews WW, Cliver SP, Biasini F et al (2008) Early preterm birth: association between in utero exposure to acute inflammation and severe neurodevelopmental disability at 6 years of age. Am J Obstet Gynecol 198:466.e1–e11CrossRefGoogle Scholar
  39. 39.
    Wu YW, Escobar GJ, Grether JK et al (2003) Chorioamnionitis and cerebral palsy in term and near-term infants. JAMA 290:2677–2684PubMedCrossRefGoogle Scholar
  40. 40.
    Wu YW (2002) Systematic review of chorioamnionitis and cerebral palsy. Ment Retard Dev Disabil Res Rev 8:25–29PubMedCrossRefGoogle Scholar
  41. 41.
    Lee J, Croen LA, Backstrand KH et al (2005) Maternal and infant characteristics associated with perinatal arterial stroke in the infant. JAMA 293:723–729PubMedCrossRefGoogle Scholar
  42. 42.
    McElrath TF, Hecht JL, Dammann O et al (2008) Pregnancy disorders that lead to delivery before the 28th week of gestation: an epidemiologic approach to classification. Am J Epidemiol 168:980–989PubMedCrossRefGoogle Scholar
  43. 43.
    Winters R, Waters BL (2008) What is adequate sampling of extraplacental membranes? A randomized, prospective analysis. Arch Pathol Lab Med 132:1920–1923PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Mikko Hallman
    • 1
  • Tuula Kaukola
  1. 1.Department of Pediatrics, Institute of Clinical MedicineUniversity of OuluOuluFinland

Personalised recommendations