Neonatology pp 263-280 | Cite as

Physiology of the Gastrointestinal Tract

  • Arieh Riskin
  • Carlo Agostoni
  • Raanan Shamir


The gastrointestinal tract develops from the primitive digestive tube that originates from the dorsal part of the yolk sac. Initially the yolk sac is attached to the midgut of the digestive tube, but as early as the fourth week of gestation the gut becomes distinct from the yolk sac. The yolk sac is connected to the digestive tube through the omphalomesenteric (vitteline) duct. The dorsal mesentery separates the digestive tube from the dorsal wall of the embryo, and at this stage there is also a ventral mesentery that separates the anterior part from the ventral embryonic wall. Continuity with the exterior environment is formed only after the rupture of the buccopharyngeal and cloacal membranes. The anatomic formation of the esophagus, stomach, intestine, pancreas and liver is achieved by the fourth week through a series of evaginations, elongations and dilatations. Further development through cell proliferation, growth and morphogenesis then follows.


Preterm Infant Gastric Emptying Bile Salt Human Milk Migrate Motor Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Beck F (2002) Homeobox genes in gut development. Gut 51: 450–454PubMedCrossRefGoogle Scholar
  2. 2.
    Montgomery RK, Mulberg AE, Grand RJ (1999) Development of the human gastrointestinal tract: twenty years of progress. Gastroenterology 116: 702–731PubMedCrossRefGoogle Scholar
  3. 3.
    Calder PC, Krauss-Etschmann S, de Jong EC et al (2006) Early nutrition and immunity - progress and perspectives. Br J Nutr 96: 774–790PubMedCrossRefGoogle Scholar
  4. 4.
    de Santa BP, van den Brink GR, Roberts DJ (2003) Development and differentiation of the intestinal epithelium. Cell Mol Life Sci 60: 1322–1332CrossRefGoogle Scholar
  5. 5.
    Simon-Assmann P, Turck N, Sidhoum-Jenny M et al (2007) In vitro models of intestinal epithelial cell differentiation. Cell Biol Toxicol 23: 241–256PubMedCrossRefGoogle Scholar
  6. 6.
    Reber KM, Nankervis CA, Nowicki PT (2002) Newborn intestinal circulation. Physiology and pathophysiology. Clin Perinatol 29: 23–39PubMedCrossRefGoogle Scholar
  7. 7.
    Davis MJ, Hill MA (1999) Signaling mechanisms underlying the vascular myogenic response. Physiol Rev 79: 387 - 423PubMedGoogle Scholar
  8. 8.
    Nankervis CA, Nowicki PT (2000) Role of endothelin-1 in regulation of the postnatal intestinal circulation. Am J Physiol Gastroin- test Liver Physiol 278: G367–G375Google Scholar
  9. 9.
    Nowicki PT (1998) Postnatal changes in gut hemodynamics: a possible role for substance P. Am J Physiol 274(6 Pt 1):G1142–G1150PubMedGoogle Scholar
  10. 10.
    Martinussen M, Brubakk AM, Vik T, Yao AC (1996) Mesenteric blood flow velocity and its relation to transitional circulatory adaptation in appropriate for gestational age preterm infants. Pediatr Res 39: 275–280PubMedCrossRefGoogle Scholar
  11. 11.
    Gork AS, Ehrenkranz RA, Bracken MB (2008) Continuous infusion versus intermittent bolus doses of indomethacin for patent ductus arteriosus closure in symptomatic preterm infants. Cochrane Database Syst Rev 1:CD006071Google Scholar
  12. 12.
    Hoecker C, Nelle M, Poeschl J et al (2002) Caffeine impairs cerebral and intestinal blood flow velocity in preterm infants. Pediatrics 109: 784–787PubMedCrossRefGoogle Scholar
  13. 13.
    Havranek T, Thompson Z, Carver JD (2006) Factors that influence mesenteric artery blood flow velocity in newborn preterm infants. J Perinatal 26: 493–497CrossRefGoogle Scholar
  14. 14.
    Sarna SK, Otterson MF (1988) Gastrointestinal motility: some basic concepts. Pharmacology 36 (Suppl 1): 7–14PubMedCrossRefGoogle Scholar
  15. 15.
    Huizinga JD, Ambrous K, Der-Silaphet T (1998) Co-operation between neural and myogenic mechanisms in the control of distension-induced peristalsis in the mouse small intestine. J Physiol 506 (Pt 3): 843–856PubMedCrossRefGoogle Scholar
  16. 16.
    Siegle ML, Buhner S, Schemann M (1990) Propagation velocities and frequencies of contractions along canine small intestine. Am J Physiol 258 (5 Pt 1): G738–G744PubMedGoogle Scholar
  17. 17.
    Lecoin L, Gabella G, Le DN (1996) Origin of the c-kit-positive interstitial cells in the avian bowel. Development 122: 725–733PubMedGoogle Scholar
  18. 18.
    Huizinga JD, Thuneberg L, Kluppel M (1995) W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature 373: 347–349PubMedCrossRefGoogle Scholar
  19. 19.
