Neonatology pp 488-496 | Cite as

Persistent Pulmonary Hypertension of the Newborn and Congenital Diaphragmatic Hernia

  • Steven H. Abman


Persistent pulmonary hypertension of the newborn (PPHN) is a clinical syndrome that represents the failure to achieve or sustain the normal decrease in pulmonary vascular resistance (PVR) at birth, leading to severe respiratory distress and hypoxemia. PPHN is a major clinical problem, affecting nearly 10% of full-term infants admitted to neonatal intensive care units, and contributes significantly to high morbidity and mortality [1, 2]. Newborns with PPHN are at risk for severe asphyxia and its complications, including death, chronic lung disease, neurodevelopmental sequelae, and other problems. This chapter will review the pathophysiology and treatment of pulmonary hypertension in the setting of PPHN, including newborns with congenital diaphragmatic hernia (CDH).


Pulmonary Hypertension Patent Ductus Arteriosus Pulmonary Vascular Resistance Congenital Diaphragmatic Hernia Hypoplastic Left Heart Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Levin DL, Heymann MA, Kitterman JA et al (1976) Persistent pulmonary hypertension of the newborn. J Pediatr 89: 626–633PubMedCrossRefGoogle Scholar
  2. 2.
    Kinsella JP, Abman SH (1995) Recent developments in the pathophysiology and treatment of persistent pulmonary hypertension of the newborn. J Pediatr 126: 853–864PubMedCrossRefGoogle Scholar
  3. 3.
    Geggel R, Reid LM (1984) The structural basis for PPHN. Clin Perinatol 11: 525–549PubMedGoogle Scholar
  4. 4.
    Murphy J, Aronovitz M, Reid L (1986) Effects of chronic in utero hypoxia on the pulmonary vasculature of the newborn guinea pig. Pediatr Res 20: 292–295PubMedCrossRefGoogle Scholar
  5. 5.
    Morin III FC, Eagan EA (1989) The effect of closing the ductus arteriosus on the pulmonary circulation of the fetal sheep. J Dev Physiol 11: 245–250Google Scholar
  6. 6.
    Abman SH, Accurso FJ (1989) Acute effects of partial compression of ductus arteriosus on fetal pulmonary circulation. Am J Physiol Heart Circ Physiol 26: H626–H634Google Scholar
  7. 7.
    Storme L, Rairigh RL, Parker TA et al (1999) Acute intrauterine pulmonary hypertension impairs endothelium dependent vasodilation in the ovine fetus. Pediatr Res 45: 575–581PubMedCrossRefGoogle Scholar
  8. 8.
    McQueston JA, Kinsella JP, Ivy DD et al (1995) Chronic pulmonary hypertension in utero impairs endothelium-dependent vasodilation. Am J Physiol Heart Circ Physiol 268: H288–H294Google Scholar
  9. 9.
    Farrow KN, Lakshminrusimha S, Reda WJ et al (2008) Superoxide dismutase restores eNOS expression and function in resistance pulmonary arteries from neonatal lambs with persistent pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 295: L979–L987PubMedCrossRefGoogle Scholar
  10. 10.
    Hanson KA, Abman SH, Clarke WR (1996) Elevation of pulmonary PDE5-specific activity in an experimental fetal ovine perinatal pulmonary hypertension model. Pediatr Res 39: 334AGoogle Scholar
  11. 11.
    Tzao C, Nickerson PA, Russell JA et al (2001) Pulmonary hypertension alters soluble guanylate cyclase activity and expression in pulmonary arteries isolated from fetal lambs. Pediatr Pulmonol 31: 97–105PubMedCrossRefGoogle Scholar
  12. 12.
    Brennan LA, Steinhorn RH, Wedgwood S E et al (2003) Increased Superoxide Generation Is Associated With Pulmonary Hypertension in Fetal Lambs. A Role for NADPH Oxidase. Circ Res 92: 683–691PubMedCrossRefGoogle Scholar
  13. 13.
    Chester M, Tourneux P, Seedorf G et al (2009) Cinaciguat, a soluble guanylate cyclase activator, causes potent and sustained pulmonary vasodilation in theGoogle Scholar
  14. 14.
    Rosenberg AA, Kennaugh J, Koppenhafer SL et al (1993) Elevated immunoreactive endothelin-1 levels in newborn infants with persistent pulmonary hypertension. J Pediatr 123: 109–114PubMedCrossRefGoogle Scholar
  15. 15.
