Neonatology pp 379-386 | Cite as

Infants of Diabetic Mothers

  • Jane E. Barthell
  • Michael K. Georgieff


While advances in maternal and neonatal medical care continue to improve the outcomes for infants born to mothers with glucose intolerance during pregnancy, the risks for spontaneous abortion, stillbirth, congenital malformations, and perinatal mortality and morbidity still exist. Abnormal maternal glycemic control caused by gestational diabetes mellitus or pregestational diabetes mellitus complicate up to 10% of pregnancies, and as the significantly overweight pediatric population develops into their child-bearing years, this number is likely to rise [1]. Pregnancies of mothers with diabetes are given increased surveillance, as the multifaceted metabolic changes that occur in the mother can place the infant at risk for periconceptional, fetal, neonatal, and long-term morbidities [1, 2]. Fortunately, appropriate periconceptional and prenatal care can improve the risks of perinatal complications by close monitoring of maternal glycemic control.


Gestational Diabetes Mellitus Diabetic Mother Diabetic Pregnancy Septal Hypertrophy Fetal Hypoxia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Nold JL, Georgieff MK (2004) Infants of diabetic mothers. Pediatr Clin N Am 51: 619–637CrossRefGoogle Scholar
  2. 2.
    Widness JA (1989) Fetal risks and neonatal complications of diabetes mellitus and metabolic and endocrine disorders. In: Brody SA, Ueland K (eds) Endocrine disorders in pregnancy. Appleton- Lang, Norwalk, CT, pp 273–297Google Scholar
  3. 3.
    Georgieff MK (2006) The effect of maternal diabetes during pregnancy on the neurodevelopment of offspring. Minn Med 89: 44–47PubMedGoogle Scholar
  4. 4.
    Herranz L, Pallardo LF, Hillman N et al (2007) Maternal third trimester hyperglycaemic excursions predict large-for-gestationalage infants in type 1 diabetic pregnancy. Diabetes Res Clin Pract 75: 42–46PubMedCrossRefGoogle Scholar
  5. 5.
    Correa A, Gilboa SM, Besser LM et al (2008) Diabetes mellitus and birth defects. Am J Obstet Gynecol 199: 237. e1–e9PubMedGoogle Scholar
  6. 6.
    Fuhrmann K, Reiher H, Semmler K et al (1983) Prevention of congenital malformations in infants of insulin-dependent diabetic mothers. Diabetes Care 6: 219–223PubMedCrossRefGoogle Scholar
  7. 7.
    Georgieff MK (1995) Therapy of infants of diabetic mothers. In: Burg FD, Ingelfinger JR, Wald ER, Polin RA (eds) Current pediatric therapy, 15th edn. WB Saunders, Philadelphia, pp 793–803Google Scholar
  8. 8.
    Kalhan SC, Parimi PS (2006) Diabetes in pregnancy: the infant of a diabetic mother. In: Martin RJ, Fanaroff AA, Walsh MC (eds) Neonatal-perinatal medicine, 8th edn. Elsevier Mosby, Philadelphia, pp 1473–1478Google Scholar
  9. 9.
    Savona-Ventura C, Gatt M (2004) Embryonal risks in gestational diabetes mellitus. Early Hum Dev 79: 59–63PubMedCrossRefGoogle Scholar
  10. 10.
    Zhao Z, Reece EA (2005) Experimental mechanisms of diabetic embryopathy and strategies for developing therapeutic interventions. J Soc Gynecol Investig 12: 549–557PubMedCrossRefGoogle Scholar
  11. 11.
    Rajdl D, Racek J, Steinerová A et al (2005) Markers of oxidative stress in diabetic mothers and their infants during delivery. Physiol Res 54: 429–436PubMedGoogle Scholar
  12. 12.
    Morgan SC, Relaix F, Sandell LL, Loeken MR (2008) Oxidative stress during diabetic pregnancy disrupts cardiac neural crest migration and causes outflow tract defects. Birth Defects Res A Clin Mol Teratol 82: 453–463PubMedCrossRefGoogle Scholar
  13. 13.
