Neonatology pp 290-297 | Cite as

Feeding the Term Infant: Human Milk and Formulas

  • Silvia Fanaro
  • Vittorio Vigi


Breast milk represents the natural food for infants, and is universally recognized as the optimal feeding choice for every infant. The American Academy of Pediatrics (AAP), and the European Society for Pediatric Gastroenterolgy, Hepathology and Nutrition (ESPGHAN) recognize that feeding at the breast is the advisable way of supporting the natural growth and development of all infants [1, 2].


Breast Milk Human Milk Whey Protein Infant Formula Exclusive Breastfeed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kleinman RE (ed) (2004) Pediatric Nutrition Handbook, 5th edn. American Academy of Pediatrics, Elk Grove Village, IL, pp 55–85Google Scholar
  2. 2.
    ESPGHAN Committee on Nutrition, Agostoni C, Braegger C et al (2009) Breast-feeding: A commentary by the ESPGHAN Committee on Nutrition. J Pediatr Gastroenterol Nutr 49: 112–125Google Scholar
  3. 3.
    WHO Expert Consultation (2002) The optimal duration of exclusive breastfeeding. _01.09.pdfGoogle Scholar
  4. 4.
    Prentice A (1995) Regional variation in the composition of human milk. In: Jensen RG (ed) Handbook of milk composition. Academic Press, San Diego, pp 115–221CrossRefGoogle Scholar
  5. 5.
    Lawrence RA, Lawrence RM (2005) Biochemistry of human milk. In: Lawrence RA, Lawrence RM (eds) Breastfeeding, 6th edn. Elsevier Mosby, Philadelphia, pp 105–170CrossRefGoogle Scholar
  6. 6.
    Donovan SM (2008) Human milk: nutritional properties. In: Duggan C, Watkins JB, Walker WA (eds) Nutrition on pediatrics, 4th edn. BC Decker Inc, Hamilton, Ontario, pp 341–353Google Scholar
  7. 7.
    Picciano MF (2001) Nutrient composition of human milk. Pediatr Clin North Am 48: 53–67PubMedCrossRefGoogle Scholar
  8. 8.
    Saarela T, Kokkonen J, Koivisto M (2005) Macronutrient and energy content of human milk fractions during the first six month of lactation. Acta Pediatr 94: 1176–1181CrossRefGoogle Scholar
  9. 9.
    Kunz C, Rudloff S, Baier W et al (2000) Oligosaccharides in human milk: structural, functional, and metabolic aspects. Annu Rev Nutr 20: 699–722PubMedCrossRefGoogle Scholar
  10. 10.
    Butte NF, Garza C, Smith EO (1988) Variability of macronutrient concentrations in human milk. Eur J Clin Nutr 42: 345–349PubMedGoogle Scholar
  11. 11.
    Habte HH, Kotwal GJ, Lotz ZE et al (2007) Antiviral activity of purified human breast milk mucin. Neonatology 92: 96–104PubMedCrossRefGoogle Scholar
  12. 12.
    Innis SM (2004) Polyunsaturated fatty acids in human milk. An essential role in infant development. In: Pickering LK, Morrow AL, Ruiz-Palacios GM, Schanler RJ (eds) Protecting infants through human milk. Kluver Academy/Plenum Publisher, New YorkGoogle Scholar
  13. 13.
    Sanders TA, Reddy S (1992) The influence of a vegetarian diet on the fatty acid composition of human milk and the essential fatty acid status of the infant. J Pediatr 120: S71–77PubMedCrossRefGoogle Scholar
  14. 14.
    Ferranti P, Traisci MC, Picariello G et al (2004) Casein proteolysis in human milk: tracing the pattern of casein breakdown and the formation of potential bioactive peptides. J Dairy Res 71: 74–87PubMedCrossRefGoogle Scholar
  15. 15.
    Lönnerdal B, Lien EL (2003) Nutritional and physiologic significance of alpha-lactoalbumin in infants. Nutr Rev 61: 295–305PubMedCrossRefGoogle Scholar
  16. 16.
    Greer FR (2001) Do breastfed infants need supplemental vitamins? Pediatr Clin North Am 48: 415–423PubMedCrossRefGoogle Scholar
  17. 17.
    Lammi-Keefe CJ (1995) Vitamins D and E in human milk. In: Jensen RJ (ed) Handbook of milk composition. Academic Press, San Diego, pp 706–717CrossRefGoogle Scholar
  18. 18.
    Wagner CL, Greer FR et al (2008). Prevention of rickets and vitamin D deficiency in infants, children, and adolescents. Pediatrics 122: 1142–1152PubMedCrossRefGoogle Scholar
  19. 19.