    Ivy DD, Le Cras TD, Horan MP, Abman SH (1998) Increased lung preproET-1 and decreased ETB-receptor gene expression in fetal pulmonary hypertension. Am J Physiol 274 (4 Part 1): L535–L541PubMedGoogle Scholar
  16. 16.
    Ivy DD, Ziegler JW, Dubus MF et al (1996) Chronic intrauterine pulmonary hypertension alters endothelin receptor activity in the ovine fetal lung. Pediatr Res 39: 435–442PubMedCrossRefGoogle Scholar
  17. 17.
    Ivy DD, Parker TA, Ziegler JW et al (1997) Prolonged endothelin A receptor blockade attenuates pulmonary hypertension in the ovine fetus. J Clin Invest 99: 1179–1186PubMedCrossRefGoogle Scholar
  18. 18.
    Fike CD, Slaughter JC, Kaplowitz MR et al (2008) Reactive oxygen species from NADPH oxidase contribute to altered pulmonary vascular responses in piglets with chronic hypoxia-induced pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 295: L881–L888PubMedCrossRefGoogle Scholar
  19. 19.
    Konduri GG, Ou J, Shi Y Pritchard KA (2003) Decreased association of HSP90 impairs endothelial nitric oxide synthase in fetal lambs with persistent pulmonary hypertension. Am J Physiol Heart Circ Physiol 285: H204–H211PubMedGoogle Scholar
  20. 20.
    Wedgwood S, Steinhorn RH, Bunderson M et al (2005) Increased hydrogen peroxide downregulates soluble guanylate cyclase in the lungs of lambs with persistent pulmonary hypertension of the newborn. Am J Physiol Lung Cell Mol Physiol 289: L660–L666PubMedCrossRefGoogle Scholar
  21. 21.
    Konduri GG, Bakhutashvili I, Eis A, Pritchard KA (2007) Oxidant stress from uncoupled nitric oxide synthase impairs vasodilation in fetal lambs with persistent pulmonary hypertension. Am J Physiol Heart Circ Physiol 292: H1812–H1820PubMedCrossRefGoogle Scholar
  22. 22.
    Wedgwood S, Black SM (2003) Role of reactive oxygen species in vascular remodeling associated with pulmonary hypertension. Antioxid Redox Signal 5: 759–769PubMedCrossRefGoogle Scholar
  23. 23.
    Lakshminrusimha S, Russell JA, Wedgwood S et al (2006) Superoxide dismutase improves oxygenation and reduces oxidation in neonatal pulmonary hypertension. Am J Respir Crit Care Med 174: 1370–1377PubMedCrossRefGoogle Scholar
  24. 24.
    Farrow KN, Groh BS, Schumacker PT et al (2008) Hyperoxia increases phosphodiesterase 5 expression and activity in ovine fetal pulmonary artery smooth muscle cells. Circ Res 102: 226–233PubMedCrossRefGoogle Scholar
  25. 25.
    Faraci F, Didion S (2004) Vascular protection: Superoxide dismutase isoforms in the vessel wall. Arterioscler Thromb Vasc Biol 24: 1367–1373PubMedCrossRefGoogle Scholar
  26. 26.
    Balasubramaniam V, Le Cras TD, Ivy DD et al (2003) Role of platelet-derived growth factor in the pathogenesis of perinatal pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 284: L826–L833PubMedGoogle Scholar
  27. 27.
    Grover T, Parker T, Zenge J et al (2003) Intrauterine pulmonary hypertension decreases lung VEGF expression and VEGF inhibition causes pulmonary hypertension in the ovine fetus. Am J Physiol 284: L508–L517Google Scholar
  28. 28.
    Grover T, Parker T, Hunt-Peacock C et al (2005) rhVEGF treatment improves pulmonary vasoreactivity and structure in an experimental model of pulmonary hypertension in fetal sheep. Am J Physiol. LCMP 289: L529–L535Google Scholar
  29. 29.
    Chambers CD, Hernandez-Diaz S, Van Marter LJ et al (2006) Selective serotonin-reuptake inhibitors and risk of persistent pulmonary hypertension of the newborn. N Engl J Med 354: 579–587PubMedCrossRefGoogle Scholar
  30. 30.
    Fornaro E, Li D, Pan J, Belik J (2007) Prenatal exposure to fluoxetine induces fetal pulmonary hypertension in the rat. Am J Respir Crit Care Med 176: 1035–1040PubMedCrossRefGoogle Scholar
  31. 31.
