Skip to main content

Retinopathy of Prematurity

  • Chapter
Neonatology

Abstract

Retinopathy of prematurity (ROP) is an ocular disease that occurs in premature infants and affects the blood vessels of the developing retina. It is characterized by the onset of visible vascular abnormalities in the second or third month after birth. The pathogenesis of ROP is related to many causative factors, like low birth weight, low gestational age, supplemental oxygen therapy, and some lines of evidence suggest the role of a genetic component. ROP is mild and undergoes spontaneous regression with no visual sequels in the majority of affected infants. However, progression to advanced ROP does occur in a significant number of infants and can lead to severe visual impairment and even complete unilateral or bilateral blindness in some cases. In general, more than 50% of premature infants weighing less than 1250 g at birth show evidence of ROP, and in approximately 3% of children it undergoes abnormal retinal vascular development, neovascularization, and, in its more severe forms, traction retinal detachment [1]. These injuries may occur despite the aggressive interventions currently available, such as cryotherapy or laser photocoagulation for this sightthreatening disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Csak K, Szabo V, Szabo A et al (2006) Pathogenesis and genetic basis for retinopathy of prematurity. Front Biosci 11: 908–920

    PubMed  CAS  Google Scholar 

  2. Terry TL (1942) Extreme prematurity and fibroplastic overgrowth of persistent vascular sheath behind each crystalline lens. I. Preliminary report. Am J Ophthalmol 25: 203–204

    Google Scholar 

  3. Terry TL (1943) Fibroblastic overgrowth of persistent tunica vasculosa lentis in premature infants. II. Report of cases–Clinical aspects. Arch Ophthalmol 29: 36–53

    Google Scholar 

  4. Jacobson RM, Feinstein AR (1992) Oxygen as a cause of blindness in premature infants: “autopsy” of a decade of errors in clinical epidemiologic research. J Clin Epidemiol 45: 1265–1287

    PubMed  CAS  Google Scholar 

  5. Campbell K (1951) Intensive oxygen therapy as a possible cause of retrolental fibroplasia; a clinical approach. Med J Aust 2: 48–50

    PubMed  CAS  Google Scholar 

  6. Penn JS, Tolman BL, Henry MM (1994) Oxygen-induced retinopathy in the rat: relationship of retinal nonperfusion to subsequent neovascularization. Invest Ophthalmol Vis Sci 35: 3429–3435

    PubMed  CAS  Google Scholar 

  7. Smith LE, Wesolowski E, McLellan A et al (1994) Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 35: 101–111

    PubMed  CAS  Google Scholar 

  8. Committee for Classification of Retinopathy of Prematurity (1984) An international classification of retinopathy of prematurity. Arch Ophthalmol 102: 1130–1134

    Google Scholar 

  9. Chen J, Smith LE (2007) Retinopathy of prematurity. Angiogenesis 10: 133–140

    PubMed  Google Scholar 

  10. Shastry BS, Pendergast SD, Haritzer MK et al (1997) Identification of missense mutations in the Norrie disease gene associated with advanced retinopathy of prematurity. Arch Ophthalmol 115: 651–655

    PubMed  CAS  Google Scholar 

  11. Hellstrom A, Perruzzi C, Ju M et al (2001) Low IGF-I suppresses VEGF-survival signaling in retinal endothelial cells: direct correlation with clinical retinopathy of prematurity. Proc Natl Acad Sci USA 98: 5804–5808

    PubMed  CAS  Google Scholar 

  12. Penn JS, Madan A, Caldwell RB et al (2008) Vascular endothelial growth factor in eye disease. Prog Retin Eye Res 27: 331–371

    PubMed  CAS  Google Scholar 

  13. Johnson LH, Schaffer DB, Quinn GE et al (1982) Vitamin E supplementation and the retinopathy of prematurity. Ann N Y Acad Sci 393: 473–495

    CAS  Google Scholar 

  14. Darlow BA, Buss H, McGill F et al (2005) Vitamin C supplementation in very preterm infants: a randomised controlled trial. Arch Dis Child Fetal Neonatal Ed 90: F117–F122

    PubMed  CAS  Google Scholar 

  15. SanGiovanni JP, Chew EY (2005) The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Prog Retin Eye Res 24: 87–138

    Google Scholar 

  16. Maida JM, Mathers K, Alley CL (2008) Pediatric ophthalmology in the developing world. Curr Opin Ophthalmol 19: 403–408

    PubMed  Google Scholar 

  17. Varughese S, Gilbert C, Pieper C et al (2008) Retinopathy of prematurity in South Africa: an assessment of needs, resources and requirements for screening programmes. Br J Ophthalmol 92: 879–882

    PubMed  CAS  Google Scholar 

  18. Wheatley CM, Dickinson JL, Mackey DA et al (2002) Retinopathy of prematurity: recent advances in our understanding. Br J Ophthalmol 86: 696–700

    PubMed  CAS  Google Scholar 

  19. Lad EM, Hernandez-Boussard T, Morton JM et al (2009) Incidence of retinopathy of prematurity in the United States: 1997 through 2005. Am J Ophthalmol 148: 451–458