    Kamao M, Tsugawa N, Suhara Y et al (2007) Quantification of fat- soluble vitamins in human breast milk by liquid chromatography- tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 859: 192–200PubMedCrossRefGoogle Scholar
  20. 20.
    Greer FR (2001) Are breast-fed infants vitamin K deficient? Adv Exp Med Biol 501: 391–395PubMedCrossRefGoogle Scholar
  21. 21.
    American Academy of Pediatrics (2003) Controversies concerning vitamin K and the newborn. Pediatrics 112: 191–192CrossRefGoogle Scholar
  22. 22.
    Buonocore G, Fanaro S, Vigi V et al (2004) Profilassi con la vitamina K dell’emorragia da deficit di vitamina K. Acta Neonatolog- ica 4: 373–377Google Scholar
  23. 23.
    Ijland MM, Pereira RR, Cornelissen EA (2008) Incidence of late vitamin K deficiency bleeding in newborns in the Netherlands in 2005: evaluation of the current guideline. Eur J Pediatr 167: 165–169PubMedCrossRefGoogle Scholar
  24. 24.
    Chierici R, Saccomandi D, Vigi V (1999) Dietary supplements for the lactating mother: influence on the trace element content of milk. Acta Paediatr Suppl 88: 7–13PubMedCrossRefGoogle Scholar
  25. 25.
    Schanler RJ (2006) Rationale for breastfeeding. In: Thureen P Hay W (eds) Neonatal nutrition and metabolism, 2nd edn. Cambridge University Press, Cambrige, pp 390–400CrossRefGoogle Scholar
  26. 26.
    Lonnerdal B (1989). Trace element absorption in infants as a foundation to setting upper limits for trace elements in infant formulas. J Nutr119: 1839S–1844Google Scholar
  27. 27.
    Lonnerdal B, Hernell O (1994) Iron, zinc, copper and selenium status of breastfed infants and infants fed trace element fortified milk- based infant formula. Acta Paediatr 83: 367–373PubMedCrossRefGoogle Scholar
  28. 28.
    Kovar MG, Serdula MK, Marks JS et al (1984) Review of the epidemiologic evidence for an association between infant feeding and infant health. Pediatrics 74: 615–638PubMedGoogle Scholar
  29. 29.
    Lawrence RA, Lawrence RM (eds) (2005) Breastfeeding, 6th edn. Elsevier Mosby, Philadelphia, pp 695–712CrossRefGoogle Scholar
  30. 30.
    Agency for Healthcare Research and Quality (2007) Breastfeeding and maternal and infant health outcomes in developed countries. AHRQ Publication no. 07-E007. http://www. ncbi. nlm. nih. gov/ books/bv. fcgi?rid=hstat 1b. chapterGoogle Scholar
  31. 31.
    Martin RM, Gunnell D, Davey Smith G (2005). Breastfeeding in infancy and blood pressure in later life: systematic review and metaanalysis. Am J Epidemiol 161: 15–26PubMedCrossRefGoogle Scholar
  32. 32.
    Horta BL, Bahl R, Martines JC, Victora CG (2007) Evidence on the long-term effects of breastfeeding. Systematic reviews and meta-analyses. WHO Press, Geneva http://whqlibdoc. who. int/publications/ 2007/9789241595230_eng. pdfGoogle Scholar
  33. 33.
    Owen CG, Whincup PH, Kaye SJ et al (2008) Does initial breastfeeding lead to lower blood cholesterol in adult life? A quantitative review of the evidence. Am J Clin Nutr 88: 305–314PubMedGoogle Scholar
  34. 34.
    Kwan ML, Buffler PA, Abrams B et al (2004) Breastfeeding and the risk of childhood leukaemia: a meta-analysis. Public Health Rep 119: 521–535PubMedCrossRefGoogle Scholar
  35. 35.
    Martin RM, Middleton N, Gunnell D et al (2005) Breast-feeding and cancer: the Boyd-Orr cohort and a systematic review with metaanalysis. J Natl Cancer Inst 97: 1446–1457PubMedCrossRefGoogle Scholar
  36. 36.
    Chirico G, Marzollo R, Cortinovis S et al (2008) Antiinfective properties of human milk. J Nutr 138: 1801S–1806SPubMedGoogle Scholar
  37. 37.
    Newburg DS (2000) Oligosaccharides in human milk and bacterial colonization. J Pediatr Grastroenterol Nutr 30: S8–S17Google Scholar
  38. 38.
    Coppa GV, Bruni S, Morelli L et al (2004) The first prebiotics in humans: human milk oligosaccharides. J Clin Gastroenterol 38: S80–S83PubMedCrossRefGoogle Scholar
  39. 39.