    Vanderwinden JM, Liu H, De Laet MH, Vanderhaeghen JJ (1996) Study of the interstitial cells of Cajal in infantile hypertrophic pyloric stenosis. Gastroenterology 111: 279–288PubMedCrossRefGoogle Scholar
  20. 20.
    Vanderwinden JM, Rumessen JJ, Liu H (1996) Interstitial cells of Cajal in human colon and in Hirschsprung’s disease. Gastroenterology 111: 901–910PubMedCrossRefGoogle Scholar
  21. 21.
    Sarna SK, Otterson MF (1989) Small intestinal physiology and pathophysiology. Gastroenterol Clin North Am 18: 375–404PubMedGoogle Scholar
  22. 22.
    Holle GE, Forth W (1990) Myoelectric activity of small intestine after chemical ablation of myenteric neurons. Am J Physiol 258 (4 Pt 1): G519–G526PubMedGoogle Scholar
  23. 23.
    Vanneste G, Van NL, Kalfin R et al (2008) Jejunal cholinergic, nitrergic, and soluble guanylate cyclase activity in postoperative ileus. Surgery 144: 410–426PubMedCrossRefGoogle Scholar
  24. 24.
    Wiley JW, Lu YX, Owyang C (1991) Evidence for a glutamatergic neural pathway in the myenteric plexus. Am J Physiol 261 (4 Pt 1): G693–G700PubMedGoogle Scholar
  25. 25.
    Stark ME, Bauer AJ, Sarr MG, Szurszewski JH (1993) Nitric oxide mediates inhibitory nerve input in human and canine jejunum. Gastroenterology 104: 398–409PubMedGoogle Scholar
  26. 26.
    Grider JR, Murthy KS (2008) Autoinhibition of endothelial nitric oxide synthase (eNOS) in gut smooth muscle by nitric oxide. Regul Pept 151: 75–79PubMedCrossRefGoogle Scholar
  27. 27.
    Saur D, Vanderwinden JM, Seidler B et al (2004)Single-nucleotide promoter polymorphism alters transcription of neuronal nitric oxide synthase exon 1c in infantile hypertrophic pyloric stenosis. Proc Natl Acad Sci 101: 1662–1667PubMedCrossRefGoogle Scholar
  28. 28.
    VanderWall KJ, Bealer JF, Adzick NS, Harrison MR (1995) Cyclic GMP relaxes the internal anal sphincter in Hirschsprung’s disease. J Pediatr Surg 30: 1013–1015CrossRefGoogle Scholar
  29. 29.
    Anderson RB, Newgreen DF, Young HM (2006) Neural crest and the development of the enteric nervous system. Adv Exp Med Biol 589: 181–196PubMedCrossRefGoogle Scholar
  30. 30.
    Gershon MD, Chalazonitis A, Rothman TP (1993) From neural crest to bowel: development of the enteric nervous system. J Neu- robiol 24: 199–214PubMedCrossRefGoogle Scholar
  31. 31.
    Baetge G, Pintar JE, Gershon MD (1990) Transiently cate- cholaminergic (TC) cells in the bowel of the fetal rat: precursors of noncatecholaminergic enteric neurons. Dev Biol 141: 353–380PubMedCrossRefGoogle Scholar
  32. 32.
    Faure C, Chalazonitis A, Rheaume C et al (2007) Gangliogenesis in the enteric nervous system: roles of the polysialylation of the neural cell adhesion molecule and its regulation by bone morpho- genetic protein-4. Dev Dyn 2007 236: 44–59CrossRefGoogle Scholar
  33. 33.
    Wester T, O’Briain DS, Puri P (1999) Notable postnatal alterations in the myenteric plexus of normal human bowel. Gut 44: 666–674PubMedCrossRefGoogle Scholar
  34. 34.
    Fekete E, Benedeczky I, Timmermans JP et al (1996) Sequential pattern of nerve-muscle contacts in the small intestine of developing human fetus. An ultrastructural and immunohistochemical study. Histol Histopathol 11: 845–850Google Scholar
  35. 35.
    Newgreen D, Young HM (2002) Enteric nervous system: development and developmental disturbances - part 1. Pediatr Dev Pathol 5: 224–247PubMedGoogle Scholar
  36. 36.
    Newgreen D, Young HM (2002) Enteric nervous system: development and developmental disturbances - part 2. Pediatr Dev Pathol 5: 329–349PubMedCrossRefGoogle Scholar
  37. 37.
    Altschuler SM, Bao XM, Bieger D et al (1989) Viscerotopic representation of the upper alimentary tract in the rat: sensory ganglia and nuclei of the solitary and spinal trigeminal tracts. J Comp Neurol 283: 248–268PubMedCrossRefGoogle Scholar
  38. 38.
    Kirchgessner AL, Gershon MD (1989) Identification of vagal efferent fibers and putative target neurons in the enteric nervous system of the rat. J Comp Neurol 285: 38–53PubMedCrossRefGoogle Scholar
  39. 39.
