Advertisement

Neonatology pp 1208-1215 | Cite as

The Timing of Neonatal Brain Damage

  • Giuseppe Buonocore
  • Serafina Perrone

Abstract

Early abnormalities of brain development and underlying genetic factors can affect brain susceptibility to the injury [1, 2, 3]. Some infants may inherit a predisposition to have significant injury in the event of a normally sublethal insult [4]. These newly identified risk factors for brain damage in different periods make the timing of lesions important for exact diagnosis and prevention. Incidence of neonatal encephalopathy ranges from about 2.0 to 6.0 per 1000 live births [5, 6, 7]. Hypoxic ischemic encephalopathy ranges from about 1.0 to 8.0 per 1000 live births. Epidemiological data shows that 30% of cases of neonatal encepalophaty in developed populations and 60% in developing populations have some evidence of intrapartum hypoxic-ischemia [8].

Keywords

Cerebral Palsy Brain Damage Fetal Growth Restriction Hypoxic Ischemia Encephalopathy Advanced Oxidative Protein Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ambalavanan N, Carlo WA, Shankaran S et al (2006) Predicting outcomes of neonates diagnosed with hypoxemic-ischemic encephalopathy. Pediatrics 118: 2084–2093PubMedCrossRefGoogle Scholar
  2. 2.
    Fily A, Pierrat V, Delporte V et al (2006) Factors associated with neurodevelopmental outcome at 2 years after very preterm birth: the population-based Nord-Pas-de-Calais EPIPAGE cohort. Pediatrics 117: 357–366PubMedCrossRefGoogle Scholar
  3. 3.
    Yager JY, Miller SP (2009) Controversies and advances in neonatal neurology: overview. Introduction. Pediatr Neurol 40: 143–144PubMedCrossRefGoogle Scholar
  4. 4.
    Nelson KB (2005) Neonatal encephalopathy: etiology and outcome. Dev Med Child Neurol 47: 292PubMedCrossRefGoogle Scholar
  5. 5.
    Evans K, Rigby AS, Hamilton P et al (2001) The relationship between neonatal encephalopathy and cerebral palsy: a cohort study. J Obstet Gynecol 21: 114–120CrossRefGoogle Scholar
  6. 6.
    Ellis M, Manandhar N, Manandhar DS, Costello AM (2000) Risk factors for neonatal encephalopathy in Kathmandu, Nepal, a developing country: unmatched case–control study. BMJ 320: 1229–1236PubMedCrossRefGoogle Scholar
  7. 7.
    Badawi N, Kurinczuk JJ, Keogh JM et al (1998): Intrapartum risk factors for newborn encephalopathy: the Western Australian casecontrol study. Br Med J 317: 1554–1558CrossRefGoogle Scholar
  8. 8.
    Kurinczuk JJ, White-Koning M, Badawi N (2010) Epidemiology of neonatal encephalopathy and hypoxic–ischaemic encephalopathy. Early Human Development 86: 329–338PubMedCrossRefGoogle Scholar
  9. 9.
    Shevell MI (2001) The pediatric neurologist as expert witness with particular reference to perinatal asphyxia. Can J Neurol Sci 28: 107–112PubMedGoogle Scholar
  10. 10.
    Machin GA, Ackerman J, Gilbert-Barness E (2000) Abnormal umbilical cord coiling is associated with adverse perinatal outcomes. Pediatr Dev Pathol 3: 462–471PubMedCrossRefGoogle Scholar
  11. 11.
    Baergen RN, Warren CD, Isacson C, Ellenson LH (2001) Early uterine serous carcinoma: clonal origin of extrauterine disease. Int J Gynecol Pathol 20: 214–219PubMedCrossRefGoogle Scholar
  12. 12.
    Redline RW (2006) Placental pathology and cerebral palsy. Clin Perinatol 33: 503–516PubMedCrossRefGoogle Scholar
  13. 13.
    Kraus FT, Acheen VI (1999) Fetal thrombotic vasculopathy in the placenta: cerebral thrombi and infarcts, coagulopathies, and cerebral palsy. Hum Pathol 30: 759–769PubMedCrossRefGoogle Scholar
  14. 14.
