Neonatology pp 304-310 | Cite as

Enteral Feeding of the Very Low Birth Weight Infant

  • Johannes B. van Goudoever


Enteral nutrition is the natural way of feeding infants. The fetus receives enteral nutrition via the amniotic fluid. The amniotic fluid is largely composed of fetal urine, but lung fluids, nasopharyngeal secretions and intra- and trans-membranous fluids contribute as well. Amniotic fluid contains protein and carbohydrates. The amino acid concentrations of amniotic fluid resemble the fetal plasma amino acid concentrations. The fetus starts to swallow considerable amount of amniotic fluid in the last trimester. By term, the fetus swallows about 700 mL per day, corresponding with 170–230 mL/kg/d [1]. It is estimated that up to 10–15% of the nitrogenous requirement of the fetus can be met by swallowing amniotic fluid [2].


Preterm Infant Amniotic Fluid Human Milk Enteral Nutrition Enteral Feeding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Harding R, Bocking AD, Sigger JN, Wickham PJ (1984) Composition and volume of fluid swallowed by fetal sheep. Q J Exp Physiol 69: 487–495PubMedGoogle Scholar
  2. 2.
    Pitkin RM, Reynolds WA (1975) Fetal ingestion and metabolism of amniotic fluid protein. Am J Obstet Gynecol 123: 356–363PubMedGoogle Scholar
  3. 3.
    Sangild PT, Elnif J (1996) Intestinal hydrolytic activity in young mink ( Mustela vison) develops slowly postnatally and exhibits late sensitivity to glucocorticoids. J Nutr 126: 2061–2068PubMedGoogle Scholar
  4. 4.
    Erasmus HD, Ludwig-Auser HM, Paterson PG et al (2002) Enhanced weight gain in preterm infants receiving lactase-treated feeds: a randomized, double-blind, controlled trial. J Pediatr 141: 532–537PubMedCrossRefGoogle Scholar
  5. 5.
    Corpeleijn WE, van Vliet I, de Gast-Bakker DA et al (2008) Effect of enteral IGF-1 supplementation on feeding tolerance, growth, and gut permeability in enterally fed premature neonates. J Pediatr Gastroenterol Nutr 46: 184–190PubMedCrossRefGoogle Scholar
  6. 6.
    van Elburg RM, Fetter WP, Bunkers CM, Heymans HS (2003) Intestinal permeability in relation to birth weight and gestational and postnatal age. Arch Dis Child Fetal Neonatal Ed 88: F52–55PubMedCrossRefGoogle Scholar
  7. 7.
    Hutchens TW, Henry JF, Yip TT et al (1991) Origin of intact lacto- ferrin and its DNA-binding fragments found in the urine of human milk-fed preterm infants. Evaluation by stable isotopic enrichment. Pediatr Res 29: 243–250PubMedCrossRefGoogle Scholar
  8. 8.
    Mihatsch WA, Franz AR, Hogel J, Pohlandt F (2002) Hydrolyzed protein accelerates feeding advancement in very low birth weight infants. Pediatrics 110: 1199–1203PubMedCrossRefGoogle Scholar
  9. 9.
    Rigo J, Salle BL, Picaud JC et al (1995) Nutritional evaluation of protein hydrolysate formulas. Eur J Clin Nutr 49 Suppl 1: S26–S38Google Scholar
  10. 10.
    Berseth CL (1992) Effect of early feeding on maturation of the preterm infant’s small intestine. J Pediatr 120: 947–953PubMedCrossRefGoogle Scholar
  11. 11.
    Meetze WH, Valentine C, McGuigan JE et al (1992) Gastrointestinal priming prior to full enteral nutrition in very low birth weight infants. J Pediatr Gastroenterol Nutr 15: 163–170PubMedCrossRefGoogle Scholar
  12. 12.
    Hunter CJ, Upperman JS, Ford HR, Camerini V (2008) Under-standing the susceptibility of the premature infant to necrotizing enterocolitis ( NEC ). Pediatr Res 63: 117–123PubMedCrossRefGoogle Scholar
  13. 13.
    Burrin DG, Stoll B, Jiang R et al (2000) Minimal enteral nutrient requirements for intestinal growth in neonatal piglets: how much is enough? Am J Clin Nutr 71: 1603–1610PubMedGoogle Scholar
  14. 14.