    Berthoud HR, Jedrzejewska A, Powley TL (1990) Simultaneous labeling of vagal innervation of the gut and afferent projections from the visceral forebrain with dil injected into the dorsal vagal complex in the rat. J Comp Neurol 301: 65–79PubMedCrossRefGoogle Scholar
  40. 40.
    Kessler JP (1993) Involvement of excitatory amino acids in the activity of swallowing-related neurons of the ventro-lateral medulla. Brain Res 603: 353–357PubMedCrossRefGoogle Scholar
  41. 41.
    Berseth CL (1996) Gastrointestinal motility in the neonate. Clin Perinatol 23: 179–190PubMedGoogle Scholar
  42. 42.
    Kelly EJ, Newell SJ, Brownlee KG et al (1997) Role of epidermal growth factor and transforming growth factor alpha in the developing stomach. Arch Dis Child Fetal Neonatal Ed 76: F158–F162PubMedCrossRefGoogle Scholar
  43. 43.
    Lau C, Smith EO, Schanler RJ (2003) Coordination of suck-swallow and swallow respiration in preterm infants. Acta Paediatr 92: 721–727PubMedCrossRefGoogle Scholar
  44. 44.
    Simpson C, Schanler RJ, Lau C (2002) Early introduction of oral feeding in preterm infants. Pediatrics 110: 517–522PubMedCrossRefGoogle Scholar
  45. 45.
    Gewolb IH, Vice FL, Schwietzer-Kenney EL et al (2001) Developmental patterns of rhythmic suck and swallow in preterm infants. Dev Med Child Neurol 43: 22–27PubMedCrossRefGoogle Scholar
  46. 46.
    Lau C, Alagugurusamy R, Schanler RJ et al (2000) Characterization of the developmental stages of sucking in preterm infants during bottle feeding. Acta Paediatr 89: 846–852PubMedCrossRefGoogle Scholar
  47. 47.
    Newell SJ, Sarkar PK, Durbin GM et al (1988) Maturation of the lower oesophageal sphincter in the preterm baby. Gut 29: 167–172PubMedCrossRefGoogle Scholar
  48. 48.
    Omari TI, Benninga MA, Barnett CP et al (1999) Characterization of esophageal body and lower esophageal sphincter motor function in the very premature neonate. J Pediatr 135: 517–521PubMedCrossRefGoogle Scholar
  49. 49.
    Wenzl TG, Moroder C, Trachterna M et al (2002) Esophageal pH monitoring and impedance measurement: a comparison of two diagnostic tests for gastroesophageal reflux. J Pediatr Gastroenterol Nutr 34: 519–523PubMedCrossRefGoogle Scholar
  50. 50.
    Gupta A, Gulati P Kim W et al (2009) Effect of postnatal maturation on the mechanisms of esophageal propulsion in preterm human neonates: primary and secondary peristalsis. Am J Gastroenterol 104: 411–419PubMedCrossRefGoogle Scholar
  51. 51.
    Zangen S, Di LC, Zangen T et al (2001) Rapid maturation of gastric relaxation in newborn infants. Pediatr Res 50: 629–632PubMedCrossRefGoogle Scholar
  52. 52.
    Ittmann PI, Amarnath R, Berseth CL (1992) Maturation of antro-duodenal motor activity in preterm and term infants. Dig Dis Sci 37: 14–19PubMedCrossRefGoogle Scholar
  53. 53.
    Al-Tawil Y, Klee G, Berseth CL (2002) Extrinsic neural regulation of antroduodenal motor activity in preterm infants. Dig Dis Sci 47: 2657 - 2663PubMedCrossRefGoogle Scholar
  54. 54.
    Ramirez A, Wong WW, Shulman RJ (2006) Factors regulating gastric emptying in preterm infants. J Pediatr 149: 475–479PubMedCrossRefGoogle Scholar
  55. 55.
    Berseth CL (1992) Effect of early feeding on maturation of the preterm infant’s small intestine. J Pediatr 120: 947–953PubMedCrossRefGoogle Scholar
  56. 56.
    Koenig WJ, Amarnath RP Hench V, Berseth CL (1995) Manometrics for preterm and term infants: a new tool for old questions. Pediatrics 95: 203–206PubMedGoogle Scholar
  57. 57.
    Wang PA, Huang FY (1994) Time of the first defaecation and urination in very low birth weight infants. Eur J Pediatr 153: 279–283PubMedCrossRefGoogle Scholar
  58. 58.
    Nurko S (2005) What’s the value of diagnostic tools in defecation disorders? J Pediatr Gastroenterol Nutr 41 (Suppl 1): S53–S55PubMedCrossRefGoogle Scholar
  59. 59.
    Di LC, Flores AF, Hyman PE (1995) Age-related changes in colon motility. J Pediatr 127: 593–596CrossRefGoogle Scholar
  60. 60.
    Rao SS, Welcher K(1996) Periodic rectal motor activity: the intrinsic colonic gatekeeper? Am J Gastroenterol 91: 890–897Google Scholar
  61. 61.