    McDonald DG, Kelehan P, McMenamin JB et al (2004) Placental fetal thrombotic vasculopathy is associated with neonatal encephalopathy. Hum Pathol 35: 875–880PubMedCrossRefGoogle Scholar
  15. 15.
    Leviton A, Paneth N, Reuss ML et al (1999) Maternal infection, fetal inflammatory response, and brain damage in very low birth weight infants. Developmental Epidemiology Network Investigators. Pediatr Res 46: 566–575PubMedCrossRefGoogle Scholar
  16. 16.
    Redline RW (2004) Clinical and pathological umbilical cord abnormalities in fetal thrombotic vasculopathy. Hum Pathol 35: 1494–1498PubMedCrossRefGoogle Scholar
  17. 17.
    Redline RW, Faye-Petersen O, Heller D et al (2003) Amniotic infection syndrome: nosology and reproducibility of placental reaction patterns. Pediatr Dev Pathol 6: 435–448PubMedCrossRefGoogle Scholar
  18. 18.
    Altshuler G, Arizawa M, Molnar-Nadasdy G (1992) Meconiuminduced umbilical cord vascular necrosis and ulceration: a potential link between the placenta and poor pregnancy outcome. Obstet Gynecol 79: 760–766PubMedGoogle Scholar
  19. 19.
    Hermansen MC (2001) Nucleated red blood cells in the fetus and newborn. Arch Dis Child Fetal Neonatal Ed 84: F211–F215PubMedCrossRefGoogle Scholar
  20. 20.
    Naeye RL, Lin HM (2001) Determination of the timing of fetal brain damage from hypoxemia-ischemia. Am J Obstet Gynecol 184: 217–224PubMedCrossRefGoogle Scholar
  21. 21.
    Blackwell SC, Hallak M, Hotra JW et al (2004) Timing of fetal nucleated red blood cell count elevation in response to acute hypoxia. Biol Neonate 85: 217–220PubMedCrossRefGoogle Scholar
  22. 22.
    Ogino S, Redline RW (2000) Villous capillary lesions of the placenta: distinctions between chorangioma, chorangiomatosis, and chorangiosis. Hum Pathol 31: 945–954PubMedCrossRefGoogle Scholar
  23. 23.
    Stanek J (1999) Numerical criteria for the diagnosis of placental chorangiosis using CD34 immunostaining. Trophoblast Res 13: 443–452Google Scholar
  24. 24.
    Schifrin BS (2004) The CTG and timing and mechanism of fetal neurological injuries. Best Pract Res Clin Obstet Gynaecol 18: 437–456PubMedCrossRefGoogle Scholar
  25. 25.
    Brand-Niebelschutz S, Saling E (1994) Indication for operative termination of labor on cardiotocography and fetal blood analysis: the reliability of these methods. J Perinat Med 22: 19–27CrossRefGoogle Scholar
  26. 26.
    Rosèn KG, Amer-Wahlin I, Luzietti R, Noren H (2004) Fetal ECG waveform analysis. Best Pract Res Clin Obstet Gynaecol 18: 485–514PubMedCrossRefGoogle Scholar
  27. 27.
    Graves CR (2007) Antepartum fetal surveillance and timing of delivery in the pregnancy complicated by diabetes mellitus. Clin Obstet Gynecol 50: 1007–1013PubMedCrossRefGoogle Scholar
  28. 28.
    Arduini D, Rizzo G (1990) Normal values of Pulsatility Index from fetal vessels: a cross-sectional study on 1556 healthy fetuses. J Perinat Med 18: 165–172PubMedCrossRefGoogle Scholar
  29. 29.
    Dubiel M, Seremak-Mrozikiewicz A, Breborowicz GH et al (2005) Fetal and maternal Doppler velocimetry and cytokines in high-risk pregnancy. J Perinat Med 33: 17–21PubMedCrossRefGoogle Scholar
  30. 30.
    Maunu J, Ekholm E, Parkkola R et al (2007) Antenatal Doppler measurements and early brain injury in very low birth weight infants. J Pediatr 150: 51–56PubMedCrossRefGoogle Scholar
  31. 31.
    Weindling AM, Rochefort MJ, Calcert SA, Fok TF (1985) Developed of cerebral palsy after ultrasonographic detection of periventricular cysts in the newborn. Dev Med Child Neurol 27: 800–806PubMedCrossRefGoogle Scholar
  32. 32.
