Neonatology pp 226-231 | Cite as

Early Detection of Neonatal Depression and Asphyxia

  • Paolo Biban
  • Davide Silvagni


Perinatal asphyxia is an insult to the fetus or newborn due to hypoxia and/or ischemia, persisting long enough to cause pathological biochemical changes and a variable degree of injury to various organs, including the brain. The effects of hypoxia and ischemia are often difficult to separate clinically. Hypoxia refers to an arterial concentration of oxygen that is less than normal, while ischemia occurs when the blood flow to the cells or organs is insufficient to maintain normal function. In its more severe forms, the impaired gas exchange secondary to asphyxia is also associated with tissue lactic acidosis and hypercapnia [1].


Blood Lactate Concentration Perinatal Asphyxia Base Deficit Neonatal Encephalopathy Electronic Fetal Monitoring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aurora S, Snyder EY, Perinatal asphyxia (1997) In: Cloherty JP, Eichenwald EC, Stark AR (eds) Manual of Neonatal Care, 4th edn. Lippincott, Williams & Wilkins, Philadephia, pp 536–555Google Scholar
  2. 2.
    World Health Organization (2005) The World Health Report 2005. Make every mother and child count.
  3. 3.
    Lawn JE, Cousens S, Zupan J (2005) 4 million neonatal deaths: when? where? Why? Lancet 365:891–900PubMedCrossRefGoogle Scholar
  4. 4.
    Low JA (1997) Intrapartum fetal asphyxia: definition, diagnosis, and classification. Am J Obstet Gynecol 176:957–959PubMedCrossRefGoogle Scholar
  5. 5.
    The Task Force on Cerebral Palsy and Neonatal Asphyxia of the Society of Obstetricians and Gynecologists of Canada (1996) Policy statement (part I). J Soc Obstet Gynecol Can 18:1267–1279Google Scholar
  6. 6.
    Phelan JP, Martin GI, Korst LM (2005) Birth asphyxia and cerebral palsy. Clin Perinatol 32:61–76PubMedCrossRefGoogle Scholar
  7. 7.
    American College of Obstetricians and Gynecologists’ Task Force on Neonatal Encephalopathy and Cerebral Palsy, American Academy of Pediatrics (2003) Neonatal encephalopathy and cerebral palsy: defining the pathogenesis and pathophysiology. Chapter 8: Criteria required to define an acute intrapartum hypoxic event as sufficient to cause cerebral palsy. American College of Obstetricians and Gynecologists, Washington, DCGoogle Scholar
  8. 8.
    Volpe JJ (2008) Hypoxic-ischaemic encephalopathy: clinical aspects. In: Volpe JJ (ed) Neurology of the Newborn, 5th edn. WB Saunders Co, PhiladelphiaGoogle Scholar
  9. 9.
    Levene ML, Kornberg J, Williams TH (1985) The incidence and severity of post-asphyxial encephalopathy in full-term infants. Early Hum Dev 11:21–26PubMedCrossRefGoogle Scholar
  10. 10.
    Sarnat HB, Sarnat MS (1976) Neonatal encephalopathy following fetal distress: a clinical and electroencephalographic study. Arch Neurol 33:696–705PubMedCrossRefGoogle Scholar
  11. 11.
    Shankaran S (2009) Neonatal encephalopathy: treatment with hypothermia. J Neurotrauma 26:437–443PubMedCrossRefGoogle Scholar
  12. 12.
    Perlman JM, Risser R (1996) Can asphyxiated infants at risk for neonatal seizures be rapidly identified by current high-risk markers. Pediatrics 97:456–462PubMedGoogle Scholar
  13. 13.
    Goodwin TM (1999) Clinical implications of perinatal depression. Obstetr Gynecol Clinics North Am 26:711–723CrossRefGoogle Scholar
  14. 14.
    Williams KP, Galerneau F (2003) Intrapartum fetal heart rate patterns in the prediction of neonatal acidemia. Am J Obstet Gynecol 188:820–823PubMedCrossRefGoogle Scholar
  15. 15.