    Koletzko S, Jesch I, Faus-Kebetaler T et al (1999) Rectal biopsy for diagnosis of intestinal neuronal dysplasia in children: a prospective multicentre study on interobserver variation and clinical outcome. Gut 44: 853–861PubMedCrossRefGoogle Scholar
  62. 62.
    de LF, Voskuijl WP, Omari TI et al (2005) Assessment of the rectoanal inhibitory reflex in preterm infants with delayed meconium passage. J Pediatr Gastroenterol Nutr 40: 434–437CrossRefGoogle Scholar
  63. 63.
    Phillips SF (1997) The growth of knowledge in human digestion and absorption. Gastroenterology 112: 1404–1405PubMedCrossRefGoogle Scholar
  64. 64.
    Hamosh M (1995) Lipid metabolism in pediatric nutrition. Pediatr Clin North Am 42: 839–859PubMedGoogle Scholar
  65. 65.
    Koletzko B, Demmelmair H, Socha P (1998) Nutritional support of infants and children: supply and metabolism of lipids. Baillieres Clin Gastroenterol 12: 671–696PubMedCrossRefGoogle Scholar
  66. 66.
    Kawai T, Fushiki T (2003) Importance of lipolysis in oral cavity for orosensory detection of fat. Am J Physiol Regul Integr Comp Physiol 285: R447–R454PubMedGoogle Scholar
  67. 67.
    Hamosh M (1990) Lingual and gastric lipases. Nutrition 6: 421–428PubMedGoogle Scholar
  68. 68.
    Hamosh M (1987) Lipid metabolism in premature infants. Biol Neonate 52 (Suppl 1): 50–64PubMedCrossRefGoogle Scholar
  69. 69.
    Hernell O, Blackberg L (1994) Human milk bile salt-stimulated li¬pase: functional and molecular aspects. J Pediatr 125 (5 Pt 2): S56 - 61PubMedGoogle Scholar
  70. 70.
    Shamir R, Johnson WJ, Zolfaghari R et al (1995) Role of bile salt-dependent cholesteryl ester hydrolase in the uptake of micellar cholesterol by intestinal cells. Biochemistry 34: 6351–6358PubMedCrossRefGoogle Scholar
  71. 71.
    Ramirez M, Amate L, Gil A (2001) Absorption and distribution of dietary fatty acids from different sources. Early Hum Dev 65: S95–S101PubMedCrossRefGoogle Scholar
  72. 72.
    Schanler RJ (1995) Suitability of human milk for the low-birth- weight infant. Clin Perinatol 22: 207–222PubMedGoogle Scholar
  73. 73.
    Niot I, Poirier H, Tran TT, Besnard P (2009) Intestinal absorption of long-chain fatty acids: evidence and uncertainties. Prog Lipid Res 48: 101–115PubMedCrossRefGoogle Scholar
  74. 74.
    Kennedy K, Fewtrell MS, Morley R et al (1999) Double-blind, ran-domized trial of a synthetic triacylglycerol in formula-fed term infants: effects on stool biochemistry, stool characteristics, and bone mineralization. Am J Clin Nutr 70: 920–927PubMedGoogle Scholar
  75. 75.
    Bracco U (1994) Effect of triglyceride structure on fat absorption. Am J Clin Nutr 60 (Suppl 6): S1002–S1009Google Scholar
  76. 76.
    Thomson AB, Keelan M, Thiesen A et al (2001) Small bowel review: normal physiology, part 1. Dig Dis Sci 46: 2567–2587PubMedCrossRefGoogle Scholar
  77. 77.
    Iqbal J, Hussain M (2009) Intestinal Lipid Absorption. Am J Physiol Endocrinol Metab 296: E1183–E1194PubMedCrossRefGoogle Scholar
  78. 78.
    Stahl A, Hirsch DJ, Gimeno RE et al (1999) Identification of the major intestinal fatty acid transport protein. Mol Cell 4: 299–308PubMedCrossRefGoogle Scholar
  79. 79.
    Thureen P, Heird WC (2005) Protein and energy requirements of the preterm/low birthweight (LBW) infant. Pediatr Res 57 (5 Pt 2): R95–R98CrossRefGoogle Scholar
  80. 80.
    Mouterde O, Dacher JN, Basuyau JP, Mallet E (1992) Gastric secretion in infants. Application to the study of sudden infant death syndrome and apparently life-threatening events. Biol Neonate 62: 15–22PubMedCrossRefGoogle Scholar
  81. 81.
    Kelly EJ, Lagopoulos M, Primrose JN (1993) Immunocytochemical localisation of parietal cells and G cells in the developing human stomach. Gut 34: 1057–1059PubMedCrossRefGoogle Scholar
  82. 82.
    Kelly EJ, Newell SJ, Brownlee KG et al (1993) Gastric acid secretion in preterm infants. Early Hum Dev 35: 215–220PubMedCrossRefGoogle Scholar
  83. 83.
    Lopez-Alonso M, Moya MJ, Cabo JA et al (2006) Twenty-four- hour esophageal impedance-pH monitoring in healthy preterm neonates: rate and characteristics of acid, weakly acidic, and weakly alkaline gastroesophageal reflux. Pediatrics 118: e299–e308PubMedCrossRefGoogle Scholar
  84. 84.