    Levene MI (1988) Cerebral ultrasound and neurological impairment: telling the future. Arch Dis Child 63: 17–22PubMedCrossRefGoogle Scholar
  33. 33.
    Mathur AM, Neil JJ, McKinstry RC, Inder TE (2008) Transport, monitoring, and successful brain MR imaging in unsedated neonates. Pediatr Radiol 38: 260–264PubMedCrossRefGoogle Scholar
  34. 34.
    Hüppi PS, Dubois J (2006) Diffusion tensor imaging of brain development. Semin Fetal Neonatal Med 11: 489–497PubMedCrossRefGoogle Scholar
  35. 35.
    McQuillen PS, Ferriero DM (2004) Selective vulnerability in the developing central nervous system. Pediatr Neurol 30: 227–235PubMedCrossRefGoogle Scholar
  36. 36.
    Volpe JJ (1996) Subplate neurons–missing link in brain injury of the premature infant? Pediatrics 97: 112–113PubMedGoogle Scholar
  37. 37.
    Zacharia A, Zimine S, Lovblad KO et al (2006) Early assessment of brain maturation by MR imaging segmentation in neonates and premature infants. AJNR Am J Neuroradiol 27: 972–977PubMedGoogle Scholar
  38. 38.
    Inder TE, Warfield SK, Wang H et al (2005) Abnormal cerebral structure is present at term in premature infants. Pediatrics 115: 286–294PubMedCrossRefGoogle Scholar
  39. 39.
    Nosarti C, Rushe TM, Woodruff PW et al (2004) Corpus callosum size and very preterm birth: relationship to neuropsychological outcome. Brain 127 (Pt 9): 2080–2089PubMedCrossRefGoogle Scholar
  40. 40.
    Peterson BS, Vohr B, Staib LH et al (2000) Regional brain volume abnormalities and long-term cognitive outcome in preterm infants. JAMA 284: 1939–1947PubMedCrossRefGoogle Scholar
  41. 41.
    Nosarti C, Al-Asady MH, Frangou S et al (2002) Adolescents who were born very preterm have decreased brain volumes. Brain 125 (Pt 7): 1616–1623PubMedCrossRefGoogle Scholar
  42. 42.
    Neil JJ, Shiran SI, McKinstry RC et al (1998) Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotropy measured by using diffusion tensor MR imaging. Radiology 209: 57–66PubMedGoogle Scholar
  43. 43.
    Deipolyi AR, Mukherjee P, Gill K et al (2005) Comparing microstructural and macrostructural development of the cerebral cortex in premature newborns: diffusion tensor imaging versus cortical gyration. Neuroimage 27: 579–586PubMedCrossRefGoogle Scholar
  44. 44.
    Kroenke CD, Bretthorst GL, Inder TE, Neil JJ (2006) Modeling water diffusion anisotropy within fixed newborn primate brain using Bayesian probability theory. Magn Reson Med 55: 187–197PubMedCrossRefGoogle Scholar
  45. 45.
    Neil JJ, Inder TE (2004) Imaging perinatal brain injury in premature infants. Semin Perinatol 28: 433–443PubMedCrossRefGoogle Scholar
  46. 46.
    Girard N, Gire C, Sigandy S, Porcu G et al (2003) MR imaging of acquired fetal brain disorders. Child Nerv Syst 19: 490–500CrossRefGoogle Scholar
  47. 47.
    Miller SP, Newton N, Ferriero DM et al (2002) Predictors of 30- month outcome after perinatal depression: role of proton MRS and socioeconomic factors. Pediatr Res 52: 71–77PubMedCrossRefGoogle Scholar
  48. 48.
    Roth SC, Baudin J, Cady E et al (1997) Relation of deranged neonatal cerebral oxidative metabolism with neurodevelopmental outcome and head circumference at 4 years. Dev Med Child Neurol 39: 718–725PubMedCrossRefGoogle Scholar
  49. 49.
    Barkovich AJ (2006) A magnetic resonance approach to metabolic disorders in childhood. Rev Neurol 43: S5–S16PubMedGoogle Scholar
  50. 50.
    Watanabe K, Hayakawa F, Okumura A (1999) Neonatal EEG: a powerful tool in the assessment of brain damage in preterm infants. Brain Dev 21: 361–372PubMedCrossRefGoogle Scholar
  51. 51.