    PubMed  Google Scholar 

  20. VISION 2020 (2007) Vision for Children. A global overview of blindness, childhood and VISION 2020. http://www.vision2020.org/documents/WSD07/WSD07_Report_final.pdf

  21. Gilbert C (2005) Worldwide causes of childhood blindness. In: Hartnett ME, Trese M, Capone Jr A et al (eds) Pediatric retina. Lippincott Williams & Wilkins, Philadelphia, pp 315–329

    Google Scholar 

  22. Haddad MAO, Sei M, Sampaio MW et al (2007) Causes of visual impairment in children: a study of 3,210 cases. J Pediatr Ophthalmol Strabismus 44: 232–240

    PubMed  Google Scholar 

  23. Gilbert C, Fielder A, Gordillo L et al (2005) Characteristics of infants with severe retinopathy of prematurity in countries with low, moderate, and high levels of development: implications for screening programs. Pediatrics 115: e518–e525

    PubMed  Google Scholar 

  24. Wilkinson AR, Haines L, Head K et al (2008) UK retinopathy of prematurity guideline. Early Hum Dev 84: 71–74

    PubMed  CAS  Google Scholar 

  25. American Academy of Pediatrics. Section on Ophthalmology, American Academy of Ophthalmology, American Association for Pediatric Ophthalmology and Strabismus (2006) Screening examination of premature infants for retinopathy of prematurity. Pediatrics 117: 572–576

    Google Scholar 

  26. Brown BA, Thach AB, Song JC et al (1998) Retinopathy of prematurity: evaluation of risk factors. Int Ophthalmol 22: 279–283

    PubMed  Google Scholar 

  27. Saunders RA, Donahue ML, Christmann LM et al (1997) Racial variation in retinopathy of prematurity. The Cryotherapy for Retinopathy of Prematurity Cooperative Group. Arch Ophthalmol 115: 604–608

    Google Scholar 

  28. Tadesse M, Dhanireddy R, Mittal M et al (2002) Race, Candida sepsis, and retinopathy of prematurity. Biol Neonate 81: 86–90

    Google Scholar 

  29. Lang DM, Blackledge J, Arnold RW (2005) Is Pacific race a retinopathy of prematurity risk factor? Arch Pediatr Adolesc Med 159: 771–773

    PubMed  Google Scholar 

  30. Arnold RW, Kesler K, Avila E (1994) Susceptibility to retinopathy of prematurity in Alaskan Natives. J Pediatr Ophthalmol Strabismus 31: 192–194

    PubMed  CAS  Google Scholar 

  31. Delport SD, Swanepoel JC, Odendaal PJ et al (2002) Incidence of retinopathy of prematurity in very low birthweight infants born at Kalafong Hospital, Pretoria. S Afr Med J 92: 986–990

    Google Scholar 

  32. Hiraoka M, Berinstein DM, Trese MT et al (2001) Insertion and deletion mutations in the dinucleotide repoeat region of the Norrie disease gene in patients with advanced retinopathy of prematurity. J Hum Genet 46: 178–181

    PubMed  CAS  Google Scholar 

  33. Michaelson IC (1948) The mode of development of the vascular system of the retina with some observations on its significance for certain retinal diseases. Trans Ophthalmol Soc UK 68: 137–180

    Google Scholar 

  34. Smith LE (2004) Pathogenesis of retinopathy of prematurity. Growth Horm IGF Res 14: S140–S144

    PubMed  CAS  Google Scholar 

  35. Alon T, Hemo I, Itin A et al (1995) Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med 1: 1024–1028

    PubMed  CAS  Google Scholar 

  36. Cringle SJ, Yu PK, Su EN, Yu DY (2006) Oxygen distribution and consumption in the developing rat retina. Invest Ophthalmol Vis Sci 47: 4072–4076

    PubMed  Google Scholar 

  37. Antonelli-Orlindge A, Saunders KB, Smith SR, D’Amore PA (1989) An activated form of transforming growth factor beta is produced by cocultures of endothelial cells and pericytes. Proc Natl Acad Sci USA 86: 4544–4548

    Google Scholar 

  38. Stone J, Itin A, Alon T et al (1995) Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor ( VEGF) expression by neuroglia. J Neurosci 15: 4738–4747

    Google Scholar 

  39. Arroe M, Peitersen B (1994) Retinopathy of prematurity: review of a seven-year period in a Danish neonatal intensive care unit. Acta Paediatr 83: 501–505

    PubMed  CAS  Google Scholar 

  40. Gallo J (1993) Perinatal factors associated with retinopathy of prematurity. Acta Pediatr 82: 829–834

    CAS  Google Scholar 

  41. Penn JS (1992) Oxygen induced retinopathy in the rat: A proposed role for peroxidation reactions in the pathogenesis of retinopathy of prematurity. In: Moslen MT, Smith CV (eds) Free radical mechanisms of tissue injury. CRC Press, Boca Raton, FL, pp 177

    Google Scholar 

  42. Tin W, Milligan DW, Pennefather P, Hey E (2001) Pulse oximetry, severe retinopathy, and outcome at one year in babies of less than 28 weeks gestation. Arch Dis Child Fetal Neonatal Ed 84: F106–F110