    Kolacek S, Puntis JW, Lloyd DR et al (1990) Ontogeny of pancreatic exocrine function. Arch Dis Child 65: 178–181PubMedCrossRefGoogle Scholar
  85. 85.
    Chowanadisai W, Lonnerdal B (2002) Alpha(1)-antitrypsin and antichymotrypsin in human milk: origin, concentrations, and stability. Am J Clin Nutr 76: 828–833PubMedGoogle Scholar
  86. 86.
    Henderson TR, Hamosh M, Armand M et al (2001) Gastric proteolysis in preterm infants fed mother’s milk or formula. Adv Exp Med Biol 501: 403–408PubMedCrossRefGoogle Scholar
  87. 87.
    Stevens BR, Preston RL (1998) Sodium-dependent amino acid transport is preserved in lyophilized reconstituted apical membranes from intestinal epithelium. Anal Biochem 265: 117–122PubMedCrossRefGoogle Scholar
  88. 88.
    Lichnovsky V, Lojda Z (1992) Early prenatal development of the brush border enzymes in the embryonal intestine. Acta Univ Palacki Olomuc Fac Med 134: 27–31PubMedGoogle Scholar
  89. 89.
    Walker WA (2002) Development of the intestinal mucosal barrier. J Pediatr Gastroenterol Nutr 34 (Suppl 1): S33–S39PubMedCrossRefGoogle Scholar
  90. 90.
    Villa M, Menard D, Semenza G, Mantei N (1992) The expression of lactase enzymatic activity and mRNA in human fetal jejunum. Effect of organ culture and of treatment with hydrocortisone. FEBS Lett 301: 202–206PubMedCrossRefGoogle Scholar
  91. 91.
    Shulman RJ, Wong WW, Smith EO (2005) Influence of changes in lactase activity and small-intestinal mucosal growth on lactose digestion and absorption in preterm infants. Am J Clin Nutr 81: 472–479PubMedGoogle Scholar
  92. 92.
    Kien CL, Heitlinger LA, Li BU, Murray RD (1989) Digestion, absorption, and fermentation of carbohydrates. Semin Perinatol 13: 78–87PubMedGoogle Scholar
  93. 93.
    Lindberg T, Skude G (1982) Amylase in human milk. Pediatrics 70: 235–238PubMedGoogle Scholar
  94. 94.
    Davidson NO, Hausman AM, Ifkovits CA et al (1992) Human intestinal glucose transporter expression and localization of GLUT5. Am J Physiol 262 (3 Pt 1): C795–C800PubMedGoogle Scholar
  95. 95.
    Malo C, Berteloot A (1991) Analysis of kinetic data in transport studies: new insights from kinetic studies of Na(+)-D-glucose cotransport in human intestinal brush-border membrane vesicles using a fast sampling, rapid filtration apparatus. J Membr Biol 122: 127–141PubMedCrossRefGoogle Scholar
  96. 96.
    Malo C (1990) Separation of two distinct Na+/D-glucose cotrans- port systems in the human fetal jejunum by means of their differential specificity for 3-O-methylglucose. Biochim Biophys Acta 1022: 8–16PubMedCrossRefGoogle Scholar
  97. 97.
    Murray RD, Boutton TW, Klein PD et al (1990) Comparative absorption of [13C]glucose and [13C]lactose by premature infants. Am J Clin Nutr 51: 59–66PubMedGoogle Scholar
  98. 98.
    Wong JM, de SR, Kendall CW et al (2006) Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 40: 235–243Google Scholar
  99. 99.
    Schultz SG (2007) From a pump handle to oral rehydration therapy: a model of translational research. Adv Physiol Educ 31: 288–293PubMedCrossRefGoogle Scholar
  100. 100.
    Sherman PM, Mitchell DJ, Cutz E (2004) Neonatal enteropathies: defining the causes of protracted diarrhea of infancy. J Pediatr Gas-troenterol Nutr 38: 16–26CrossRefGoogle Scholar
  101. 101.
    Bar A, Riskin A, Iancu T et al (2007) A newborn infant with protracted diarrhea and metabolic acidosis. J Pediatr 150: 198–201PubMedCrossRefGoogle Scholar
  102. 102.
    Sparks SE (2006) Inherited disorders of glycosylation. Mol Genet Metab 87: 1–7PubMedCrossRefGoogle Scholar
  103. 103.
    Murch SH, Winyard PJ, Koletzko S et al (1996) Congenital enterocyte heparan sulphate deficiency with massive albumin loss, secretory diarrhoea, and malnutrition. Lancet 347: 1299–1301PubMedCrossRefGoogle Scholar
  104. 104.
    Kere J, Lohi H, Hoglund P (1999) Genetic Disorders of Membrane Transport III. Congenital chloride diarrhea. Am J Physiol 276 (1 Pt 1): G7–G13PubMedGoogle Scholar
  105. 105.