    Okumura A, Hayakawa F, Kato T et al (2001) Physical condition of preterm infants with periventricular leukomalacia. Brain Dev 23: 805–809PubMedCrossRefGoogle Scholar
  52. 52.
    Yager JY, Armstrong EA, Miyashita H, Wirrell EC (2002) Prolonged neonatal seizures exacerbate hypoxic-ischemic brain damage: correlation with cerebral energy metabolism and exicitatory amino acid release. Dev Neurosci 24: 367–381PubMedCrossRefGoogle Scholar
  53. 53.
    Buonocore G, Perrone S, Gioia D et al (1999) Nucleated red blood cell count at birth as an index of perinatal brain damage. Am J Obstet Gynecol 181: 1500–1505PubMedCrossRefGoogle Scholar
  54. 54.
    Widness JA, Teramo KA, Clemons GK et al (1986): Temporal response of immunoreactive erythropoietin to acute hypoxemia in fetal sheep. Pediatr Res 20: 15–19PubMedCrossRefGoogle Scholar
  55. 55.
    Vatansever U, Acuna B, Demin AM et al (2002) Nucleated red blood cell counts and erythropoietin levels in high-risk neonates. Pediatr Int 44: 590–595PubMedCrossRefGoogle Scholar
  56. 56.
    Bondurant MC, Lind RN, Koury MJ, Ferguson ME (1985) Control of globin gene transcription by erythropoietin in erythroblasts from Fried virus-infected mice. Mol Cell Biol 5: 675–683PubMedGoogle Scholar
  57. 57.
    Blackwell SC, Refuerzo JS, Wolfe HM et al (2000) The relationship between nucleated red blood cell counts and early-onset neonatal seizures. Am J Obstet Gynecol 182: 1452–1457PubMedCrossRefGoogle Scholar
  58. 58.
    Naeye RL, Russell Localio A (1995) Determining the time before birth when ischemia and hypoxemia initiated cerebral palsy. Obstet Gynecol 86: 713–719PubMedCrossRefGoogle Scholar
  59. 59.
    Saxonhouse MA, Rimsza LM, Christensen RD et al (2003) Effects of anoxia on megakaryocyte progenitors derived from cord blood CD34pos cells. Eur J Haematol 71: 359–365PubMedCrossRefGoogle Scholar
  60. 60.
    American College of Obstetricians and Gynecologists, American Academy of Pediatricians (2003) Criteria required to define an acute intrapartum hypoxic event as sufficient to cause cerebral palsy. In: Van Eerden P, Bernstein PS (eds) Neonatal encephalopathy and cerebral palsy. ACOG, Washington, DC, pp 73–80Google Scholar
  61. 61.
    Graham EM, Ruis KA, Hartman AL et al (2008) A systematic review of the role of intrapartum hypoxia-ischemia in the causation of neonatal encephalopathy. Am J Obstet Gynecol 199: 587–595PubMedCrossRefGoogle Scholar
  62. 62.
    Low JA, Lindasay BG, Derrick EJ (1997) Threshold of metabolic acidosis asssociated with newborn complications. Am J Obstet Gynecol 177: 1391–1394PubMedCrossRefGoogle Scholar
  63. 63.
    Low JA, Galbraith RS, Muir DW et al (1984) Factors associated with motor and cognitive deficits in children after intrapartum fetal hypoxia. Am J Obstet Gynecol 148: 533–539PubMedGoogle Scholar
  64. 64.
    Hagelin A, Leyon J (1998) The effect of labor on the acid-base status of the newborn. Acta Obstet Gynecol Scand 158: 356–361Google Scholar
  65. 65.
    Meyer RS (1975) Four patterns of perinatal brain damage and their conditiones of occurrence in primates. Adv Neurol 10: 223–234Google Scholar
  66. 66.
    Naeye RL (1991) Acute chorioamnionitis and the disorders that produce placental insufficiency. Monogr Pathol 33: 286–307PubMedGoogle Scholar
  67. 67.
    Van Bel F, Walther FJ (1990) Myocardial dysfunction and cerebral blood flow velocity following birth asphyxia. Acta Paediatr Scand 79: 756–762PubMedCrossRefGoogle Scholar
  68. 68.