    Alverdy JC, Aoys E, Moss GS (1988) Total parenteral nutrition promotes bacterial translocation from the gut. Surgery 104: 185–190PubMedGoogle Scholar
  15. 15.
    Sangild PT, Mei J, Fowden AL, Xu RJ (2009) The prenatal porcine intestine has low transforming growth factor-beta ligand and receptor density and shows reduced trophic response to enteral diets. Am J Physiol Regul Integr Comp Physiol 296: R1053–R1062PubMedCrossRefGoogle Scholar
  16. 16.
    Lucas A, Bloom SR, Aynsley-Green A (1986) Gut hormones and ‘minimal enteral feeding’. Acta Paediatr Scand 75: 719–723PubMedCrossRefGoogle Scholar
  17. 17.
    McClure RJ, Newell SJ (2000) Randomised controlled study of clinical outcome following trophic feeding. Arch Dis Child Fetal Neonatal Ed 82: F29–F33PubMedCrossRefGoogle Scholar
  18. 18.
    Schanler RJ, Shulman RJ, Lau C et al (1999) Feeding strategies for premature infants: randomized trial of gastrointestinal priming and tube-feeding method. Pediatrics 103: 434–439PubMedCrossRefGoogle Scholar
  19. 19.
    van Elburg RM, van den Berg A, Bunkers CM et al (2004) Minimal enteral feeding, fetal blood flow pulsatility, and postnatal intestinal permeability in preterm infants with intrauterine growth retardation. Arch Dis Child Fetal Neonatal Ed 89: F293–F296PubMedCrossRefGoogle Scholar
  20. 20.
    Mosqueda E, Sapiegiene L, Glynn L et al (2008) The early use of minimal enteral nutrition in extremely low birth weight newborns. J Perinatol 28: 264–269PubMedCrossRefGoogle Scholar
  21. 21.
    Bombell S, McGuire W (2009) Early trophic feeding for very low birth weight infants. Cochrane Database Syst Rev 3:CD000504Google Scholar
  22. 22.
    Sohn AH, Garrett DO, Sinkowitz-Cochran RL et al (2001) Prevalence of nosocomial infections in neonatal intensive care unit patients: Results from the first national point-prevalence survey. J Pediatr 139: 821–827PubMedCrossRefGoogle Scholar
  23. 23.
    Fukatsu K, Kudsk KA, Zarzaur BL et al (2001) TPN decreases IL- 4 and IL-10 mRNA expression in lipopolysaccharide stimulated intestinal lamina propria cells but glutamine supplementation preserves the expression. Shock 15: 318–322PubMedCrossRefGoogle Scholar
  24. 24.
    Lebman DA, Coffman RL (1994) Cytokines in the mucosal im-mune system. In: Ogra PL (ed) Handbook of mucosal immunology. Academic Press, San Diego, pp 243–249Google Scholar
  25. 25.
    Fukatsu K, Lundberg AH, Hanna MK et al (1999) Route of nu-trition influences intercellular adhesion molecule-1 expression and neutrophil accumulation in intestine. Arch Surg 134: 1055–1060PubMedCrossRefGoogle Scholar
  26. 26.
    van Goudoever JB, Stoll B, Hartmann B et al (2001) Secretion of trophic gut peptides is not different in bolus- and continuously fed piglets. J Nutr 131: 729–732PubMedGoogle Scholar
  27. 27.
    Dsilna A, Christensson K, Alfredsson L et al (2005) Continuous feeding promotes gastrointestinal tolerance and growth in very low birth weight infants. J Pediatr 147: 43–49PubMedCrossRefGoogle Scholar
  28. 28.
    Premji S, Chessell L (2003) Continuous nasogastric milk feeding versus intermittent bolus milk feeding for premature infants less than 1500 grams. Cochrane Database Syst Rev 1:CD001819Google Scholar
  29. 29.
    Dsilna A, Christensson K, Gustafsson AS et al (2008) Behavioral stress is affected by the mode of tube feeding in very low birth weight infants. Clin J Pain 24: 447–455PubMedCrossRefGoogle Scholar
  30. 30.