    PubMed  CAS  Google Scholar 

  43. Chow LC, Wright KW, Sola A (2003) Can changes in clinical practice decrease the incidence of severe retinopathy of prematurity in very low birth weight infants? Pediatrics 111: 339–345

    PubMed  Google Scholar 

  44. Wright KW, Sami D, Thompson L et al (2006) A physiologic reduced oxygen protocol decreases the incidence of threshold retinopathy of prematurity. Trans Am Opthalmol Soc 104: 78–84

    Google Scholar 

  45. VanderVeen DK, Mansfield TA, Eichenwald EC (2006) Lower oxygen saturation alarm limits decrease the severity of retinopathy of prematurity. J AAPOS 10: 445–448

    Google Scholar 

  46. Deulofeut R, Critz A, Adams-Chapman I, Sola A (2006) Avoiding hyperoxia in infants < or = 1250 g is associated with improved short- and long-term outcomes. J Perinatol 26: 700–705

    PubMed  CAS  Google Scholar 

  47. Wallace DK, Veness-Meehan KA, Miller WC (2007) Incidence of severe retinopathy of prematurity before and after a modest reduction in target oxygen saturation levels. J AAPOS 11: 170–174

    Google Scholar 

  48. Sola A, Rogido MR, Deulofeut R (2007) Oxygen as a neonatal health hazard: call for détente in clinical practice. Acta Paediatr 96: 801–812

    PubMed  Google Scholar 

  49. Pournaras CJ, Riva CE, Tsacopoulos M, Strommer K (1989) Diffusion of O2 in the retina of anesthetized miniature pigs in normoxia and hyperoxia. Exp Eye Res 49: 347–360

    PubMed  CAS  Google Scholar 

  50. Yu DY, Alder VA, Cringle SJ et al (1998) Intraretinal oxygen distribution in urethan-induced retinopathy in rats. Am J Physiol 274: H2009–H2017

    PubMed  CAS  Google Scholar 

  51. Chemtob S, Beharry K, Rex J et al (1991) Ibuprofen enhances retinal and choroidal blood flow autoregulation in newborn piglets. Investig Ophthalmol Vis Sci 32: 1799–1807

    CAS  Google Scholar 

  52. Hardy P, Abran D, Li DY et al (1994) Free radicals in autoregulation of retinal and choroidal blood flow in the piglet: Interaction with prostaglandins. Invest Ophthalmol Vis Sci 35: 580–591

    Google Scholar 

  53. Hardy P, Peri KG, Lahaie I et al (1996) Increased nitric oxide synthesis and action preclude choroidal vasoconstriction to hyperoxia in newborn pigs. Circ Res 79: 504–511

    PubMed  CAS  Google Scholar 

  54. Hardy P, Nuyt AM, Abran D et al (1996) Nitric oxide in retinal and choroidal blood flow autoregulation in newborn pigs: interactions with prostaglandins. Pediatr Res 39: 487–493

    PubMed  CAS  Google Scholar 

  55. Ashton N (1957) Experimental retrolental fibroplasia. Ann Rev Med 8: 441–454

    PubMed  CAS  Google Scholar 

  56. Shao Z, Dorfman AL, Seshadri S et al (2011) Choroidal involution is a key component of oxygen induced retinopathy. Invest Ophthalmol Vis Sci [Epub ahead of print]

    Google Scholar 

  57. Gu X, Samuel S, El-Shabrawey M et al (2002) Effects of sustained hyperoxia on revascularization in experimental retinopathy of prematurity. Invest Ophthalmol Vis Sci 43: 496–502

    PubMed  Google Scholar 

  58. Dorfman A, Dembinska O, Chemtob S, Lachapelle P (2008) Early manifestations of postnatal hyperoxia on the retinal structure and function of the neonatal rat. Invest Ophthalmol Vis Sci 49: 458–466

    PubMed  Google Scholar 

  59. Dorfman A, Polosa A, Joly S et al (2009) Functional and structural changes resulting from strain differences in the rat model of oxygen- induced retinopathy. Investig Ophthalmol Vis Sci 50: 2436–2450

    Google Scholar 

  60. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z (1999) Vascular endothelial growth factor ( VEGF) and its receptors. FASEB J 13: 9–22

    Google Scholar 

  61. Ozaki H, Yu AY, Della N et al (1999) Hypoxia inducible factor-1 alpha is increased in ischemic retina: temporal and spatial correlation with VEGF expression. Invest Ophthamol Vis Sci 40: 182–189

    CAS  Google Scholar 

  62. Sapieha P, Joyal JS, Rivera JC et al (2010) Retinopathy of prematurity: understanding ischemic retinal vasculopathies at an extreme of life. J Clin Invest 120: 3022–3032

    PubMed  CAS  Google Scholar 

  63. Holmes JM, Zhang S, Leske DA et al (1998) Carbon dioxide-induced retinopathy in the neonatal rat. Curr Eye Res 17: 608–616

    PubMed  CAS  Google Scholar 

  64. Johnson BA, Weil MH (1991) Redefining ischemia due to circulatory failure as dual defects of oxygen deficits and of carbon dioxide excesses. Crit Care Med 19: 1432–1438