    Kumar SD, Dheen ST, Tay SS (2007) Maternal diabetes induces congenital heart defects in mice by altering the expression of genes involved in cardiovascular development. Cardiovasc Diabetol 30: 34CrossRefGoogle Scholar
  14. 14.
    Gao Q, Gao YM (2007) Hyperglycemic condition disturbs the proliferation and cell death of neural progenitors in mouse embryonic spinal cord. Int J Dev Neurosci 25: 349–357PubMedCrossRefGoogle Scholar
  15. 15.
    Galindo A, Burguillo AG, Azriel S, Fuente Pde L (2006) Outcome of fetuses in women with pregestational diabetes mellitus. J Perinat Med 34: 323–331PubMedCrossRefGoogle Scholar
  16. 16.
    Radder JK, van Roosmalen J (2005) HbA1c in healthy, pregnant women. Neth J Med 63: 256–259PubMedGoogle Scholar
  17. 17.
    Gomella TL, Cunningham MD, Eyal FG, Zenk KE (2004) Neonatology: management, procedures, on-call problems, diseases, and drugs, 5th edn. McGraw-Hill, New York, pp 418–433Google Scholar
  18. 18.
    Wong SF, Lee-Tannock A, Amaraddio D et al (2006) Fetal growth patterns in fetuses of women with pregestational diabetes mellitus. Ultrasound Obstet Gynecol 28: 934–938PubMedCrossRefGoogle Scholar
  19. 19.
    Schaefer-Graf UM, Kleinwechter H (2006) Diagnosis and new approaches in the therapy of gestational diabetes mellitus. Curr Diabetes Rev 2: 343–352PubMedCrossRefGoogle Scholar
  20. 20.
    Langer O, Berkus MD, Huff RW, Samueloff A (1991) Shoulder dystocia: should the fetus weighing greater than or equal to 4000 grams be delivered by cesarean section? Am J Obstet Gynecol 165 (4 Pt 1): 831–837PubMedGoogle Scholar
  21. 21.
    Lucas MJ (2001) Medical complications of pregnancy: diabetes complicating pregnancy. Obstet Gynecol Clin North Am 28: 513–536PubMedCrossRefGoogle Scholar
  22. 22.
    Widness JA, Susa JB, Garcia JF et al (1981) Increased erythropoiesis and elevated erythropoietin in infants born to diabetic mothers and in hyperinsulinemic rhesus fetuses. J Clin Invest 67:637– 642Google Scholar
  23. 23.
    Stonestreet BS, Goldenstein M, Oh W, Widness JA (1989) Effect of prolonged hyperinsulinemia on erythropoiesis in fetal sheep. Am J Physiol 257: R1199–R1204PubMedGoogle Scholar
  24. 24.
    Georgieff MK, Widness JA, Mills MM, Stonestreet BS (1989) The effect of prolonged intrauterine hyperinsulinemia on iron utilization in fetal sheep. Pediatr Res 26: 467–469PubMedCrossRefGoogle Scholar
  25. 25.
    Bard H, Prosmanne J (1987) Relative rates of fetal hemoglobin and adult hemoglobin synthesis in cord blood of infants of insulin-dependent diabetic mothers. Pediatrics 75: 1143–1147Google Scholar
  26. 26.
    Georgieff MK, Landon MB, Mills MM et al (1990) Abnormal iron distribution in infants of diabetic mothers: spectrum and maternal antecedents. J Pediatr 117: 455–461PubMedCrossRefGoogle Scholar
  27. 27.
    Green DW, Khoury J, Mimouni F (1992) Neonatal hematocrit and maternal glycemic control in insulin-dependent diabetic mothers. J Pediatr 12: 302–305Google Scholar
  28. 28.
    Deinard AS, List A, Lindgren B et al (1986) Cognitive deficits in iron-deficient and iron-deficient anemic children. J Pediatr 108 (5 Part 1): 681–689PubMedGoogle Scholar
  29. 29.
    Siddappa AM, Georgieff MK, Wewerka S et al (2004) Iron deficiency alters auditory recognition memory in newborn infants of diabetic mothers. Pediatr Res 55: 1034–1041PubMedCrossRefGoogle Scholar
  30. 30.