    Chierici R, Fanaro S, Saccomandi D et al (2003) Advances in the modulation of the microbial ecology of the gut in early infancy. Acta Paediatr 91: 56S–63SGoogle Scholar
  40. 40.
    Fanaro S, Chierici R, Guerrini P et al (2003) Intestinal microflora in early infancy: composition and development. Acta Paediatr Suppl 91: 48S–55SGoogle Scholar
  41. 41.
    Weinberg ED (2001) Human lactoferrin: a novel therapeutic with broad spectrum potential. J Pharm Pharmacol 53: 1303–1310PubMedCrossRefGoogle Scholar
  42. 42.
    Lawrence RA, Lawrence RM (eds) (2005) Breastfeeding, 6th edn. Elsevier Mosby, Philadelphia, pp 171–215CrossRefGoogle Scholar
  43. 43.
    Lonnerdal B (1996) Lactoferrin in milk. Ann Nestlé 54: 79–87Google Scholar
  44. 44.
    Weinberg ED (2003) The therapeutic potential of lactoferrin. Expert Opin Investig Drugs 12: 841–851PubMedCrossRefGoogle Scholar
  45. 45.
    Lönnerdal B (2003) Nutritional and physiologic significance of human milk proteins. Am J Clin Nutr 77: 1537S–1543SPubMedGoogle Scholar
  46. 46.
    Plaut AG, Qiu J, St Geme JW III (2000) Human lactoferrin prote-olytic activity: analysis of the cleaved region in the IgA protease of Haemophilus influenzae. Vaccine 19: S148–S152PubMedCrossRefGoogle Scholar
  47. 47.
    Liepke C, Adermann K, Raida M et al (2002) Human milk provides peptides highly stimulating the growth of bifidobacteria. Eur J Biochem 269: 712–718PubMedCrossRefGoogle Scholar
  48. 48.
    Conneely OM (2001) Antinflammatory activities of lactoferrin. J Am Coll Nutr 20: 389S–395SPubMedGoogle Scholar
  49. 49.
    Ward PP, Patz E, Conneely OM (2005) Multifunctional roles of lactoferrin: a critical overview. Cell Mol Life Sci 62: 2540–2548PubMedCrossRefGoogle Scholar
  50. 50.
    Dewey KG, Peerson JM, Brown KH et al (1995) Growth of breastfed infants deviates from current reference data: a pooled analysis of US, Canadian, and European data sets. World Health Organization Working Group on Infant Growth. Pediatrics 96: 495–503PubMedGoogle Scholar
  51. 51.
    WHO Multicentre Growth Reference Study Group (2006) WHO child growth standards. Methods and development. World Health Organization, Geneva www. who. int/childgrowth/publications/technical_report_pub/ en/index. htmlGoogle Scholar
  52. 52.
    Dewey KG (2007) Nutrition, growth, and complementary feeding of the breastfed infant. In: Hale TW, Hartmann PE (eds) Textbook of human lactation. Hale Publishing, Amarillo, TX, pp 415–423Google Scholar
  53. 53.
    Powers NG (2001) How to assess slow growth in the breastfed infant: birth to 3 months. Pediatr Clin North Am 48: 345–363PubMedCrossRefGoogle Scholar
  54. 54.
    Chieric R, Vigi V (1994) Milk formulae for the normal infant. II. Recommendations, energy, physical characteristics and protein composition. Acta Paediatr 402: 18S–23SCrossRefGoogle Scholar
  55. 55.
    Koletzko B, Baker S, Cleghorn G et al (2005) Global standard for the composition of infant formula: recommendations of an ESPGHAN coordinated international expert group. J Gastroenterol Nutr 41: 584–599CrossRefGoogle Scholar
  56. 56.
    Carver JD (2003) Advances in nutritional modifications of infant formulas. Am J Clin Nutr 77: 1550S–1554PubMedGoogle Scholar
  57. 57.
    EEC Commission Directive 2006/141/EC of 22 December 2006 on infant formulae and follow-on formulae and amending Directive 1999/21/EC with EEA relevance.Google Scholar
  58. 58.
    Federal food, Drug and cosmetic Act with Amendments, sec. 412. (1980) Government Printing Office, Washington, DCGoogle Scholar
  59. 59.
    Gurtler JB, Beuchat LR (2007) Growth of Enterobacter sakazakii in reconstituted infant formula as affected by composition and tem¬perature. J Food Prot 70: 2095–2103PubMedGoogle Scholar
  60. 60.
    Proudy I (2009) [Enterobacter sakazakii in powdered infant food formulas]. Can J Microbiol 55:473–500PubMedCrossRefGoogle Scholar
  61. 61.
    Mullane NR, Iversen C, Healy B et al (2007) Enterobacter sakazakii an emerging bacterial pathogen with implications for infant health. Minerva Pediatr 59: 137–148PubMedGoogle Scholar
  62. 62.