    Lohi H, Kujala M, Makela S et al (2002) Functional characterization of three novel tissue-specific anion exchangers SLC26A7, - A8, and -A9. J Biol Chem 277: 14246–14254PubMedCrossRefGoogle Scholar
  106. 106.
    Keller KM, Wirth S, Baumann W et al (1990) Defective jejunal brush border membrane sodium/proton exchange in association with lethal familial protracted diarrhoea. Gut 31: 1156–1158PubMedCrossRefGoogle Scholar
  107. 107.
    Harvey BJ, Alzamora R, Stubbs AK et al (2008) Rapid responses to aldosterone in the kidney and colon. J Steroid Biochem Mol Biol 108: 310–317PubMedCrossRefGoogle Scholar
  108. 108.
    Menard D, Dagenais P, Calvert R (1994) Morphological changes and cellular proliferation in mouse colon during fetal and postnatal development. Anat Rec 238: 349–359PubMedCrossRefGoogle Scholar
  109. 109.
    Bosscher D, Van Caillie-Bertrand M, Robberecht H et al (2001) In vitro availability of calcium, iron, and zinc from first-age infant formulae and human milk. J Pediatr Gastroenterol Nutr 32: 54–58PubMedCrossRefGoogle Scholar
  110. 110.
    Schanler RJ, Rifka M (1994) Calcium, phosphorus and magnesium needs for the low-birth-weight infant. Acta Paediatr 405: 111–116CrossRefGoogle Scholar
  111. 111.
    Greer FR (2001) Do breastfed infants need supplemental vitamins? Pediatr Clin North Am 48: 415–423PubMedCrossRefGoogle Scholar
  112. 112.
    Mimouni FB, Shamir R (2009) Vitamin D requirements in the first year of life. Curr Opin Clin Nutr Metab Care 12: 287–392PubMedCrossRefGoogle Scholar
  113. 113.
    Houghton LA, Vieth R (2006) The case against ergocalciferol (vitamin D2) as a vitamin supplement. Am J Clin Nutr 84: 694 - 697PubMedGoogle Scholar
  114. 114.
    Greer FR (2000) Vitamin metabolism and requirements in the micropremie. Clin Perinatol 27:95–118, viGoogle Scholar
  115. 115.
    Halsted CH (2003) Absorption of water-soluble vitamins. Curr Opin Gastroenterol 19: 113–117PubMedCrossRefGoogle Scholar
  116. 116.
    Bohles H (1997) Antioxidative vitamins in prematurely and maturely born infants. Int J Vitam Nutr Res 67: 321–328PubMedGoogle Scholar
  117. 117.
    Salminen S, Isolauri E (2006) Intestinal colonization, microbiota, and probiotics. J Pediatr 149: S115–S120CrossRefGoogle Scholar
  118. 118.
    Guarner F, Malagelada JR (2003) Gut flora in health and disease. Lancet 361: 512–519PubMedCrossRefGoogle Scholar
  119. 119.
    Caicedo RA, Schanler RJ, Li N, Neu J (2005) The developing intestinal ecosystem: implications for the neonate. Pediatr Res 58: 625–628PubMedCrossRefGoogle Scholar
  120. 120.
    Gewolb IH, Schwalbe RS, Taciak VL et al (1999) Stool microflora in extremely low birthweight infants. Arch Dis Child Fetal Neonatal Ed 80: F167–F173PubMedCrossRefGoogle Scholar
  121. 121.
    Gaynes RP, Edwards JR, Jarvis WR (1996) Nosocomial infections among neonates in high-risk nurseries in the United States. National Nosocomial Infections Surveillance System. Pediatrics 98 (3 Pt 1): 357–361PubMedGoogle Scholar
  122. 122.
    Neu J, Caicedo R (2005) Probiotics: protecting the intestinal ecosystem? J Pediatr 147: 143–146PubMedCrossRefGoogle Scholar
  123. 123.
    Hooper LV, Midtvedt T, Gordon JI (2002) How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr 22: 283–307PubMedCrossRefGoogle Scholar
  124. 124.
    Vorbach C, Capecchi MR, Penninger JM (2006) Evolution of the mammary gland from the innate immune system? Bioessays 28: 606–616PubMedCrossRefGoogle Scholar
  125. 125.
    Garofalo RP, Goldman AS (1999) Expression of functional im-munomodulatory and anti-inflammatory factors in human milk. Clin Perinatol 26: 361–377PubMedGoogle Scholar
  126. 126.
    Chirico G, Marzollo R, Cortinovis S et al (2008) Antiinfective properties of human milk. J Nutr 138: S1801–S1806Google Scholar
  127. 127.
    Beck-Sague CM, Azimi P, Fonseca SN et al (1994) Bloodstream infections in neonatal intensive care unit patients: results of a multicenter study. Pediatr Infect Dis J 13: 1110–1116PubMedGoogle Scholar
  128. 128.
    Louis NA, Hamilton KE, Canny G (2006) Selective induction of mucin-3 by hypoxia in intestinal epithelia. J Cell Biochem 99: 1616–1627PubMedCrossRefGoogle Scholar
  129. 129.