    DeBoer T, Wewerka S, Bauer PJ (2005) Explicit memory performance in infants of diabetic mothers at 1 year of age. Dev Med Child Neurol 47: 525–531PubMedCrossRefGoogle Scholar
  31. 31.
    Riggins T, Miller NC, Bauer PJ et al (2009) Consequences of low neonatal iron status due to maternal diabetes mellitus on explicit memory performance in childhood. Developmental Neuropsychology 34: 762–779PubMedCrossRefGoogle Scholar
  32. 32.
    Schmidt AT, Waldow KJ, Salinas JA, Georgieff MK (2004) The long-term behavioral effects of fetal/neonatal iron deficiency on a hippocampally dependent learning task in the rat. Pediatr Res 55: 279AGoogle Scholar
  33. 33.
    Petry CD, Wobken JD, McKay H et al (1994) Placental transferrin receptor in diabetic pregnancies with increased fetal iron demand. Am J Physiol 267: E507–E514PubMedGoogle Scholar
  34. 34.
    Georgieff MK, Petry CD, Mills MM (1997) Increased N-glycosylation and reduced transferrin binding capacity of transferrin receptor isolated from placentas of diabetic mothers. Placenta 18:563– 568Google Scholar
  35. 35.
    Petry CD, Eaton MA, Wobken JA et al (1992) Liver, heart, and brain iron deficiency in newborn infants of diabetic mothers. J Pediatr 121: 109–114PubMedCrossRefGoogle Scholar
  36. 36.
    Weber HS, Copel JA, Reece EA et al (1991) Cardiac growth in fetuses of diabetic mothers with good metabolic control. J Pediatr 118: 103–107PubMedCrossRefGoogle Scholar
  37. 37.
    Russell NE, Holloway P, Quinn S et al (2008) Cardiomyopathy and cardiomegaly in stillborn infants of diabetic mothers. Pediatr Dev Pathol 11: 10–14PubMedCrossRefGoogle Scholar
  38. 38.
    Moore TR (1999) Diabetes in pregnancy. In: Creasy RK, Resnik R (eds) Maternal-fetal medicine. WB Saunders, Philadelphia, pp 964–995Google Scholar
  39. 39.
    Catalano PM, Thomas A, Huston-Presley L, Amini SB (2003) Increased fetal adiposity: a very sensitive marker of abnormal in utero development. Am J Obstet Gynecol 189: 1698–1704PubMedCrossRefGoogle Scholar
  40. 40.
    Georgieff MK, Sasanow SR, Chockalingam UM, Pereira GR (1988) A comparison of the mid-arm circumference/head circumference ratio and ponderal index for the evaluation of newborn infants after abnormal intrauterine growth. Acta Paediatr Scand 77: 214–219PubMedCrossRefGoogle Scholar
  41. 41.
    Schwartz RP (1997) Neonatal hypoglycemia: how low is too low? J Pediatr 131: 171–173PubMedGoogle Scholar
  42. 42.
    Jain A, Agarwal R, Sankar MJ (2008) Hypocalcemia in the newborn. Indian J Pediatr 75: 165–169PubMedCrossRefGoogle Scholar
  43. 43.
    Amarnath UM, Ophoven JJ, Mills MM (1989) The relationship between decreased iron stores, serum iron and neonatal hypoglycemia in large-for-date newborn infants. Acta Paediatr Scand 78: 538–543PubMedCrossRefGoogle Scholar
  44. 44.
    Chockalingam UM, Murphy E, Ophoven JC et al (1987) Cord transferrin and ferritin values in newborn infants at risk for prenatal uteroplacental insufficiency and chronic hypoxia. J Pediatr 111: 283–286PubMedCrossRefGoogle Scholar
  45. 45.
    Connor JR, Menzies SL (1996) Relationship of iron to oligodendrocytes and myelination. Glia 17: 89–93CrossRefGoogle Scholar
  46. 46.
    de Ungria M, Rao R, Wobken JD et al (2000) Perinatal iron deficiency decreases cytochrome c oxidase (cytox) activity in selected regions of neonatal rat brain. Pediatr Res 48: 169–176CrossRefGoogle Scholar
  47. 47.