    PubMed  CAS  Google Scholar 

  65. Checchin D, Sennlaub F, Sirinyan M et al (2006) Hypercapnia prevents neovascularization via nitrative stress. Free Radic Biol Med 40: 543–553

    PubMed  CAS  Google Scholar 

  66. Hack M, Taylor HG, Klein N et al (1994) School-age outcomes in children with birth weights under 750 g. N Engl J Med 331: 753–759

    PubMed  CAS  Google Scholar 

  67. Löfqvist C, Andersson E, Sigurdsson J et al (2006) Longitudinal postnatal weight and insulin-like growth factor I measurements in the prediction of retinopathy of prematurity. Arch Ophthalmol 124: 1711–1718

    PubMed  Google Scholar 

  68. Hellström A, Hård AL, Engström E et al (2009) Early weight gain predicts retinopathy in preterm infants: new, simple, efficient approach to screening. Pediatrics 123: e638–e645

    PubMed  Google Scholar 

  69. Wallace DK, Kylstra JA, Greenman DB et al (1998) Significance of isolated neovascular tufts (“Popcorn”) in retinopathy of prematurity. J AAPOS 2: 52–56

    CAS  Google Scholar 

  70. Drack A (2006) Retinopathy of prematurity. Adv Pediatr 53: 211–226

    PubMed  Google Scholar 

  71. Davitt BV, Wallace DK (2009) Plus disease. Surv Ophthalmol 54: 663–670

    Google Scholar 

  72. Sylvester CL (2008) Retinopathy of prematurity. Semin Ophtalmol 23: 318–323

    Google Scholar 

  73. An International Committee for Classification of Retinopathy of Prematurity (2005) The international classification of retinopathy of prematurity. Arch. Ophthalmol 123: 991–999

    Google Scholar 

  74. Cryotherapy for Retinopathy of Prematurity Cooperative Group (1988) Multicenter trial of cryotherapy for retinopathy of prematurity. Preliminary results. Arch Ophthalmol 106: 471–479

    Google Scholar 

  75. Early Treatment For Retinopathy Of Prematurity Cooperative G (2003) Revised indications for the treatment of retinopathy of prematurity: results of the early treatment for retinopathy of prematurity randomized trial. Arch Ophthalmol 121: 1684–1694

    Google Scholar 

  76. Fielder AR, Shaw DE, Robinson J, Ng YK (1992) Natural history of retinopathy of prematurity: a prospective study. Eye (Lond) 6: 233–242

    Google Scholar 

  77. Subhani M, Combs A, Weber P et al (2001) Screening guidelines for retinopathy of prematurity: the need for revision in extremely low birth weight infants. Pediatrics 107: 656–659

    PubMed  CAS  Google Scholar 

  78. Reynolds JD, Dobson V, Quinn GE et al (2002) Evidence-based screening criteria for retinopathy of prematurity: natural history data from the CRYO-ROP and LIGHT-ROP studies. Arch Ophthalmol 120: 1470–1476

    PubMed  Google Scholar 

  79. Good WV, Hardy RJ, Dobson V et al (2005) The incidence and course of retinopathy of prematurity: findings from the early treatment for retinopathy of prematurity study. Pediatrics 116: 15–23

    PubMed  Google Scholar 

  80. Repka MX, Palmer EA, Tung B (2000) Involution of retinopathy of prematurity. Cryotherapy for Retinopathy of Prematurity Cooperative Group. Arch Ophthalmol 118: 645–649

    Google Scholar 

  81. Good WV (2004) Final results of the Early Treatment for Retinopathy of Prematurity (ETROP) randomized trial. Trans Am Ophthalmol Soc 102: 233–248

    PubMed  Google Scholar 

  82. Ells A, Hicks M, Fielden M et al (2005) Severe retinopathy of prematurity: longitudinal observation of disease and screening implications. Eye (Lond) 19: 138–144

    CAS  Google Scholar 

  83. Cryotherapy for Retinopathy of Prematurity Cooperative Group (1994) The natural ocular outcome of premature birth and retinopathy. Status at 1 year. Arch Ophthalmol 112: 903–912

    Google Scholar 

  84. Quinn GE, Dobson V, Repka MX et al (1992) Development of myopia in infants with birth weights less than 1251 grams. The Cryotherapy for Retinopathy of Prematurity Cooperative Group. Ophthalmology 99: 329–340

    Google Scholar 

  85. Davitt BV, Dobson V, Good WV et al (2005) Prevalence of myopia at 9 months in infants with high-risk prethreshold retinopathy of prematurity. Ophthalmology 112: 1564–1568

    PubMed  Google Scholar 

  86. Quinn GE, Dobson V, Davitt BV et al (2008) Progression of myopia and high myopia in the early treatment for retinopathy of prematurity study: findings to 3 years of age. Ophthalmology 115: 1058–1064

    PubMed  Google Scholar 

  87. Davitt BV, Dobson V, Quinn GE et al (2009) Astigmatism in the Early Treatment for Retinopathy Of Prematurity Study: findings to 3 years of age. Ophthalmology 116: 332–339

    PubMed  Google Scholar 

  88. Cryotherapy for Retinopathy of Prematurity Cooperative Group (2001) Effect of retinal ablative therapy for threshold retinopathy of prematurity: results of Goldmann perimetry at the age of 10 years. Arch Ophthalmol 119: 1120–1125