    Blondheim O, Abbasi S, Fox WW, Bhutani VK (1993) Effect of enteral gavage feeding rate on pulmonary functions of very low birth weight infants. J Pediatr 122 (5 Pt 1): 751–755PubMedGoogle Scholar
  31. 31.
    Heldt GP (1988) The effect of gavage feeding on the mechanics of the lung, chest wall, and diaphragm of preterm infants. Pediatr Res 24: 55–58PubMedCrossRefGoogle Scholar
  32. 32.
    Lebenthal E, Leung YK (1988) Feeding the premature and com-promised infant: gastrointestinal considerations. Pediatr Clin North Am 35: 215–238PubMedGoogle Scholar
  33. 33.
    Steer P, Lucas A, Sinclair JC (1992) Feeding the low birth-weight infant In: Sinclair JC, Bracken MB (eds) Effective care of the newborn infant New York. Oxford University Press, Oxford, pp 94–160Google Scholar
  34. 34.
    Greer FR, McCormick A (1988) Improved bone mineralization and growth in premature infants fed fortified own mother’s milk. J Pediatr 112: 961–969PubMedCrossRefGoogle Scholar
  35. 35.
    de Lucas C, Moreno M, Lopez-Herce J et al (2000) Transpyloric enteral nutrition reduces the complication rate and cost in the critically ill child. J Pediatr Gastroenterol Nutr 30: 175–180PubMedCrossRefGoogle Scholar
  36. 36.
    Joffe AR, Grant M, Wong B, Gresiuk C (2000) Validation of a blind transpyloric feeding tube placement technique in pediatric intensive care: rapid, simple, and highly successful. Pediatr Crit Care Med 1: 151–155PubMedCrossRefGoogle Scholar
  37. 37.
    Mehta NM (2009) Approach to enteral feeding in the PICU. Nutr Clin Pract 24: 377–387PubMedCrossRefGoogle Scholar
  38. 38.
    McGuire W, McEwan P (2007) Transpyloric versus gastric tube feeding for preterm infants. Cochrane Database Syst Rev 3: CD003487Google Scholar
  39. 39.
    Dewey KG, Cohen RJ, Rivera LL et al (1996) Do exclusively breast-fed infants require extra protein? Pediatr Res 39: 303–207PubMedCrossRefGoogle Scholar
  40. 40.
    Fomon SJ, Bier DM, Matthews DE et al (1988) Bioavailability of dietary urea nitrogen in the breast-fed infant. J Pediatr 113: 515–517PubMedCrossRefGoogle Scholar
  41. 41.
    Quigley MA, Henderson G, Anthony MY, McGuire W (2007) Formula milk versus donor breast milk for feeding preterm or low birth weight infants. Cochrane Database Syst Rev 4:CD002971Google Scholar
  42. 42.
    Goldman AS, Chheda S, Keeney SE et al (1994) Immunologic protection of the premature newborn by human milk. Semin Perinatol 18: 495–501PubMedGoogle Scholar
  43. 43.
    Kunz C, Rudloff S (1993) Biological functions of oligosaccharides in human milk. Acta Paediatr 82: 903–912PubMedCrossRefGoogle Scholar
  44. 44.
    Schanler RJ, Lau C, Hurst NM, Smith EO (2005) Randomized trial of donor human milk versus preterm formula as substitutes for mothers’ own milk in the feeding of extremely premature infants. Pediatrics 116: 400–406PubMedCrossRefGoogle Scholar
  45. 45.
    Bertino E, Coppa GV, Giuliani F et al (2008) Effects of Holder pasteurization on human milk oligosaccharides. Int J Immunopathol Pharmacol 21: 381–385PubMedGoogle Scholar
  46. 46.
    Marini A, Negretti F, Boehm G et al (2003) Pro- and pre-biotics administration in preterm infants: colonization and influence on faecal flora. Acta Paediatr Suppl 91: 80–81PubMedGoogle Scholar
  47. 47.
    Boehm G, Lidestri M, Casetta P et al (2002) Supplementation of a bovine milk formula with an oligosaccharide mixture increases counts of faecal bifidobacteria in preterm infants. Arch Dis Child Fetal Neonatal Ed 86: F178–F181PubMedCrossRefGoogle Scholar
  48. 48.