    Friedemann M (2009) Epidemiology of invasive neonatal Cronobacter (Enterobacter sakazakii) infections. Eur J Clin Micro- biol Infect Dis 28: 1297–1304CrossRefGoogle Scholar
  63. 63.
    WHO/FAO (2007) Guidelines for the safe preparation, storage and handling of powdered infant formula. WHO, GenevaGoogle Scholar
  64. 64.
    Lauritzen L, Hansen HS, Jorgensen MH et al (2001) The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Prog Lipid Res 40: 1–94PubMedCrossRefGoogle Scholar
  65. 65.
    Heird WC, Lapillone A (2005) The role of essential fatty acids in devolopment. Annu Rev Nutr 25: 549–571PubMedCrossRefGoogle Scholar
  66. 66.
    Beyerlein A, Hadders-Algra M, Kennedy K et al (2010) Infant formula supplementation with long-chain polyunsaturated fatty acids has no effect on Bayley developmental scores at 18 months of age- -IPD meta-analysis of 4 large clinical trials. J Pediatr Gastroenterol Nutr 50: 79–84PubMedCrossRefGoogle Scholar
  67. 67.
    Janas LM, Picciano MF, Hatch TF (1985) Indices of protein metabolism in term infants fed human milk, whey-predominant formula, or cow’s milk formula. Pediatrics 75: 775–784PubMedGoogle Scholar
  68. 68.
    Lien E, Davis A, Euler A (2004) Growth and safety in term infants fed reduced protein formula with added bovine alpha-lactalbumin. J Pediatr Gastroenterol Nutr 38: 170–176PubMedCrossRefGoogle Scholar
  69. 69.
    Newburg DS (2005) Innate immunity and human milk. J Nutr 135: 1308–1312PubMedGoogle Scholar
  70. 70.
    Räihä NC, Fazzolari-Nesci A, Cajozzo C et al (2002) Whey pre-dominant, whey modified infant formula with protein/energy ratio of 1.8 g/100 kcal: adequate and safe for term infants from birth to four months. J Pediatr Gastroenterol Nutr 35: 275–281PubMedCrossRefGoogle Scholar
  71. 71.
    Satue-Gracia MT, Frankel EN, Rangavajhyala N et al (2000) Lactoferrin in infant formulas: effect on oxidation. J Agric Food Chem 48: 4984–4990PubMedCrossRefGoogle Scholar
  72. 72.
    Manzoni P, Rinaldi M, Cattani S et al (2009) Bovine lactoferrin supplementation for prevention of late-onset sepsis in very low- birth-weight neonates: a randomized trial. JAMA 302: 1421–1428PubMedCrossRefGoogle Scholar
  73. 73.
    Fanaro S, Boehm G, Garssen J et al (2005) Galacto-oligosaccha- rides and long-chain fructo-oligosaccharides as prebiotics in infant formulas: a review. Acta Paediatr 94: 22S–26SCrossRefGoogle Scholar
  74. 74.
    Boehm G, Moro G (2008) Structural and functional aspects of prebiotics used in infant nutrition. J Nutr 138: 1818S–1828SPubMedGoogle Scholar
  75. 75.
    Rao S, Srinivasjois R, Patole S (2009) Prebiotic supplementation in full-term neonates: a systematic review of randomized controlled trials. Arch Pediatr Adolesc Med 163: 755–764PubMedCrossRefGoogle Scholar
  76. 76.
    Moro G, Arslanoglu S, Stahl B et al (2006) A mixture of prebiotic oligosaccharides reduces the incidence of atopic dermatitis during the first six months of age. Arch Dis Child 91: 814–819PubMedCrossRefGoogle Scholar
  77. 77.
    Arslanoglu S, Moro GE, Schmitt J et al (2008) Early dietary intervention with a mixture of prebiotic oligosaccharides reduces the incidence of allergic manifestations and infections during the first two years of life. J Nutr 138: 1091–1095PubMedGoogle Scholar
  78. 78.
    Ziegler E, Vanderhoof JA, Petschow B et al (2007) Term infants fed formula supplemented with selected blends of prebiotics grow normally and have soft stools similar to those reported for breastfed infants. J Pediatr Gastroenterol Nutr 44: 359–364PubMedCrossRefGoogle Scholar
  79. 79.
    Osborn DA, Sinn JK (2007) Prebiotics in infants for prevention of allergic disease and food hypersensitivity. Cochrane Database Syst Rev 4:CD006474Google Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Silvia Fanaro
    • 1
  • Vittorio Vigi
  1. 1.Neonatal Intensive Care Unit, Section of PediatricsUniversity of FerraraFerraraItaly

Personalised recommendations