    Beard J (2003) Neonatal iron deficiency results in irreversible changes in dopamine function in rats. J Nutr 133: 1174–1179PubMedGoogle Scholar
  48. 48.
    deRegnier RA, Nelson CA, Thomas KM et al (2000) Neurophysiologic evaluation of auditory recognition memory in healthy newborn infants and infants of diabetic mothers. J Pediatr 137: 777–784CrossRefGoogle Scholar
  49. 49.
    deRegnier RA, Long JD, Georgieff MK, Nelson CA (2007) Using event-related potentials to study perinatal nutrition and brain development in infants of diabetic mothers. Dev Neuropsychol 31: 379–396CrossRefGoogle Scholar
  50. 50.
    Touger L, Looker HC, Krakoff J et al (2005) Early growth in offspring of diabetic mothers. Diabetes Care 28: 585–589PubMedCrossRefGoogle Scholar
  51. 51.
    Boney CM, Verma A, Tucker R, Vohr BR (2005) Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics 115: e290–e296PubMedCrossRefGoogle Scholar
  52. 52.
    Vohr BR, Boney CM (2008) Gestational diabetes: the forerunner for the development of maternal and childhood obesity and metabolic syndrome? J Matern Fetal Neonatal Med 21: 149–157PubMedCrossRefGoogle Scholar
  53. 53.
    Plagemann A (2005) Perinatal programming and functional teratogenesis: impact on body weight regulation and obesity. Physiol Behav 86: 661–668PubMedCrossRefGoogle Scholar
  54. 54.
    Fahrenkrog S, Harder T, Stolaczyk E et al (2004) Cross-fostering to diabetic rat dams affects early development of mediobasal hypothalamic nuclei regulating food intake, body weight, and metabolism. J Nutr 134: 648–654PubMedGoogle Scholar
  55. 55.
    Volpe JJ (2001) Neonatal seizures. In: Volpe JJ (ed) Neurology of the newborn, 4th edn. WB Saunders, Philadelphia, pp 178–216Google Scholar
  56. 56.
    Brand PL, Molenaar NL, Kaaijk C, Wierenga WS (2005) Neurodevelopmental outcome of hypoglycaemia in healthy, large for gestational age, term newborns. Arch Dis Child 90: 78–81PubMedCrossRefGoogle Scholar
  57. 57.
    Burns CM, Rutherford MA, Boardman JP, Cowan FM (2008) Patterns of cerebral injury and neurodevelopmental outcomes after symptomatic neonatal hypoglycemia. Pediatrics 122: 65–74PubMedCrossRefGoogle Scholar
  58. 58.
    Inder T (2008) How low can I go? The impact of hypoglycemia on the immature brain. Pediatrics 122: 440–441PubMedCrossRefGoogle Scholar
  59. 59.
    Ornoy A (2005) Growth and neurodevelopmental outcome of children born to mothers with pregestational and gestational diabetes. Pediatr Endocrinol Rev 3: 104–113PubMedGoogle Scholar
  60. 60.
    Rizzo TA, Metzger BE, Dooley SL, Cho NH (1997) Early malnutrition and child neurobehavioral development: insights from the study of children of diabetic mothers. Child Dev 68: 26–38PubMedCrossRefGoogle Scholar
  61. 61.
    Nelson CA, Wewerka SS, Borscheid AJ et al (2003) Electrophysiologic evidence of impaired cross-modal recognition memory in 8-month-old infants of diabetic mothers. J Pediatr 142: 575–582PubMedCrossRefGoogle Scholar
  62. 62.
    Riggins T, Miller NC, Bauer PB et al (2009) Consequences of low neonatal iron status due to maternal diabetes mellitus on explicit memory performance in childhood. Dev Neuropsychol 34: 762–779PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Jane E. Barthell
    • 1
  • Michael K. Georgieff
  1. 1.Division of Neonatology, Department of Pediatrics Center for Neurobehavioral DevelopmentUniversity of MinnesotaMinneapolisUSA

Personalised recommendations