    Westerbeek EA, van den Berg A, Lafeber HN et al (2006) The intestinal bacterial colonisation in preterm infants: a review of the literature. Clin Nutr 25: 361 - 368PubMedCrossRefGoogle Scholar
  49. 49.
    Billeaud C, Guillet J, Sandler B (1990) Gastric emptying in infants with or without gastro-oesophageal reflux according to the type of milk. Eur J Clin Nutr 44: 577–583PubMedGoogle Scholar
  50. 50.
    Shulman RJ, Schanler RJ, Lau C et al (1998) Early feeding, antenatal glucocorticoids, and human milk decrease intestinal permeability in preterm infants. Pediatr Res 44: 519–523PubMedCrossRefGoogle Scholar
  51. 51.
    Vohr BR, Poindexter BB, Dusick AM et al (2006) Beneficial effects of breast milk in the neonatal intensive care unit on the developmental outcome of extremely low birth weight infants at 18 months of age. Pediatrics 118:115–123CrossRefGoogle Scholar
  52. 52.
    Singhal A, Cole TJ, Lucas A (2001) Early nutrition in preterm infants and later blood pressure: two cohorts after randomised trials. Lancet 357: 413–419PubMedCrossRefGoogle Scholar
  53. 53.
    Lucas A, Morley R, Cole TJ et al (1992) Breast milk and subse-quent intelligence quotient in children born preterm. Lancet 339: 261 - 264PubMedCrossRefGoogle Scholar
  54. 54.
    Isaacs EB, Morley R, Lucas A (2009) Early diet and general cognitive outcome at adolescence in children born at or below 30 weeks gestation. J Pediatr 155: 229–234PubMedCrossRefGoogle Scholar
  55. 55.
    Tully MR (2000) Cost of establishing and operating a donor human milk bank. J Hum Lact 16: 57–59PubMedCrossRefGoogle Scholar
  56. 56.
    Eglin RP, Wilkinson AR (1987) HIV infection and pasteurisation of breast milk. Lancet 1: 1093PubMedCrossRefGoogle Scholar
  57. 57.
    Hamprecht K, Maschmann J, Vochem M et al (2001) Epidemiology of transmission of cytomegalovirus from mother to preterm infant by breastfeeding. Lancet 357: 513–518PubMedCrossRefGoogle Scholar
  58. 58.
    Evans TJ, Ryley HC, Neale LM et al (1978) Effect of storage and heat on antimicrobial proteins in human milk. Arch Dis Child 53: 239–241PubMedCrossRefGoogle Scholar
  59. 59.
    Boyd CA, Quigley MA, Brocklehurst P (2007) Donor breast milk versus infant formula for preterm infants: systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed 92: F169–F175PubMedCrossRefGoogle Scholar
  60. 60.
    Kashyap S, Schulze KF, Forsyth M et al (1990) Growth, nutrient retention, and metabolic response of low-birth-weight infants fed supplemented and unsupplemented preterm human milk. Am J Clin Nutr 52: 254–262PubMedGoogle Scholar
  61. 61.
    Polberger SK, Axelsson IE, Raiha NC (1990) Urinary and serum urea as indicators of protein metabolism in very low birthweight infants fed varying human milk protein intakes. Acta Paediatr Scand 79: 737–742PubMedCrossRefGoogle Scholar
  62. 62.
    Pettifor JM, Rajah R, Venter A et al (1989) Bone mineralization and mineral homeostasis in very low-birth-weight infants fed either human milk or fortified human milk. J Pediatr Gastroenterol Nutr 8: 217–224PubMedCrossRefGoogle Scholar
  63. 63.
    Fewtrell MS, Cole TJ, Bishop NJ, Lucas A (2000) Neonatal factors predicting childhood height in preterm infants: evidence for a persisting effect of early metabolic bone disease? J Pediatr 137: 668–673PubMedCrossRefGoogle Scholar
  64. 64.
    Schanler RJ (2001) The use of human milk for premature infants. Pediatr Clin North Am 48: 207–219PubMedCrossRefGoogle Scholar
  65. 65.