    Walsh-Sukys MC, Tyson JE, Wright LL et al (2000) Persistent pulmonary hypertension of the newborn in the era before nitric oxide: practice variation and outcomes. Pediatr 105: 14–20CrossRefGoogle Scholar
  32. 32.
    Van Marter LJ, Leviton A, Allred EN (1996) PPHN and smoking and aspirin and nonsteroidal antiinflammatory drug consumption during pregnancy. Pediatrics 97: 658–663PubMedGoogle Scholar
  33. 33.
    Alano MA, Ngougmna E, Ostrea EM Jr, Konduri GG (2001) Analysis of nonsteroidal antiinflammatory drugs in meconium and its relation to persistent pulmonary hypertension of the newborn. Pediatrics 107: 519–523PubMedCrossRefGoogle Scholar
  34. 34.
    Pearson DL, Dawling S, Walsh WF et al (2001) Neonatal pulmonary hypertension-urea-cycle intermediates, nitric oxide production, and carbamoyl-phosphate synthetase function. N Engl J Med 344: 1832–1838PubMedCrossRefGoogle Scholar
  35. 35.
    Abman SH, Kinsella JP (1995) Inhaled nitric oxide for persistent pulmonary hypertension of the newborn: The physiology matters. Pediatrics 96: 1153–1155PubMedGoogle Scholar
  36. 36.
    UK Collaborative ECMO Trial Group (1996) UK collaborative randomized trial of neonatal extracorporeal membrane oxygenation. Lancet 348: 75–82CrossRefGoogle Scholar
  37. 37.
    Patterson K, Kapur SP, Chandra RS (1988) PPHN: pulmonary pathologic effects. In: Rosenberg HS, Berstein J (eds) Cardiovascular diseases, Perspectives in Pediatric Pathology, Vol 12. Karger,Basel, pp 139–154Google Scholar
  38. 38.
    Kinsella JP, Abman SH (2000) Clinical approach to inhaled NO therapy in the newborn. J Pediatr 136: 717–726PubMedCrossRefGoogle Scholar
  39. 39.
    Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the ARDS. N Engl J Med 342: 1301–1308Google Scholar
  40. 40.
    Gordon JB, Martinez FR, Keller PA et al (1993) Differing effects of actue and prolonged alkalosis on hypoxic pulmonary vasoconstriction. Am Rev Resp Dis 148: 1651–1656PubMedCrossRefGoogle Scholar
  41. 41.
    Laffey JG, Engelberts D, Kavanaugh BP (2000) Inurious effects of hypocapnic alkalosis in the isolated lung. Am J Resp Crit Care Med 162: 399–405PubMedGoogle Scholar
  42. 42.
    Lotze A, Mitchell BR, Bulas DI et al (1998) Multicenter study of surfactant (beractant) use in the treatment of term infants with severe respiratory failure. Survanta in Term Infants Study Group. J Pediatr 132: 40–47Google Scholar
  43. 43.
    Clark RH, Kueser TJ, Walker MW et al (2000) Low dose nitric oxide therapy for persistent pulmonary hypertension of the newborn. N Engl J Med 342: 469–474PubMedCrossRefGoogle Scholar
  44. 44.
    Davidson D, Barefield ES, Kattwinkel J et al (1998) Inhaled nitric oxide for the early treatment of persistent pulmonary hypertension of the term newborn: A randomized, double-masked, placebo-controlled, dose-response, multicenter study. Pediatrics 101:325– 334PubMedCrossRefGoogle Scholar
  45. 45.
    Kinsella JP, Shaffer E, Neish SR, Abman SH (1992) Low-dose inhalational nitric oxide in persistent pulmonary hypertension of the newborn. Lancet 340: 819–820PubMedCrossRefGoogle Scholar
  46. 46.
    Kinsella JP, Truog WE, Walsh WF et al (1997) Randomized, multicenter trial of inhaled nitric oxide and high-frequency oscillatory ventilation in severe, persistent pulmonary hypertension of the newborn. J Pediatr 131: 55–62PubMedCrossRefGoogle Scholar
  47. 47.
    Neonatal Inhaled Nitric Oxide Study Group (1997) Inhaled nitric oxide in full-term and nearly full-term infants with hypoxic respiratory failure. New Engl J Med 336: 597–604CrossRefGoogle Scholar
  48. 48.
    Roberts JD, Fineman J, Morin III FC et al (1997) Inhaled nitric oxide and persistent pulmonary hypertension of the newborn. New Engl J Med 336: 605–610PubMedCrossRefGoogle Scholar
  49. 49.