    Pinto D, Clevers H (2005) Wnt control of stem cells and differentiation in the intestinal epithelium. Exp Cell Res 306: 357–363PubMedCrossRefGoogle Scholar
  130. 130.
    Nusrat A, Turner JR, Madara JL (2000) Molecular physiology and pathophysiology of tight junctions. IV. Regulation of tight junctions by extracellular stimuli: nutrients, cytokines, and immune cells. Am J Physiol Gastrointest Liver Physiol 279: G851–G857PubMedGoogle Scholar
  131. 131.
    Hecht G (1999) Innate mechanisms of epithelial host defense: spotlight on intestine. Am J Physiol 277 (3 Pt 1): C351–C358PubMedGoogle Scholar
  132. 132.
    Salzman NH, Underwood MA, Bevins CL (2007) Paneth cells, defensins, and the commensal microbiota: a hypothesis on intimate interplay at the intestinal mucosa. Semin Immunol 19: 70–83PubMedCrossRefGoogle Scholar
  133. 133.
    Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 449: 819–826PubMedCrossRefGoogle Scholar
  134. 134.
    Louis NA, Lin PW (2009) The intestinal immune barrier. NeoReviews 10: e180–e190Google Scholar
  135. 135.
    Neish AS (2009) Microbes in gastrointestinal health and disease. Gastroenterology 136: 65–80PubMedCrossRefGoogle Scholar
  136. 136.
    Fusunyan RD, Nanthakumar NN, Baldeon ME, Walker WA (2001) Evidence for an innate immune response in the immature human intestine: toll-like receptors on fetal enterocytes. Pediatr Res 49: 589–593PubMedCrossRefGoogle Scholar
  137. 137.
    Miller H, Zhang J, Kuolee R et al (2007) Intestinal M cells: the fallible sentinels? World J Gastroenterol 13: 1477–1486PubMedGoogle Scholar
  138. 138.
    Nanthakumar NN, Fusunyan RD, Sanderson I, Walker WA (2000) Inflammation in the developing human intestine: A possible patho-physiologic contribution to necrotizing enterocolitis. Proc Natl Acad Sci USA 97: 6043–6048PubMedCrossRefGoogle Scholar
  139. 139.
    Potsic B, Holliday N, Lewis P et al (2002) Glutamine supplementation and deprivation: effect on artificially reared rat small intestinal morphology. Pediatr Res 52: 430–436PubMedGoogle Scholar
  140. 140.
    DeMarco V, Dyess K, Strauss D et al (1999) Inhibition of glutamine synthetase decreases proliferation of cultured rat intestinal epithelial cells. J Nutr 129: 57–62Google Scholar
  141. 141.
    Li N, Neu J (2009) Glutamine deprivation alters intestinal tight junctions via a PI3-K/Akt mediated pathway in Caco-2 cells. J Nutr 139: 710–714PubMedCrossRefGoogle Scholar
  142. 142.
    Neu J, Roig JC, Meetze WH et al (1997) Enteral glutamine supplementation for very low birth weight infants decreases morbidity. J Pediatr 131: 691–699PubMedCrossRefGoogle Scholar
  143. 143.
    Agostoni C, Carratu B, Boniglia C et al (2000) Free glutamine and glutamic acid increase in human milk through a three-month lactation period. J Pediatr Gastroenterol Nutr 31: 508–512PubMedCrossRefGoogle Scholar
  144. 144.
    Becker RM, Wu G, Galanko JA et al (2000) Reduced serum amino acid concentrations in infants with necrotizing enterocolitis. J Pediatr 137: 785–793PubMedCrossRefGoogle Scholar
  145. 145.
    Shah P, Shah V (2007) Arginine supplementation for prevention of necrotising enterocolitis in preterm infants. Cochrane Database Syst Rev 3:CD004339Google Scholar
  146. 146.
    Tanaka M, Lee K, Martinez-Augustin O (1996) Exogenous nu- cleotides alter the proliferation, differentiation and apoptosis of human small intestinal epithelium. J Nutr 126: 424–433PubMedGoogle Scholar
  147. 147.
    Pickering LK, Granoff DM, Erickson JR et al (1998) Modulation of the immune system by human milk and infant formula contain¬ing nucleotides. Pediatrics 101: 242–249PubMedCrossRefGoogle Scholar
  148. 148.
    Siahanidou T, Mandyla H, Papassotiriou I, Anagnostakis D (2004) Serum lipids in preterm infants fed a formula supplemented with nucleotides. J Pediatr Gastroenterol Nutr 38: 56–60PubMedCrossRefGoogle Scholar
  149. 149.
    Caplan MS, Jilling T (2001) The role of polyunsaturated fatty acid supplementation in intestinal inflammation and neonatal necrotizing enterocolitis. Lipids 36: 1053–1057PubMedCrossRefGoogle Scholar
  150. 150.
    Lu J, Jilling T, Li D, Caplan MS (2007) Polyunsaturated fatty acid supplementation alters proinflammatory gene expression and reduces the incidence of necrotizing enterocolitis in a neonatal rat model. Pediatr Res 61: 427–432PubMedCrossRefGoogle Scholar
  151. 151.