    Porcelli P Schanler R, Greer F et al (2000) Growth in human milk- Fed very low birth weight infants receiving a new human milk fortifier. Ann Nutr Metab 44: 2–10PubMedCrossRefGoogle Scholar
  66. 66.
    Reis BB, Hall RT, Schanler RJ et al (2000) Enhanced growth of preterm infants fed a new powdered human milk fortifier: A randomized, controlled trial. Pediatrics 106: 581–588PubMedCrossRefGoogle Scholar
  67. 67.
    Polberger S, Raiha NC, Juvonen P et al (1999) Individualized protein fortification of human milk for preterm infants: comparison of ultrafiltrated human milk protein and a bovine whey fortifier. J Pe¬diatr Gastroenterol Nutr 29: 332–338CrossRefGoogle Scholar
  68. 68.
    Kuschel CA, Harding JE (2004) Multicomponent fortified human milk for promoting growth in preterm infants. Cochrane Database Syst Rev 1:CD000343Google Scholar
  69. 69.
    Greer FR, Marshall SP, Severson RR et al (1998). A new mixed micellar preparation for oral vitamin K prophylaxis: randomised controlled comparison with an intramuscular formulation in breast fed infants. Arch Dis Child 79: 300–305PubMedCrossRefGoogle Scholar
  70. 70.
    Jocson MA, Mason EO, Schanler RJ (1997) The effects of nutrient fortification and varying storage conditions on host defense properties of human milk. Pediatrics 100 (2 Pt 1): 240–243PubMedCrossRefGoogle Scholar
  71. 71.
    Quan R, Yang C, Rubinstein S et al (1994) The effect of nutritional additives on anti-infective factors in human milk. Clin Pediatr 33: 325–328CrossRefGoogle Scholar
  72. 72.
    Schanler RJ, Shulman RJ, Lau C (1999) Feeding strategies for premature infants: beneficial outcomes of feeding fortified human milk versus preterm formula. Pediatrics 103 (6 Pt 1): 1150–1157PubMedCrossRefGoogle Scholar
  73. 73.
    Hulst J, Joosten K, Zimmermann L et al (2004) Malnutrition in critically ill children: from admission to 6 months after discharge. Clin Nutr 23: 223–232PubMedCrossRefGoogle Scholar
  74. 74.
    Ehrenkranz RA, Younes N, Lemons JA et al (1999) Longitudinal growth of hospitalized very low birth weight infants. Pediatrics 104 (2 Pt 1): 280–289PubMedCrossRefGoogle Scholar
  75. 75.
    Ehrenkranz RA, Dusick AM, Vohr BR et al (2006) Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants. Pediatrics 117: 1253–1261PubMedCrossRefGoogle Scholar
  76. 76.
    Latal-Hajnal B, von Siebenthal K, Kovari H et al (2003) Postnatal growth in VLBW infants: significant association with neurodevel- opmental outcome. J Pediatr 143: 163–170PubMedGoogle Scholar
  77. 77.
    Hay WW Jr, Myers SA, Sparks JW et al (1983) Glucose and lactate oxidation rates in the fetal lamb. Proc Soc Exp Biol Med 173: 553–563PubMedGoogle Scholar
  78. 78.
    Harding JE, Johnston BM (1995) Nutrition and fetal growth. Re- prod Fertil Dev 7: 539–547CrossRefGoogle Scholar
  79. 79.
    Lemons JA, Adcock EW 3rd, Jones MD Jr et al (1976) Umbilical uptake of amino acids in the unstressed fetal lamb. J Clin Invest 58: 1428–1434PubMedCrossRefGoogle Scholar
  80. 80.
    van den Akker CH, Schierbeek H, Dorst KY et al (2009) Human fetal amino acid metabolism at term gestation. Am J Clin Nutr 89: 153–160PubMedCrossRefGoogle Scholar
  81. 81.
    van den Akker CH, Schierbeek H et al (2008) Human fetal albumin synthesis rates during different periods of gestation. Am J Clin Nutr 88: 997–1003PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Johannes B. van Goudoever
    • 1
    • 2
  1. 1.Emma Children’s Hospital, Academic Medical CenterVU University Medical CenterAmsterdamThe Netherlands
  2. 2.Department of PediatricsVU University Medical CenterAmsterdamThe Netherlands

Personalised recommendations