    Boog G (2004) Microdosage rapide des lactates au sang du cordon et au scalp foetal. Gynécol Obstét Fertil 32: 241–244PubMedCrossRefGoogle Scholar
  69. 69.
    Da Silva S, Hennerbert N, Denis R, Wayenberg JL (2000) Clinical value of a single postnatal lactate measurement after intrapartum asphyxia. Acta Paediatr 89: 320–322PubMedCrossRefGoogle Scholar
  70. 70.
    Chou YH, Tsou Yau KI, Wang PJ (1998) Clinical application of the measurement of cord plasma lactate and pyruvate in the assessment of high-risk neonates. Acta Paediatr 87: 764–768PubMedCrossRefGoogle Scholar
  71. 71.
    Delivoria-Papadopoulos M, Misbra OP (1998) Mechanisms of cerebral injury perinatal asphyxia and strategies for prevention. J Pediatr 132: S30–S34PubMedCrossRefGoogle Scholar
  72. 72.
    Mishra OP, Delivoria-Papadopoulus M (1998) Cellular mechanisms of hypoxic in the developing brain. Brain Res Bull 48: 233–238CrossRefGoogle Scholar
  73. 73.
    Perrone S, Tataranno ML, Negro et al (2010) Early identification of the risk for free radical related diseases in preterm newborns. Early Hum Dev 86: 241–244PubMedCrossRefGoogle Scholar
  74. 74.
    Buonocore G, Perrone S, Longini M et al (2003) Non protein bound iron as predictive marker of neonatal brain damage. Brain 126: 1–7CrossRefGoogle Scholar
  75. 75.
    Yamamoto T, Shibata N, Maramatsu F et al (2002) Oxidative stress in the human fetal brain: an immunohistochemical study. Pediatr Neurol 26: 116–122PubMedCrossRefGoogle Scholar
  76. 76.
    Longini M, Perrone S, Kenanidis A et al (2005) Isoprostanes in amniotic fluid: a predictive marker for fetal growth restriction in pregnancy. Free Radic Biol Med 38: 1537–1541PubMedCrossRefGoogle Scholar
  77. 77.
    Longini M, Perrone S, Vezzosi P et al (2007) Association between oxidative stress in pregnancy and preterm premature rupture of membranes. Clin Biochem 40: 793–797PubMedCrossRefGoogle Scholar
  78. 78.
    Dammann O, Leviton A (2004) Biomarker epidemiology of cerebral palsy. Ann Neurol 55: 158–161PubMedCrossRefGoogle Scholar
  79. 79.
    Kotiranta-Ainamo A, Rautonen J, Rautonen N (2004) Imbalanced cytokine secretion in newborn. Biol Neonate 85: 55–60PubMedCrossRefGoogle Scholar
  80. 80.
    Jun JK, Yoon BH, Romero R et al (2000) Interleukin 6 determinations in cervical fluid have diagnostic and prognostic value in preterm premature rupture of membranes. Am J Obstet Gynecol 183: 868–873PubMedCrossRefGoogle Scholar
  81. 81.
    Wu YW, Colford JM Jr (2000) Chorioamnionitis as a risk factor for cerebral palsy: A meta-analysis. JAMA 284: 1417–1424Google Scholar
  82. 82.
    Impey L, Greenwood C, MacQuillan K et al (2001) Fever in labour and neonatal encephalopathy: a prospective cohort study. Br J Obstet Gynecol 108: 594–597CrossRefGoogle Scholar
  83. 83.
    Kaukola T, Satyaraj E, Patel DD (2004) Cerebral palsy is characterized by protein mediators in cord serum. Ann Neurol 55: 186–194PubMedCrossRefGoogle Scholar
  84. 84.
    Minagawa K, Tsuji Y, Ueda H et al (2002) Possible correlation between high levels of IL-18 in the cord blood of preterm infants and neonatal development of periventricular leukomalacia and cerebral palsy. Cytokine 17: 164–170PubMedCrossRefGoogle Scholar
  85. 85.
    Lorenzl S, De Pasquale G, Segal AZ, Beal MF (2003) Dysregulation of the levels of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in the early phase of cerebral ischemia. Stroke 34: 37–38CrossRefGoogle Scholar
  86. 86.