    Heird WC, Lapillonne A (2005) The role of essential fatty acids in development. Annu Rev Nutr 25: 549–71PubMedCrossRefGoogle Scholar
  152. 152.
    Isolauri E (2001) Probiotics in human disease. Am J Clin Nutr 73: S1142–S1146Google Scholar
  153. 153.
    Szajewska H, Skorka A, Ruszczynski M, Gieruszczak-Bialek D (2007) Meta-analysis: Lactobacillus GG for treating acute diarrhoea in children. Aliment Pharmacol Ther 25: 871–881PubMedCrossRefGoogle Scholar
  154. 154.
    Dani C, Biadaioli R, Bertini G et al (2002) Probiotics feeding in prevention of urinary tract infection, bacterial sepsis and necrotizing enterocolitis in preterm infants. A prospective double-blind study. Biol Neonate 82: 103–108Google Scholar
  155. 155.
    Kitajima H, Sumida Y, Tanaka R et al (1997) Early administration of Bifidobacterium breve to preterm infants: randomised controlled trial. Arch Dis Child Fetal Neonatal Ed 76: F101–F107PubMedCrossRefGoogle Scholar
  156. 156.
    Hoyos AB (1999) Reduced incidence of necrotizing enterocolitis associated with enteral administration of Lactobacillus acidophilus and Bifidobacterium infantis to neonates in an intensive care unit. Int J Infect Dis 3: 197–202PubMedCrossRefGoogle Scholar
  157. 157.
    Lin HC, Su BH, Chen AC et al (2005) Oral probiotics reduce the incidence and severity of necrotizing enterocolitis in very low birth weight infants. Pediatrics 115: 1–4PubMedCrossRefGoogle Scholar
  158. 158.
    Lin HC, Hsu CH, Chen HL et al (2008) Oral probiotics prevent necrotizing enterocolitis in very low birth weight preterm infants: a multicenter, randomized, controlled trial. Pediatrics 122: 693–700PubMedCrossRefGoogle Scholar
  159. 159.
    Bin-Nun A, Bromiker R, Wilschanski M et al (2005) Oral probiotics prevent necrotizing enterocolitis in very low birth weight neonates. J Pediatr 147: 192–196PubMedCrossRefGoogle Scholar
  160. 160.
    Deshpande G, Rao S, Patole S, Bulsara M (2010) Updated meta- analysis of probiotics for preventing necrotizing enterocolitis in preterm neonates. Pediatrics 125: 921–930PubMedCrossRefGoogle Scholar
  161. 161.
    Land MH, Rouster-Stevens K, Woods CR (2005) Lactobacillus sepsis associated with probiotic therapy. Pediatrics 115: 178–181PubMedGoogle Scholar
  162. 162.
    Agostoni C, Axelsson I, Braegger C et al (2004) Probiotic bacteria in dietetic products for infants: a commentary by the ESPGHAN Committee on Nutrition. J Pediatr Gastroenterol Nutr 38: 365–374PubMedCrossRefGoogle Scholar
  163. 163.
    Agostoni C, Axelsson I, Goulet O et al (2004) Prebiotic oligosac-charides in dietetic products for infants: a commentary by the ESPGHAN Committee on Nutrition. J Pediatr Gastroenterol Nutr 39: 465–473PubMedCrossRefGoogle Scholar
  164. 164.
    Moro G, Minoli I, Mosca M et al (2002) Dosage-related bifido-genic effects of galacto- and fructooligosaccharides in formula-fed term infants. J Pediatr Gastroenterol Nutr 34: 291–295PubMedCrossRefGoogle Scholar
  165. 165.
    Lidestri M, Agosti M, Marini A, Boehm G (2003) Oligosaccharides might stimulate calcium absorption in formula-fed preterm infants. Acta Paediatr Suppl 91: 91–92PubMedGoogle Scholar
  166. 166.
    Knol J, Boehm G, Lidestri M et al (2005) Increase of faecal bifi- dobacteria due to dietary oligosaccharides induces a reduction of clinically relevant pathogen germs in the faeces of formula-fed preterm infants. Acta Paediatr Suppl 94: 31–33PubMedCrossRefGoogle Scholar
  167. 167.
    Mihatsch WA, Hoegel J, Pohlandt F (2006) Prebiotic oligosaccha- rides reduce stool viscosity and accelerate gastrointestinal transport in preterm infants. Acta Paediatr 95: 843–848PubMedCrossRefGoogle Scholar
  168. 168.
    Riskin A, Hochwald O, Bader D et al (2010) The Effects of Lactu-lose Supplementation to Enteral Feedings in Premature Infants: A Pilot Study. J Pediatr 156: 209–214PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Arieh Riskin
    • 1
  • Carlo Agostoni
  • Raanan Shamir
  1. 1.Department of Neonatology, Bnai Zion Medical Center Rappaport Faculty of Medicine, TechnionInstitute of TechnologyHaifaIsrael

Personalised recommendations