    Google Scholar 

  89. Bremer DL, Palmer EA, Fellows RR et al (1998) Strabismus in premature infants in the first year of life. Cryotherapy for Retinopathy of Prematurity Cooperative Group. Arch Ophthalmol 116: 329–333

    Google Scholar 

  90. Cryotherapy for Retinopathy of Prematurity Cooperative Group (2001) Multicenter Trial of Cryotherapy for Retinopathy of Prematurity: ophthalmological outcomes at 10 years. Arch Ophthalmol 119: 1110–1118

    Google Scholar 

  91. Laser ROP Study G (1994) Laser therapy for retinopathy of prematurity. Arch Ophthalmol 112: 154–156

    Google Scholar 

  92. Kaiser RS, Trese MT (2001) Iris atrophy, cataracts, and hypotony following peripheral ablation for threshold retinopathy of prematurity. Arch Ophthalmol 119: 615–617

    PubMed  CAS  Google Scholar 

  93. Hammer DX, Iftimia NV, Ferguson RD et al (2008) Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study. Invest Ophthalmol Vis Sci 49: 2061–2070

    PubMed  Google Scholar 

  94. Fulton AB, Hansen RM, Petersen RA et al (2001) The rod photoreceptors in retinopathy of prematurity: an electroretinographic study. Arch Ophthalmol 119: 499–505

    PubMed  CAS  Google Scholar 

  95. Fulton AB, Hansen RM (1996) Photoreceptor function in infants and children with a history of mild retinopathy of prematurity. J Opt Soc Am A Opt Image Sci Vis 13: 566–571

    PubMed  CAS  Google Scholar 

  96. Fulton AB, Hansen RM, Moskowitz A (2008) The cone electroretinogram in retinopathy of prematurity. Invest Ophthalmol Vis Sci 49: 814–819

    PubMed  Google Scholar 

  97. Hansen RM, Fulton AB (2000) Background adaptation in children with a history of mild retinopathy of prematurity. Invest Ophthalmol Vis Sci 41: 320–324

    PubMed  CAS  Google Scholar 

  98. Fulton AB, Hansen RM, Moskowitz A et al (2005) Multifocal ERG in subjects with a history of retinopathy of prematurity. Doc Ophthalmol 111: 7–13

    PubMed  Google Scholar 

  99. Ecsedy M, Szamosi A, Karkó C et al (2007) A comparison of macular structure imaged by optical coherence tomography in preterm and full-term children. Invest Ophthalmol Vis Sci 48: 5207–5211

    PubMed  Google Scholar 

  100. O’Connor AR, Wilson CM, Fielder AR (2007) Ophthalmological problems associated with preterm birth. Eye 21: 1254–1260

    PubMed  Google Scholar 

  101. VanderVeen DK, Coats DK, Dobson V et al (2006) Early Treatment for Retinopathy of Prematurity Cooperative Group. Prevalence and course of strabismus in the first year of life for infants with prethreshold retinopathy of prematurity. Arch Ophthalmol 124: 766–773

    Google Scholar 

  102. O’Connor AR, Stephenson TJ, Johnson A et al (2004) Visual function in low birthweight children. Br J Ophthalmol 88: 1149–1153

    PubMed  Google Scholar 

  103. Fulton AB, Hansen RM (1995–1996) Electroretinogram responses and refractive errors in patients with a history of retinopathy prematurity. Doc Ophthalmol 91: 87–100

    Google Scholar 

  104. Section on Ophthalmology American Academy of Pediatrics AAoO, American Association for Pediatric Ophthalmology and Strabismus (2006) Screening examination of premature infants for retinopathy of prematurity. Pediatrics 117: 572–576

    Google Scholar 

  105. Royal College of Paediatrics and Child Health, RCoO, Medicine BAoP (2007) UK Retinopathy of Prematurity Guideline. www. rcophthacuk

    Google Scholar 

  106. Wu C, Petersen RA, VanderVeen DK (2006) RetCam imaging for retinopathy of prematurity screening. J AAPOS 10: 107–111

    CAS  Google Scholar 

  107. Kemper AR, Wallace DK, Quinn GE (2008) Systematic review of digital imaging screening strategies for retinopathy of prematurity. Pediatrics 122: 825–830

    PubMed  Google Scholar 

  108. O’Connor AR, Stewart CE, Singh J et al (2006) Do infants of birth weight less than 1500 g require additional long term ophthalmic follow up? Br J Ophthalmol 90: 451–455

    PubMed  Google Scholar 

  109. Yamashita Y (1972) Studies on retinopathy of prematurity. III. Cryocautery for retinopathy of prematurity. Jpn J Ophthalmol 26: 385–393

    Google Scholar 

  110. Palmer EA, Hardy RJ, Dobson V et al (2005) 15-year outcomes following threshold retinopathy of prematurity: final results from the multicenter trial of cryotherapy for retinopathy of prematurity. Arch. Ophthalmol 123: 311–318

    Google Scholar 

  111. Multicenter Trial of Cryotherapy for Retinopathy of Prematurity (2001) Ophthalmological outcomes at 10 years. Arch. Ophthalmol 119: 1110–1118