    Leonardo CC, Pennypacker KR (2009) Neuroinflammation and MMPs: potential therapeutic targets in neonatal hypoxic-ischemic injury. J Neuroinflammation 6: 13PubMedCrossRefGoogle Scholar
  87. 87.
    Rosell A, Ortega- Aznar A, Alvarez-Sabin J et al (2006) Increased brain expression of matrix metalloproteinase- 9 after ischemic and hemorrhagic human stroke. Stroke 37: 1399–1406PubMedCrossRefGoogle Scholar
  88. 88.
    Sunugawa S, Ichiyama T, Honda R et al (2009) Matrix metalloproteinase- 9 and tissue inhibitor of metalloproteinase-1 in perinatal asphyxia. Brain Dev 31: 588–593CrossRefGoogle Scholar
  89. 89.
    Blennow M, Savman K, Ilves P et al (2001) Brain-specific proteins in the cerebrospinal fluid of severely asphyxiated newborn infants. Acta Paediatr 90: 1171–1175PubMedCrossRefGoogle Scholar
  90. 90.
    Fujii EY, Kozuki M, Mu J et al (2004) Correlation of neuron-specific enolase and S100B with histological cerebral damage in fetal sheep after severe asphyxia. Brain Res 1018: 136–140PubMedCrossRefGoogle Scholar
  91. 91.
    Gazzolo D, Vinesi P, Bartocci M et al (1999) Elevated S100 blood level as an early indicator of intraventricular hemorrhage in preterm infants. Correlation with cerebral Doppler velocimetry. J Neurol Sci 170: 32–35PubMedCrossRefGoogle Scholar
  92. 92.
    Gazzolo D, di Iorio R, Marinoni E et al (2002) S100B protein is increased in asphyxiated term infants developing intraventricular hemorrhage. Crit Care Med 30: 1356–1360PubMedCrossRefGoogle Scholar
  93. 93.
    Nagdyman N, Komen W, Ko HK et al (2001) Early biochemical indicators of hypoxic-ischemic encephalopathy after birth asphyxia. Pediatr Res 49: 502–506PubMedCrossRefGoogle Scholar
  94. 94.
    Gazzolo D, Marinoni E, Di Lorio R et al (2006) High maternal blood S100B concentrations in pregnancies complicated by intrauterine growth restriction and intraventricular hemorrhage. Clin Chem 52: 819–826PubMedCrossRefGoogle Scholar
  95. 95.
    Gazzolo D, Bruschettini M, Lituania M et al (2001) Increased urinary S100B protein as an early indicator of intraventricular hemorrhage in preterm infants: correlation with the grade of hemorrhage. Clin Chem 47: 1836–1838PubMedGoogle Scholar
  96. 96.
    Debieve F, Beerlandt S, Hubinont C, Thomas K (2000) Gonadotropins, prolactin, inhibin A, inhibin B, and activin A in human fetal serum from midpregnancy and term pregnancy. J Clin Endocrinol Metab 85: 270–274PubMedCrossRefGoogle Scholar
  97. 97.
    Florio P, Cobellis L, Luisi S et al (2001) Changes in inhibins and activin secretion in healthy and pathological pregnancies. Mol Cell Endocrinol 180: 123–130PubMedCrossRefGoogle Scholar
  98. 98.
    Roberts JM, Copper DW (2001) Pathogenesis and genetics of preeclampsia. Lancet 357: 53–56PubMedCrossRefGoogle Scholar
  99. 99.
    Jenkin G, Ward J, Hooper S et al (2001) Feto-placental hypoxemia regulates the release of fetal activin A and prostaglandin E (2). Endocrinology 142: 963–966Google Scholar
  100. 100.
    Florio P, Perrone S, Luisi S et al (2003) Activin a plasma levels at birth: an index of fetal hypoxia in preterm newborn. Pediatr Res 54: 696–700PubMedCrossRefGoogle Scholar
  101. 101.
    Florio P, Perrone S, Luisi S et al (2006) Increased plasma concentrations of activin a predict intraventricular hemorrhage in preterm newborns. Clin Chem 52: 1516–1521PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Giuseppe Buonocore
    • 1
  • Serafina Perrone
  1. 1.Department of Pediatrics, Obstetrics and Reproductive Medicine, Division of NeonatologyUniversity of SienaSienaItaly

Personalised recommendations