    Konduri GG, Solimani A, Sokol GM et al (2004) A randomized trial of early versus standard inhaled nitric oxide therapy in term and near-term newborn infants with hypoxic respiratory failure. Pediatrics 113: 559–564PubMedCrossRefGoogle Scholar
  50. 50.
    Lakshminrusimha S, Russell JA, Steinhorn RH et al (2007) Pulmonary hemodynamics in Neonatal Lambs Resuscitated with 21%, 50%, and 100% Oxygen. Pediatr Res 62: 313–318PubMedCrossRefGoogle Scholar
  51. 51.
    Atz AM, Wessel DL (1999) Sildenafil ameliorates effects of inhaled nitric oxide withdrawal. Anesthesiology 91: 307–310PubMedCrossRefGoogle Scholar
  52. 52.
    Ichinose F, Erana-Garcia J, Hromi J et al (2001) Nebulized sildenafil is a selective pulmonary vasodilator in lambs with acute pulmonary hypertension. Crit Care Med 29: 1000–1005PubMedCrossRefGoogle Scholar
  53. 53.
    Weimann J, Ullrich R, Hromi J et al (2000) Sildenafil is a pulmonary vasodilator in awake lambs with acute pulmonary hypertension. Anesthesiology 92: 1702–1712PubMedCrossRefGoogle Scholar
  54. 54.
    Shekerdemian L, Ravn H, Penny D (2002) Intravenous sildenafil lowers pulmonary vascular resistance in a model of neonatal pulmonary hypertension. Am J Resp Crit Care Med 165: 1098–2002PubMedGoogle Scholar
  55. 55.
    Shekerdemian LS, Ravn HB, Penny DJ (2004) Interaction between inhaled nitric oxide and intravenous sildenafil in a porcine model of meconium aspiration syndrome. Pediatr Res 55: 413–418PubMedCrossRefGoogle Scholar
  56. 56.
    Baquero H, Soliz A, Neira F et al (2006) Oral sildenafil in infants with persistent pulmonary hypertension of the newborn: a pilot randomized blinded study. Pediatrics. 117: 1077–1083PubMedCrossRefGoogle Scholar
  57. 57.
    Steinhorn RH, Kinsella JP, Butrous G et al (2007) Open-label, multicentre, pharmacokinetic study of iv sildenafil in the treatment of neonates with persistent pulmonary hypertension of the newborn (PPHN). Circulation 116: II–614Google Scholar
  58. 58.
    Kelly LK, Porta NF, Goodman DM et al (2002) Inhaled prostacyclin for term infants with persistent pulmonary hypertension refractory to inhaled nitric oxide. J Pediatr 141: 830–832PubMedCrossRefGoogle Scholar
  59. 59.
    McNamara PJ, Laique F, Muang-In S, Whyte HE (2006) Milrinone improves oxygenation in neonates with severe persistent pulmonary hypertension of the newborn. J Crit Care 21: 217–222PubMedCrossRefGoogle Scholar
  60. 60.
    Keller R (2007) Antenatal and postnatal lung and vascular anatomic and functional studies in CDH: implications for clinical management. Am J Med Genet C Semin Med Genet 145 184–200Google Scholar
  61. 61.
    Kinsella J, Ivy D Abman SH (2005) Pulmonary vasodilator therapy in CDH: acute, late and chronic pulmonary hypertension. Sem Perinatol 29: 123–128CrossRefGoogle Scholar
  62. 62.
    Sokol J, Bohn D, Lacro R et al (2002) Fetal pulmonary artery diameters and their association with lung hypoplasia and postnatal outcome in CDH. Am J Obstet Gynecol 186: 1085–1090PubMedCrossRefGoogle Scholar
  63. 63.
    NINOS (1997) Inhaled NO and hypoxic respiratory failure in CDH. Pediatrics 99: 838–845CrossRefGoogle Scholar
  64. 64.
    Iocono J, Cilley R, Mauger D et al (1999) Postnatal pulmonary hypertension after repair of CDH: predicting risk and outcome. J Pediatr Surg 34: 349–353PubMedCrossRefGoogle Scholar
  65. 65.
    Mourani P, Sontag M, Ivy D, Abman S (2009) Effects of long-term sildenafil treatment for pulmonary hypertension in infants with chronic lung disease. J Pediatr 154: 379–384PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Steven H. Abman
    • 1
  1. 1.Pediatric Pulmonary and Critical Care Medicine, Pediatric Heart Lung Center, Department of PediatricsUniversity of Colorado School of Medicine and The Children’s HospitalDenverUSA

Personalised recommendations