    Google Scholar 

  112. McLoone E, O’Keefe M, McLoone S et al (2006) Long term functional and structural outcomes of laser therapy for retinopathy of prematurity. Br J Ophthalmol 90: 754–759

    PubMed  CAS  Google Scholar 

  113. Ospina LH, Lyons CJ, Matsuba C et al (2005) Argon laser photocoagulation for retinopathy of prematurity: long-term outcome. Eye (Lond) 19: 1213–1218

    CAS  Google Scholar 

  114. Yang C, Wang A, Sung C et al (2010) Long-term visual outcomes of laser-treated threshold retinopathy of prematurity: a study of refractive status at 7 years. Eye (Lond) 24: 14 - 20

    Google Scholar 

  115. Rezai KA, Eliott D, Ferrone PJ et al (2005) Near confluent laser photocoagulation for the treatment of threshold retinopathy of prematurity. Arch Ophthalmol 123: 621–626

    PubMed  Google Scholar 

  116. Banach MJ, Ferrone PJ, Trese MT (2000) A comparison of dense versus less dense diode laser photocoagulation patterns for threshold retinopathy of prematurity. Ophthalmology 107: 324–327

    PubMed  CAS  Google Scholar 

  117. Clark D, Mandal K (2008) Treatment of retinopathy of prematurity. Early Hum Dev 84: 95–99

    PubMed  Google Scholar 

  118. Connolly BP, Ng EYJ, McNamara JA et al (2002) A comparison of laser photocoagulation with cryotherapy for threshold retinopathy of prematurity at 10 years: part 2. Refractive outcome. Ophthalmology 109: 936–941

    Google Scholar 

  119. Shalev B, Farr AK, Repka MX (2001) Randomized comparison of diode laser photocoagulation versus cryotherapy for threshold retinopathy of prematurity: seven-year outcome. Am J Ophthalmol 132: 76–80

    PubMed  CAS  Google Scholar 

  120. Laws F, Laws D, Clark D (1997) Cryotherapy and laser treatment for acute retinopathy of prematurity: refractive outcomes, a longitudinal study. Br J Ophthalmol 81: 12–15

    PubMed  CAS  Google Scholar 

  121. Cook A, White S, Batterbury M et al (2008) Ocular growth and refractive error development in premature infants with or without retinopathy of prematurity. Invest Ophthalmol Vis Sci 49: 5199–5207

    PubMed  Google Scholar 

  122. Choi MY, Park IK, Yu YS (2000) Long term refractive outcome in eyes of preterm infants with and without retinopathy of prematurity: comparison of keratometric value, axial length, anterior chamber depth, and lens thickness. Br J Ophthalmol 84: 138–143

    PubMed  CAS  Google Scholar 

  123. Quinn GE, Dobson V, Kivlin J et al (1998) Prevalence of myopia between 3 months and 5 1/2 years in preterm infants with and without retinopathy of prematurity. Cryotherapy for Retinopathy of Prematurity Cooperative Group. Ophthalmology 105: 1292–1300

    Google Scholar 

  124. Micieli JA, Surkont M, Smith AF (2009) A systematic analysis of the off-label use of bevacizumab for severe retinopathy of prematurity. Am J Ophthalmol 148: 536–543

    PubMed  CAS  Google Scholar 

  125. Chung EJ, Kim JH, Ahn HS, Koh HJ (2007) Combination of laser photocoagulation and intravitreal bevacizumab ( Avastin) for aggressive zone I retinopathy of prematurity. Graefes Arch Clin Exp Ophthalmol 245: 1727–1730

    Google Scholar 

  126. Honda S, Hirabayashi H, Tsukahara Y, Negi A (2008) Acute contraction of the proliferative membrane after an intravitreal injection of bevacizumab for advanced retinopathy of prematurity. Graefes Arch Clin Exp Ophthalmol 246: 1061–1063

    PubMed  CAS  Google Scholar 

  127. Kong L, Mintz-Hittner HA, Penland RL et al (2008) Intravitreous bevacizumab as anti-vascular endothelial growth factor therapy for retinopathy of prematurity: a morphologic study. Arch Ophthalmol 126: 1161–1163

    PubMed  Google Scholar 

  128. Shah PK, Narendran V, Tawansy KA et al (2007) Intravitreal bevacizumab ( Avastin) for post laser anterior segment ischemia in aggressive posterior retinopathy of prematurity. Indian J Ophthalmol 55: 75–76

    Google Scholar 

  129. Lalwani GA, Berrocal AM, Murray TG et al (2008) Off-label use of intravitreal bevacizumab (Avastin) for salvage treatment in progressive threshold retinopathy of prematurity. Retina 28 (3 Suppl): S13–S18

    PubMed  Google Scholar 

  130. Travassos A, Teixeira S, Ferreira P et al (2007) Intravitreal bevacizumab in aggressive posterior retinopathy of prematurity. Ophthalmic Surg Lasers Imaging 38: 233–237

    PubMed  Google Scholar 

  131. Mintz-Hittner HA, Kennedy KA, Chuang AZ et al (2011) Efficacy of intravitreal Bevacizumab for Stage 3+ retinopathy of prematurity. N Engl J Med 364: 603–615