    Larma JD, Silva AM, Holcroft CJ et al (2007) Intrapartum electronic fetal heart rate monitoring and the identification of metabolic acidosis and hypoxic-ischaemic encephalopathy. Am J Obstet Gynecol 197:301.e1–e8CrossRefGoogle Scholar
  16. 16.
    Graham EM, Ruis KA, Hartman AL et al (2008) A systematic review of the role of intrapartum hypoxia-ischaemia in the causation of neonatal encephalopathy. Am J Obstet Gynecol 199:587–595PubMedCrossRefGoogle Scholar
  17. 17.
    Nelson KB, Grether JK (1998) Potentially asphyxiating conditions and spastic cerebral palsy in infants of normal birth weight. Am J Obstet Gynecol 179:507–513PubMedCrossRefGoogle Scholar
  18. 18.
    Glantz JC, Woods JR (2004) Significance of amniotic fluid Meconium. In: Creasy RK, Resnik R, Iams JD (eds) Maternal-fetal medicine: Principles and practice, 5th edn. WB Saunders, PhiladelphiaGoogle Scholar
  19. 19.
    Bretscher J, Saling E (1967) pH values in the human fetus during labor. Am J Obstet Gynecol 97:906–911PubMedGoogle Scholar
  20. 20.
    Kruger K, Hallberg B, Blennow M et al (1999) Predictive value of fetal scalp blood lactate concentration and pH as marker for neurologic disability. Am J Obstet Gynecol 181:1072–1078PubMedCrossRefGoogle Scholar
  21. 21.
    Kruger K, Kublickas M, Westgren M (1998) Lactate in scalp and cord blood from fetuses with ominous fetal heart rate patterns. Obstet Gynecol 92:918–922PubMedCrossRefGoogle Scholar
  22. 22.
    Nordstrom L (2004) Fetal scalp and cord blood lactate. Best Pract Res Clin Obstet Gynaecol 18:467–476PubMedCrossRefGoogle Scholar
  23. 23.
    Carbonne B, Nguyen A (2008) Fetal scalp blood sampling for pH and lactate measurement during labour. J Gynecol Obstet Biol Reprod 375:S65–71Google Scholar
  24. 24.
    Apgar V (1953) A proposal for a new method of evaluation of the newborn infant. Curr Res Anesth Analg 32:260–267PubMedGoogle Scholar
  25. 25.
    Carter BS, McNabb F, Merenstein GB (1998) Prospective validation of a scoring system for predicting neonatal morbidity after acute perinatal asphyxia. J Pediatr 132:619–623PubMedCrossRefGoogle Scholar
  26. 26.
    MacLennan A (1999) A template for defining a causal relation between acute intrapartum events and cerebral palsy: international consensus statement. BMJ 319:1054–1059PubMedCrossRefGoogle Scholar
  27. 27.
    Perlman JM, Risser R (1993) Severe fetal acidemia: neonatal neurologic features and short term outcome. Pediatr Neurol 9:277–282PubMedCrossRefGoogle Scholar
  28. 28.
    Goodwin TM, Belai I, Hernandez P et al (1992) Asphyxial complications in the term newborn with severe umbilical acidemia. Am J Obstet Gynecol 167:1506–1512PubMedGoogle Scholar
  29. 29.
    Nagel HT, Vandenbussche FP, Oepkes D et al (1995) Follow-up of children born with an umbilical arterial blood pH < 7. Am J Obstet Gynecol 173:1758–1764PubMedCrossRefGoogle Scholar
  30. 30.
    Low JA, Lindsay BG, Derrick EJ (1997) Threshold of metabolic acidosis associated with newborn complications. Am J Obstet Gynecol 177:1391–1394PubMedCrossRefGoogle Scholar
  31. 31.
    Shah PS, Raju NV, Beyene J, Perlman M (2003) Recovery of metabolic acidosis in term infants with postasphyxial hypoxic-ischaemic encephalopathy. Acta Paediatr 92:941–947PubMedCrossRefGoogle Scholar
  32. 32.
    da Silva SD, Hennebert N, Denis R, Wayenberg JL (2000) Clinical value of single postnatal lactate measurement after intrapartum asphyxia. Acta Paediatr 89:320–323PubMedCrossRefGoogle Scholar
  33. 33.
    Deshpande SA, Ward Platt MP (1997) Association between blood lactate and acid base status and mortality in ventilated babies. Arch Dis Child Fetal Neonatal Ed 76:F15–F20PubMedCrossRefGoogle Scholar
  34. 34.
    Shah S, Tracy M, Smyth J (2004) Postnatal lactate as an early predictor of short-term outcome after intrapartum asphyxia. J Perinatol 24:16–20PubMedCrossRefGoogle Scholar
  35. 35.
    Murray DM, Boylan GB, Fitzgerald AP (2008)Persistent lactic acidosis in neonatal hypoxic-ischaemic encephalopathy correlates with EEG grade and electrographic seizure burden. Arch Dis Child Fetal Neonatal Ed 93:F183–F186PubMedCrossRefGoogle Scholar
  36. 36.
    Shah PS, Beyene J, To T et al (2006) Postasphyxial hypoxic-ischaemic encephalopathy in neonates: outcome prediction rule within 4 hours of birth. Arch Pediatr Adolesc Med 160:729–736PubMedCrossRefGoogle Scholar
  37. 37.
    American College of Obstetricians and Gynecologists Committee Opinion (1998) Inappropriate uses of the terms fetal distress and birth asphyxia. Int J Gynecol Obstet 61:309–310CrossRefGoogle Scholar
  38. 38.
    Shah P, Riphagen S, Beyene J, Perlman M (2004) Multiorgan dysfunction in infants with post-asphyxial hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed 89:F152–F155PubMedCrossRefGoogle Scholar
  39. 39.
    Huang CC, Wang ST, Chang YC et al (1999) Measurement of the urinary lactate:creatinine ratio for the early identification of newborn infants at risk for hypoxic-ischaemic encephalopathy. N Engl J Med 341:328–335PubMedCrossRefGoogle Scholar
  40. 40.
    Korst LM, Phelan JP, Ahn MO et al (1996) Nucleated red blood cells: An update on the marker for fetal asphyxia. AmJ Obstet Gynecol 176:843–846CrossRefGoogle Scholar
  41. 41.
    Buonocore G, Perrone S, Gioia D et al (1999) Nucleated red blood cell count at birth as an index of perinatal brain damage. Am J Obstet Gynecol 181:1500–1505PubMedCrossRefGoogle Scholar
  42. 42.
    Shalak LF, Laptook AR, Velaphi SC, Perlman JM (2003) Amplitude-integrated electroencephalography coupled with an early neurologic examination enhances prediction of term infants at risk for persistent encephalopathy. Pediatrics 111:351–357PubMedCrossRefGoogle Scholar
  43. 43.
    Gluckman PD, Wyatt JS, Azzopardi D et al (2005) Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet 365:663–670PubMedGoogle Scholar
  44. 44.
    de Vries LS, Hellstrom-Westas L (2005) Role of cerebral function monitoring in the newborn. Arch Dis Child Fetal Neonatal Ed 90:F201–F207PubMedCrossRefGoogle Scholar
  45. 45.
    Eken P, Toet MC, Groenendaal F et al (1995) Predictive value of early neuroimaging, pulsed Doppler and neurophysiology in full term infants with hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed 73:F75–F80PubMedCrossRefGoogle Scholar
  46. 46.
    Barkovich AJ, Miller SP, Bartha A et al (2006) MR imaging, MR spectroscopy, and diffusion tensor imaging of sequential studies in neonates with encephalopathy. AJNR Am J Neuroradiol 27:533–547PubMedGoogle Scholar
  47. 47.
    Rutherford M, Srinivasan L, Dyet L et al (2006) Magnetic resonance imaging in perinatal brain injury: clinical presentation, lesions and outcome. Pediatr Radiol 36:582–592PubMedCrossRefGoogle Scholar
  48. 48.
    Gazzolo D, Frigiola A, Bashir M et al (2009) Diagnostic Accuracy of S100B Urinary Testing at Birth in Full-Term Asphyxiated Newborns to Predict Neonatal Death. PLoS One 4(2):e4298PubMedCrossRefGoogle Scholar
  49. 49.
    Florio P, Luisi S, Moataza B et al (2007) High Urinary Concentrations of Activin A in Asphyxiated Full-Term Newborns with Moderate or Severe Hypoxic Ischaemic Encephalopathy. Clin Chem 53:520–522PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Paolo Biban
    • 1
  • Davide Silvagni
  1. 1.Neonatal and Paediatric Intensive Care Unit, Department of PaediatricsMajor City Hospital, Azienda Ospedaliera IntegrataVeronaItaly

Personalised recommendations