    PubMed  CAS  Google Scholar 

  132. Moshfeghi DM, Berrocal AM (2011) Retinopathy of prematurity in the time of bevacizumab: incorporating the BEAT-ROP results into clinical practice. Ophthalmology 118: 1227–1228

    PubMed  Google Scholar 

  133. Hård AL, Hellström A (2011) On the use of antiangiogenetic medications for retinopathy of prematurity. Acta Paediatr 100: 1063–1065

    PubMed  Google Scholar 

  134. Rubaltelli DM, Hirose T (2008) Retinopathy of prematurity update. Int Ophthalmol Clin 48: 225–235

    PubMed  Google Scholar 

  135. Hartnett ME, Maguluri S, Thompson HW et al (2004) Comparison of retinal outcomes after scleral buckle or lens-sparing vitrectomy for stage 4 retinopathy of prematurity. Retina 24: 753–757

    PubMed  Google Scholar 

  136. Roohipoor R, Karkhaneh R, Riazi-Esfahani M et al (2009) Surgical Management in Advanced Stages of Retinopathy of Prematurity; Our Experience. J Ophthal Vision Research 4: 185

    Google Scholar 

  137. Sears JE, Sonnie C (2007) Anatomic success of lens-sparing vitrectomy with and without scleral buckle for stage 4 retinopathy of prematurity. Am J Ophthalmol 143: 810–813

    PubMed  Google Scholar 

  138. Yokoi T, Yokoi T, Kobayashi Y et al (2009) Evaluation of scleral buckling for stage 4A retinopathy of prematurity by fluorescein angiography. Am J Ophthalmol 148: 544–550

    PubMed  Google Scholar 

  139. Tasman W, Patz A, McNamara JA et al (2006) Retinopathy of prematurity: the life of a lifetime disease. Am J Ophthalmol 14: 167–174

    Google Scholar 

  140. Smiddy WE, Loupe DN, Michels RG et al (1989) Refractive changes after scleral buckling surgery. Arch. Ophthalmol 107: 1469–1471

    Google Scholar 

  141. Chow DR, Ferrone PJ, Trese MT (1998) Refractive changes associated with scleral buckling and division in retinopathy of prematurity. Arch Ophthalmol 116: 1446–1448

    PubMed  CAS  Google Scholar 

  142. Capone A, Trese MT (2001) Lens-sparing vitreous surgery for tractional stage 4A retinopathy of prematurity retinal detachments. Ophthalmology 108: 2068–2070

    PubMed  Google Scholar 

  143. Cusick M, Charles MK, Agrón E et al (2006) Anatomical and visual results of vitreoretinal surgery for stage 5 retinopathy of prematurity. Retina 26: 729–735

    PubMed  Google Scholar 

  144. Lakhanpal RR, Fortun JA, Chan-Kai B et al (2006) Lensectomy and vitrectomy with and without intravitreal triamcinolone acetonide for vascularly active stage 5 retinal detachments in retinopathy of prematurity. Retina 26: 736–740

    PubMed  Google Scholar 

  145. Tsukahara Y, Honda S, Imai H et al (2007) Autologous plasminassisted vitrectomy for stage 5 retinopathy of prematurity: a preliminary trial. Am J Ophthalmol 144: 139–141

    PubMed  Google Scholar 

  146. Repka MX, Tung B, Good WV et al (2006) Outcome of eyes developing retinal detachment during the Early Treatment for Retinopathy of Prematurity Study ( ETROP ). Arch Ophthalmol 124: 24–30

    Google Scholar 

  147. Engin KN (2009) Alpha-tocopherol: looking beyond an antioxidant. Molecular Vision 15: 855–860

    PubMed  CAS  Google Scholar 

  148. Nielsen JC, Naash MI, Anderson RE (1998) The regional distribution of vitamins E and C in mature and premature human retinas. Invest Ophthalmol Vis Sci 29: 22–26

    Google Scholar 

  149. Owens WC, Owens EU (1949) Retrolental fibroplasia in premature infants. II. Studies on the prophylaxis of the disease: the use of alpha tocopherol acetate. Am J Ophthalmol 32: 1631–1637

    PubMed  CAS  Google Scholar 

  150. Lanman JT, Guy LP, Dancis J (1954) Retrolental fibroplasia and oxygen therapy. JAMA 155: 223–226

    CAS  Google Scholar 

  151. Kinsey VE (1956) Retrolental fibroplasia: cooperative study of retrolental fibroplasia and the use of oxygen. Arch Ophthalmol 56: 481–543

    CAS  Google Scholar 

  152. Johnson LH, Schaffer DB, Boggs TR (1974) Vitamin E deficiency and retrolental fibroplasia. Am J Clin Nutr 27: 1158–1173

    CAS  Google Scholar 

  153. Hittner HM, Rudolph AJ, Kretzer FL (1984) Suppression of severe retinopathy of prematurity with vitamin E supplementation. Ultrastructural mechanism of clinical efficacy. Ophthalmology 91: 1512–1523

    Google Scholar 

  154. Raju TN, Langenberg P, Bhutani V et al (1997) Vitamin E prophylaxis to reduce retinopathy of prematurity: a reappraisal of published trials. J Pediatr 131: 844–850

    CAS  Google Scholar 

  155. Muller DP (1992) Vitamin E therapy in retinopathy of prematurity. Eye (Lond) 6: 221–225

    Google Scholar 

  156. Schaffer DB, Johnson L, Quinn GE et al (1985) Vitamin E and retinopathy of prematurity: follow-up at one year. Ophthalmol 92: 1005–1022

    CAS  Google Scholar 

  157. Phelps DL, Rosenbaum A, Isenberg SJ et al (1987) Efficacy and safety of tocopherol for preventing retinopathy of prematurity. A randomized, controlled, double-masked trial. Pediatrics 79: 489–500

    Google Scholar 

  158. Kretzer FL, Mehta RS, Johnson AT et al (1984) Vitamin E protects against retinopathy of prematurity through action on spindle cells. Nature 309: 793–795

    CAS  Google Scholar 

  159. Halliwell B (1996) Vitamin C: antioxidant or pro-oxidant in vivo? Free Radic Res 25: 439–454

    PubMed  CAS  Google Scholar 

  160. Streeter ML, Rosso P (1981) Transport mechanisms for ascorbic acid in the human placenta. Am J Clin Nutr 34: 1706–1711

    PubMed  CAS  Google Scholar 

  161. Hamil BM, Munks B, Moyer EZ et al (1947) Vitamin C in the blood and urine of the newborn and in the cord and maternal blood. Am J Dis Child 74: 417–433

    PubMed  CAS  Google Scholar 

  162. Berger TM, Rifai N, Avery ME et al (1996) Vitamin C in premature and full-term human neonates. Redox Rep 2: 257–262

    Google Scholar 

  163. Nutrition Committee, Canadian Paediatric Society (1995) Nutitrion needs and feeding of premature infants. Can Med Assoc J 152: 1765–1785

    Google Scholar 

  164. Greene HL, Smidt LJ (1992) Water-soluble vitamins: C, B1, B2, B6, niacin, pantothenic acid, and biotin. In: Tsang RC, Lucas A, Uauy R et al (eds) Nutritional needs of the preterm infant. Williams and Wilkins, Baltimore, chapter 9

    Google Scholar 

  165. Ingalls TH, Draper R, Teel HM (1938) Vitamin C in human pregnancy and lactation. II. Studies during lactation. Am J Dis Child 56: 1011–1019

    Google Scholar 

  166. Buss IH, McGill F, Darlow BA et al (2001) Vitamin C is reduced in human milk after storage. Acta Paediatr 90: 813–815

    PubMed  CAS  Google Scholar 

  167. Carr A, Frei B (1999) Does vitamin C act as a pro-oxidant under physiological conditions? FASEB J 13: 1007–1024

    CAS  Google Scholar 

  168. Proteggente AR, England TG, Rice-Evans CA et al (2001) Iron supplementation and oxidative damage to DNA in healthy individuals with high plasma ascorbate. Biochem Biophys Res Commun 288: 245–251

    PubMed  CAS  Google Scholar 

  169. Silvers KM, Gibson AT, Powers HJ (1994) High plasma vitamin C concentrations at birth associated with low antioxidant status and poor outcome in premature infants. Arch Dis Child Fetal Neonatal Ed 71: F40–F44

    PubMed  CAS  Google Scholar 

  170. Silvers KM, Gibson AT, Russell JM et al (1998) Antioxidant activity, packed cell transfusions, and outcome in premature infants. Arch Dis Child Fetal Neonatal Ed 78: F124–F129

    Google Scholar 

  171. Moison RM, van Zoeren-Grobben D, Haasnoot AA et al (1995) Early biochemical detection of bronchopulmonary dysplasia ( BPD) in preterm babies. Pediatr Res 37: 343A

    Google Scholar 

  172. Sluis KB, Inder T, Wilkinson A et al (1996) Plasma and endotracheal vitamin C concentrations in premature infants: relationship to outcome measures. Proceedings of the 14th Annual Congress of the Australian Perinatal Society

    Google Scholar 

  173. Ells A, Guemsey DL, Wallace K et al (2010) Severe retinopathy of prematurity associated with FZD4 mutations. Ophthalmic Genet 31: 37–43

    PubMed  CAS  Google Scholar 

  174. Sapieha P, Sirinyan M, Hamel D et al (2008) The succinate receptor GPR91 in neurons has a major role in retinal angiogenesis. Nat Med 14: 1067–1076

    PubMed  CAS  Google Scholar 

  175. Connor KM, SanGiovanni JP, Lofqvist C et al (2007) Increased dietary intake of omega-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nat Med 13: 868–873

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this chapter

Cite this chapter

Rivera, J.C., Duchemin-Kermorvant, E., Dorfman, A., Ospina, L.M., Chemtob, S. (2012). Retinopathy of Prematurity. In: Buonocore, G., Bracci, R., Weindling, M. (eds) Neonatology. Springer, Milano. https://doi.org/10.1007/978-88-470-1405-3_146

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1405-3_146

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1404-6

  • Online ISBN: 978-88-470-1405-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics