Advertisement

Neonatology pp 1180-1191 | Cite as

Cerebral Hemorrhage

  • Linda S. de Vries

Abstract

In the late 1970s, computed tomography (CT), and shortly afterwards cranial ultrasound (cUS), was used for the first time to visualize intracranial lesions [1]. cUS initially used the temporal bone but soon the anterior fontanelle was preferred as an acoustic window. The first cUS studies used a low resolution linear mechanical sector transducer, limiting the field of view to the lateral ventricles. The adjacent white matter was poorly visualized, until mechanical sector scanning was introduced with a wider angle of insonation. Data collected in the early years is therefore very different from the data that can be obtained today, using high resolution cUS as well as magnetic resonance imaging (MRI). Since the more routine use of neonatal MRI, it has become clear that injury of the vulnerable white matter of the preterm infant is more important than hemorrhages in the germinal matrix and the ventricles (germinal matrix hemorrhage-intraventricular hemorrhage [GMH-IVH]). Lesions that were in the past visualized as GMH-IVH are often associated with subtle injury to the white matter, which can either be entirely overlooked using cUS or underestimated. Long-term outcome data of preterm infants studied in the eighties with cUS therefore need to be interpreted with care. A decline in the incidence of severe white matter lesions, referred to as cystic periventricular leukomalacia (PVL) has been reported [2, 3]. However, although a decline in the overall incidence of GMH-IVH has been reported as well, there appears to have been no decline in the incidence of more severe grades of GMH-IVH and these severe hemorrhagic lesions still have a major impact on neurodevelopmental outcome [2, 4]. Use of additional acoustic windows to the anterior fontanelle, for example the mastoid window, has allowed for the recognition of hemorrhagic lesions of the cerebellum, especially in very immature and extremely low-birth weight infants [5, 6].

Keywords

Parenchymal Hemorrhage Germinal Matrix Venous Infarction Germinal Matrix Hemorrhage Thalamic Hemorrhage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Reference

  1. 1.
    Burstein J, Papile L, Burstein R (1979) Intraventricular hemorrhage in premature newborns: A prospective study with CT. Am J Radiol 132: 631–635Google Scholar
  2. 2.
    Hamrick SE, Miller SP, Leonard C et al (2004) Trends in severe brain injury and neurodevelopmental outcome in premature newborn infants: the role of cystic periventricular leukomalacia. J Pediatr 145: 593–599PubMedCrossRefGoogle Scholar
  3. 3.
    Khwaja O, Volpe JJ (2008) Pathogenesis of cerebral white matter injury of prematurity. Arch Dis Child Fetal Neonatal Ed 93: F153–161PubMedCrossRefGoogle Scholar
  4. 4.
    Batton DG, Holtrop P, Dewitte D et al (1994) Current gestational age-related incidence of major intraventricular hemorrhage. J Pediatr 125: 623–625PubMedCrossRefGoogle Scholar
  5. 5.
    Limperopoulos C, Benson CB, Bassan H et al (2005) Cerebellar hemorrhage in the preterm infant: ultrasonographic findings and risk factors. Pediatrics 116: 717–724PubMedCrossRefGoogle Scholar
  6. 6.
    Steggerda SJ, Leijser LM, Wiggers-de Bruïne FT et al (2009) Cerebellar injury in preterm infants: incidence and findings on US and MR images. Radiology 252: 190–199PubMedCrossRefGoogle Scholar
  7. 7.
    Paneth N, Rudelli R, Kazam E, Monte W (1994) Brain damage in the preterm infant. MacKeith Press, LondonGoogle Scholar
  8. 8.
    Takashima S, Takashi M, Ando Y (1986) Pathogenesis of periventricular white matter haemorrhage in preterm infants. Brain Development 8: 25–30PubMedCrossRefGoogle Scholar
  9. 9.
    Gould SJ, Howard S, Hope PL, Reynolds EO (1987) Periventricular intraparenchymal cerebral haemorrhage in preterm infants: the role of venous infarction. J Pathol 151: 197–202PubMedCrossRefGoogle Scholar
  10. 10.
    Volpe JJ (1989) Intraventricular hemorrhage in the premature infant–Current concepts. Part I. Ann Neurol 25: 3–11PubMedCrossRefGoogle Scholar
  11. 11.
    Moody DM, Brown WR, Challa VR, Block SM (1994) Alkaline phosphatase histochemical staining in the study of germinal matrix hemorrhage and brain vascular morphology in a very-low-birthweight neonate. Pediatr Res 35: 424–430PubMedCrossRefGoogle Scholar
  12. 12.
    Ghazi-Birry HS, Brown WR, Moody DM et al (1997) Human germinal matrix: Venous origin of hemorrhage and vascular characteristics. AJNR Am J Neuroradiol 18: 219–229Google Scholar
  13. 13.
    Pape KE, Wigglesworth JS (1979) Haemorrhage, ischaemia and perinatal brain. SIMP/Heinemann, London, pp 133–148Google Scholar
  14. 14.
    Ment LR, Stewart WB, Ardito TA, Madri JA (1995) Germinal matrix microvascular maturation correlates inversely with the risk period for neonatal intraventricular hemorrhage. Brain Res Dev Brain Res 84: 142–149PubMedCrossRefGoogle Scholar
  15. 15.
    Thorp JA, Jones PG, Clark RH et al (2001) Perinatal factors associated with severe intracranial hemorrhage. Am J Obstet Gynecol 185: 859–862PubMedCrossRefGoogle Scholar
  16. 16.
    Yanowitz TD, Jordan JA, Gilmour CH et al (2002) Hemodynamic disturbances in premature infants born after chorioamnionitis: association with cord blood cytokine concentrations. Pediatr Res 51: 310–316PubMedCrossRefGoogle Scholar
  17. 17.
    Soraisham AS, Singhal N, McMillan DD et al (2009) Canadian Neonatal Network. A multicenter study on the clinical outcome of chorioamnionitis in preterm infants. Am J Obstet Gynecol 372: e1–6Google Scholar
  18. 18.
    Haque KN, Hayes AM, Ahmed Z et al (2008) Caesarean or vaginal delivery for preterm very-low-birth weight ( or =1,250 g) infant: experience from a district general hospital in UK. Arch Gynecol Obstet 277: 207–212PubMedCrossRefGoogle Scholar
  19. 19.
    Herbst A, Källén K (2007) Influence of mode of delivery on neonatal mortality and morbidity in spontaneous preterm breech delivery. Eur J Obstet Gynecol Reprod Biol 133: 25–29PubMedCrossRefGoogle Scholar
  20. 20.
    Mercer JS, Vohr BR, McGrath MM et al (2006) Delayed cord clamping in very preterm infants reduces the incidence of intraventricular hemorrhage and late-onset sepsis: a randomized, controlled trial. Pediatrics 117: 1235–1242PubMedCrossRefGoogle Scholar
  21. 21.
    Rabe H, Reynolds G, Diaz-Rossello J (2008) A systematic review and meta-analysis of a brief delay in clamping the umbilical cord of preterm infants. Neonatology 93: 138–144PubMedCrossRefGoogle Scholar
  22. 22.
    Heuchan AM, Evans N, Henderson Smart DJ, Simson JM (2002). Perinatal risk factors for major intraventricular haemorrhage in the Australian and New Zealand Neonatal Network, 1995-97. Arch Dis Child Fetal Neonatal Ed 86: F86–F90PubMedCrossRefGoogle Scholar
  23. 23.
    Palmer KG, Kronsberg SS, Barton BA (2005) Effect of inborn versus outborn delivery on clinical outcomes in ventilated preterm neonates: secondary results from the NEOPAIN trial. J Perinatol 25: 270–275PubMedCrossRefGoogle Scholar
  24. 24.
    Osborn DA, Evans N, Kluckow M (2003) Hemodynamic and antecedent risk factors of early and late periventricular/intraventricular hemorrhage in premature infants. Pediatrics 112: 33–39PubMedCrossRefGoogle Scholar
  25. 25.
    Tsuji M, Saul P, du Plessis A et al (200) Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants. Pediatrics 106: 625–632Google Scholar
  26. 26.
    Soul JS, Hammer PE, Tsuji M et al (2007) Fluctuating pressurepassivity is common in the cerebral circulation of sick premature infants. Pediatr Res 61: 467–473PubMedCrossRefGoogle Scholar
  27. 27.
    Fabres J, Carlo WA, Phillips V et al (2007) Both extremes of arterial carbon dioxide pressure and the magnitude of fluctuations in arterial carbon dioxide pressure are associated with severe intraventricular hemorrhage in preterm infants. Pediatrics 119: 299–305PubMedCrossRefGoogle Scholar
  28. 28.
    Härtel C, König I, Köster S et al (2006) Genetic polymorphisms of hemostasis genes and primary outcome of very low birth weight infants. Pediatrics 118: 683–689PubMedCrossRefGoogle Scholar
  29. 29.
    Harding DR, Dhamrait S, Whitelaw A et al (2004) Does interleukin- 6 genotype influence cerebral injury or developmental progress after preterm birth? Pediatrics 114: 941–947PubMedCrossRefGoogle Scholar
  30. 30.
    Göpel W, Härtel C, Ahrens P et al (2006) Interleukin-6-174- genotype, sepsis and cerebral injury in very low birth weight infants. Genes Immun 7: 65–68PubMedCrossRefGoogle Scholar
  31. 31.
    de Vries LS, Koopman C, Groenendaal F et al (2009) COL4A1 mutation in two preterm siblings with antenatal onset of parenchymal hemorrhage. Ann Neurol 65: 12–18PubMedCrossRefGoogle Scholar
  32. 32.
    Spinillo A, Gardella B, Preti E (2007) Preeclampsia and brain damage among preterm infants: a changed panorama in a 20-year analysis. Am J Perinatol 24: 101–106PubMedCrossRefGoogle Scholar
  33. 33.
    Barrington KJ, Finer NN (2007) Inhaled nitric oxide for respiratory failure in preterm infants. Cochrane Database Syst Rev 18: CD000509Google Scholar
  34. 34.
    Dolfin T, Skidmore MB, Fong KW et al (1983) Incidence, severity and timing of subependymal and intraventricular hemorrhages in preterm infants born in a perinatal unit as detected by serial realtime ultrasound. Pediatrics 71: 541–546PubMedGoogle Scholar
  35. 35.
    Gleissner M, Jorch G, Avenarius S (2000) Risk factors for intraventricular hemorrhage in a birth cohort of 3721 premature infants. J Perinat Med 28: 104–110PubMedCrossRefGoogle Scholar
  36. 36.
    de Vries LS, Rademaker KJ, Roelants-van Rijn AM et al (2001) Unilateral haemorrhagic parenchymal infarction in the preterm infant. Eur J Pediatr Neurol 5: 139–149CrossRefGoogle Scholar
  37. 37.
    Lemons JA, Bauer CR, Oh W et al (2001) Very low birth weight outcomes of the National Institute of Child health and human development neonatal research network, January 1995 through December 1996. NICHD Neonatal Research Network. Pediatrics 107: E1Google Scholar
  38. 38.
    Larroque B, Marret S, Ancel PY et al (2003) White matter damage and intraventricular hemorrhage in very preterm infants: the EPIPAGE study. J Pediatr 143: 477–483PubMedCrossRefGoogle Scholar
  39. 39.
    Sarkar S, Bhagat I, Dechert R et al (2009) Severe intraventricular hemorrhage in preterm infants: comparison of risk factors and short-term neonatal morbidities between grade 3 and grade 4 intraventricular hemorrhage. Am J Perinatol. 26: 419–424PubMedCrossRefGoogle Scholar
  40. 40.
    Andre P, Thebaud B, Delavaucoupet J et al (2001) Late-onset cystic periventricular leukomalacia in premature infants: a threat until term. Am J Perinatol 18: 79–86PubMedCrossRefGoogle Scholar
  41. 41.
    Volpe JJ (2008) Neonatal neurology, 4th edn. Saunders, PhiladelphiaGoogle Scholar
  42. 42.
    Correa F, Enríquez G, Rosselló J et al (2004) Posterior fontanelle sonography: an acoustic window into the neonatal brain. AJNR Am J Neuroradiol 25: 1274–1282PubMedGoogle Scholar
  43. 43.
    Maalouf EF, Duggan PJ, Counsell SJ et al (2001) Comparison of findings on cranial ultrasound and magnetic resonance imaging in preterm infants. Pediatrics 107: 719–727PubMedCrossRefGoogle Scholar
  44. 44.
    Dudink J, Lequin M, Weisglas-Kuperus N et al (2008) Venous subtypes of preterm periventricular haemorrhagic infarction. Arch Dis Child Fetal Neonatal Ed 93 F201–F206PubMedCrossRefGoogle Scholar
  45. 45.
    Bassan H, Benson CB, Limperopoulos C et al (2006) Ultrasonographic features and severity scoring of periventricular hemorrhagic infarction in relation to risk factors and outcome. Pediatrics 117: 2111–2118PubMedCrossRefGoogle Scholar
  46. 46.
    Bassan H, Limperopoulos C, Visconti K et al (2007) Neurodevelopmental outcome in survivors of periventricular hemorrhagic infarction. Pediatrics 120: 785–792PubMedCrossRefGoogle Scholar
  47. 47.
    Merrill JD, Piecuch RE, Fell SC et al (1998) A new pattern of cerebellar hemorrhages in preterm infants. Pediatrics 102: E62PubMedCrossRefGoogle Scholar
  48. 48.
    Limperopoulos C, Benson CB, Bassan H et al (2005) Cerebellar hemorrhage in the preterm infant: ultrasonographic findings and risk factors. Pediatrics 116: 717–724PubMedCrossRefGoogle Scholar
  49. 49.
    Steggerda SJ, Leijser LM, Wiggers-de Bruïne FT et al (2009) Cerebellar injury in preterm infants: incidence and findings on US and MR images. Radiology 252: 190–199PubMedCrossRefGoogle Scholar
  50. 50.
    Limperopoulos C, Bassan H, Gauvreau K et al (2007) Does cerebellar injury in premature infants contribute to the high prevalence of long-term cognitive, learning, and behavioral disability in survivors? Pediatrics 120: 584–593PubMedCrossRefGoogle Scholar
  51. 51.
    Bodensteiner JB, Johnsen SD (2005) Cerebellar injury in the extremely premature infant: a newly recognized but relatively common outcome. J Child Neurol 20: 139–142PubMedCrossRefGoogle Scholar
  52. 52.
    Messerschmidt A, Fuiko R, Prayer D et al (2008) Disrupted cerebellar development in preterm infants is associated with impaired neurodevelopmental outcome. Eur J Pediatr 12: 455–460CrossRefGoogle Scholar
  53. 53.
    Messerschmidt A, Brugger PC, Boltshauser E et al (2005) Disruption of cerebellar development: potential complication of extreme prematurity. AJNR Am J Neuroradiol 26: 1659–1667PubMedGoogle Scholar
  54. 54.
    Srinivasan L, Allsop J, Counsell SJ et al (2006) Smaller cerebellar volumes in very preterm infants at term-equivalent age are associated with the presence of supratentorial lesions. AJNR Am J Neuroradiol 27: 573–579PubMedGoogle Scholar
  55. 55.
    Olischar M, Klebermass K, Waldhoer T et al (2007) Background patterns and sleep-wake cycles on amplitude-integrated electroencephalography in preterms younger than 30 weeks gestational age with peri-/intraventricular haemorrhage. Acta Paediatr 96: 1743–1750PubMedCrossRefGoogle Scholar
  56. 56.
    Murphy BP, Inder TE, Rooks V, Taylor GA et al (2002) Posthaemorrhagic ventricular dilatation in the premature infant: natural history and predictors of outcome. Arch Dis Child Fetal Neonatal Ed 87: F37–F41PubMedCrossRefGoogle Scholar
  57. 57.
    Levene MI, Starte DR (1981) A longitudinal study of posthaemorrhagic ventricular dilatation in the newborn. Arch Dis Child 56: 905–910PubMedCrossRefGoogle Scholar
  58. 58.
    Davies MW, Swaminathan M, Chuang SI, Betheras FR (2001) Reference ranges for the linear dimensions of the intracranial ventricles in preterm neonates. Arch Dis Child Fetal Neonatol Ed 82:F219– F223Google Scholar
  59. 59.
    Kaiser A, Whitelaw A (1985) Cerebrospinal fluid pressure during posthaemorrhagic ventricular dilatation in newborn. Arch Dis Child 60: 920–924PubMedCrossRefGoogle Scholar
  60. 60.
    Soul JS, Eichenwald E, Walter G et al (2004) CSF removal in infantile posthemorrhagic hydrocephalus results in significant improvement in cerebral hemodynamics. Pediatr Res 55: 872–876PubMedCrossRefGoogle Scholar
  61. 61.
    van Alfenvan der Velden AA, Hopman JC, Klaessens JH et al (2007) Cerebral hemodynamics and oxygenation after serial CSF drainage in infants with PHVD. Brain Dev 29: 623–629Google Scholar
  62. 62.
    Sävman K, Blennow M, Hagberg H et al (2002) Cytokine response in cerebrospinal fluid from preterm infants with posthaemorrhagic ventricular dilatation. Acta Paediatr 91: 1357–1363PubMedCrossRefGoogle Scholar
  63. 63.
    Felderhoff-Mueser U, Buhrer C, Groneck P et al (2003) Soluble Fas (CD95/Apo-1), soluble Fas ligand, and activated caspase 3 in the cerebrospinal fluid of infants with posthemorrhagic and nonhemorrhagic hydrocephalus. Pediatr Res 54: 659–664PubMedCrossRefGoogle Scholar
  64. 64.
    Heep A, Stoffel-Wagner B, Bartmann P et al (2004) Vascular endothelial growth factor and transforming growth factor-beta1 are highly expressed in the cerebrospinal fluid of premature infants with posthemorrhagic hydrocephalus. Pediatr Res 56: 768–774PubMedCrossRefGoogle Scholar
  65. 65.
    Schmitz T, Heep A, Groenendaal F et al (2007) Interleukin-1beta, interleukin-18, and interferon-gamma expression in the cerebrospinal fluid of premature infants with posthemorrhagic hydrocephalus markers of white matter damage? Pediatr Res 61:722– 726PubMedCrossRefGoogle Scholar
  66. 66.
    Ventriculomegaly Trial Group (1994) Randomised trial of early tapping in neonatal posthaemorrhagic ventricular dilatation: results at 30 months. Arch Dis Child 70: F129–F136Google Scholar
  67. 67.
    Kennedy CR, Ayers S, Campbell MJ et al (2001) Randomized, controlled trial of acetazolamide and furosemide in posthemorrhagic ventricular dilation in infancy: follow-up at 1 year. Pediatrics 108: 597–607PubMedCrossRefGoogle Scholar
  68. 68.
    Whitelaw A, Pople I, Cherian S et al (2003) Phase 1 trial of prevention of hydrocephalus after intraventricular hemorrhage in newborn infants by drainage, irrigation and fibrinolytic therapy. Pediatrics 111: 759–765PubMedCrossRefGoogle Scholar
  69. 69.
    Whitelaw A, Evans D, Carter M et al (2007) Randomized clinical trial of prevention of hydrocephalus after intraventricular hemorrhage in preterm infants: brain-washing versus tapping fluid. Pediatrics 119: e1071–e1078PubMedCrossRefGoogle Scholar
  70. 70.
    de Vries LS, Liem KD, van Dijk K et al (2002). Early versus late treatment of posthaemorrhagic ventricular dilatation: results of a retrospective study from five neonatal intensive care units in the Netherlands. Acta Paediatrica 91: 212–217PubMedCrossRefGoogle Scholar
  71. 71.
    Brouwer AJ, Groenendaal F, van Haastert IC et al (2008) Neurodevelopmental outcome of preterm infants with severe intraventricular hemorrhage and therapy for post-hemorrhagic ventricular dilatation. J Pediatr 152: 648–654PubMedCrossRefGoogle Scholar
  72. 72.
    Vohr BR, Garcia-Coll C, Flanagan P, Oh W (1992) Effects of intraventricular hemorrhage and socioeconomic status on perceptual, cognitive, and neurologic status of low birth weight infants at 5 years of age. J Pediatr 121: 280–285PubMedCrossRefGoogle Scholar
  73. 73.
    Vasileiadis GT, Gelman N, Han VK et al (2004) Uncomplicated intraventricular hemorrhage is followed by reduced cortical volume at near-term age. Pediatrics 114: e367–e372PubMedCrossRefGoogle Scholar
  74. 74.
    Patra K, Wilson-Costello D, Taylor HG et al (2006) Grades I-II intraventricular hemorrhage in extremely low birth weight infants: effects on neurodevelopment. J Pediatr 149: 169–173PubMedCrossRefGoogle Scholar
  75. 75.
    Vavasseur C, Slevin M, Donoghue V, Murphy JF (2007) Effect of low grade intraventricular hemorrhage on developmental outcome of preterm infants. J Pediatr 151: e6–e7PubMedGoogle Scholar
  76. 76.
    Kuban K, Sanocka U, Leviton A et al (1999) White matter disorders of prematurity: association with intraventricular hemorrhage and ventriculomegaly. The Developmental Epidemiology Network. J Pediatr 134: 539–546Google Scholar
  77. 77.
    Ment LR, Vohr B, Allan W et al (1999) The etiology and outcome of ventriculomegaly at term in very low birth weight infants. Pediatrics 104: 243–248PubMedCrossRefGoogle Scholar
  78. 78.
    Fernell E, Hagberg G, Hagberg B (1993) Infantile hydrocephalus in preterm, low-birth-weight infants: a nationwide Swedish cohort study 1979-1988. Acta Paediatr 82: 45–48PubMedCrossRefGoogle Scholar
  79. 79.
    Persson EK, Hagberg G, Uvebrant P (2006) Disabilities in children with hydrocephalus a population-based study of children aged between four and twelve years. Neuropediatrics 37: 330–336PubMedCrossRefGoogle Scholar
  80. 80.
    Rademaker KJ, Groenendaal F, Jansen GH et al (1994) Unilateral haemorrhagic parenchymal lesions in the preterm infant: shape, site and prognosis. Acta Paediatr 83: 602–628PubMedCrossRefGoogle Scholar
  81. 81.
    Roze E, Kerstjens JM, Maathuis CG et al (2008) Risk factors for adverse outcome in preterm infants with periventricular hemorrhagic infarction. Pediatrics 122: e46–e52PubMedCrossRefGoogle Scholar
  82. 82.
    Sherlock RL, Synnes AR, Grunau RE et al (2008) Long term outcome after neonatal intraparenchymal echodensities with porencephaly. Arch Dis Child Fetal Neon Ed 93: F127–F131CrossRefGoogle Scholar
  83. 83.
    Roze E, Van Braeckel KN, van der Veere CN (2009) Functional outcome at school age of preterm infants with periventricular hemorrhagic infarction. Pediatrics 123: 1493–1500PubMedCrossRefGoogle Scholar
  84. 84.
    De Vries LS, Groenendaal F, Eken P et al (1999) Asymmetrical myelination of the posterior limb of the internal capsule: an early predictor of hemiplegia. Neuropediatrics 30: 314–319PubMedCrossRefGoogle Scholar
  85. 85.
    Cowan FM, de Vries LS (2005) The internal capsule in neonatal imaging. Semin Fetal Neonatal Med 10: 461–474PubMedCrossRefGoogle Scholar
  86. 86.
    Counsell SJ, Dyet LE, Larkman DJ et al (2007) Thalamo-cortical connectivity in children born preterm mapped using probabilistic magnetic resonance tractography. Neuroimage 34: 896–904PubMedCrossRefGoogle Scholar
  87. 87.
    Staudt M, Braun C, Gerloff C et al (2006) Developing somatosensory projections bypass periventricular brain lesions. Neurology 67: 522–525PubMedCrossRefGoogle Scholar
  88. 88.
    Ment LR, Oh W, Ehrenkranz RA et al (1995) Antenatal steroids, delivery mode, and intraventricular hemorrhage in preterm infants. Am J Obstet Gynecol 172: 795–800PubMedCrossRefGoogle Scholar
  89. 89.
    Roberts D, Dalziel S (2006) Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev 3:CD004454Google Scholar
  90. 90.
    Modi N, Lewis H, Al-Naqeeb N et al (2001) The effects of repeated antenatal glucocorticoid therapy on the brain. Pediatr Res 50:581– 585PubMedCrossRefGoogle Scholar
  91. 91.
    Crowther CA, Harding JE (2007) Repeat doses of prenatal corticosteroids for women at risk of preterm birth for preventing neonatal respiratory disease. Cochrane Database Syst Rev 3:CD003935Google Scholar
  92. 92.
    Baud O, Foix-L’Helias L, Kaminski M et al (1999) Antenatal glucocorticoid treatment and cystic periventricular leukomalacia in very premature infants. N Engl J Med 341: 1190–1196PubMedCrossRefGoogle Scholar
  93. 93.
    Crowther CA, Hiller JE, Doyle LW, Haslam RR (2003) Effect of magnesium sulfate given for neuroprotection before preterm birth. JAMA 290: 2669–2676PubMedCrossRefGoogle Scholar
  94. 94.
    Doyle LW, Crowther CA, Middleton P (2009) Magnesium sulphate for women at risk of preterm birth for neuroprotection of the fetus. Cochrane Database Syst Rev 1:CD004661Google Scholar
  95. 95.
    Morales WJ, Angel JL, O’Brien WF et al (1988) The use of antenatal vitamin K in the prevention of early neonatal intraventricular hemorrhage. Am J Obstet Gynecol 159: 774–779PubMedGoogle Scholar
  96. 96.
    Pomerance JJ, Teal JG, Gogolok JF et al (1987). Maternally administered antenatal vitamin K1: effect on neonatal prothrombin activity, partial thromboplastic time, and intraventricular hemorrhage. Obstet Gynecol 70: 235–241PubMedGoogle Scholar
  97. 97.
    Crowther CA, Henderson-Smart DJ (2003) Phenobarbital prior to preterm birth for preventing neonatal periventricular haemorrhage. Cochrane Database Syst Rev 3:CD000164Google Scholar
  98. 98.
    Whitelaw A, Odd D (2007) Postnatal phenobarbital for the prevention of intraventricular hemorrhage in preterm infants. Cochrane Database Syst Rev 4:CD001691Google Scholar
  99. 99.
    Fowlie PW, Davis PG (2003) Prophylactic indomethacin for preterm infants: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed 88: F464–F466PubMedCrossRefGoogle Scholar
  100. 100.
    Schmidt B, Davis P, Moddeman D et al (2001) Trial of indomethacin prophylaxis in preterm investigators. Long-term effects of indomethacin prophylaxis in extremely-low-birth-weight infants. N Eng J Med 344: 1966–1972CrossRefGoogle Scholar
  101. 101.
    Ment LR, Peterson BS, Meltzer JA et al (2006) A functional magnetic resonance imaging study of the long-term influences of early indomethacin exposure on language processing in the brains of prematurely born children. Pediatrics 118: 961–970PubMedCrossRefGoogle Scholar
  102. 102.
    Dani C, Bertini G, Pezzati M et al (2005) Prophylactic ibuprofen for the prevention of intraventricular hemorrhage among preterm infants: a multicenter, randomized study. Pediatrics 115: 1529–1535PubMedCrossRefGoogle Scholar
  103. 103.
    Wells JT, Ment LR (1995) Prevention of intraventricular haemorrhage in preterm infants. Early Hum Dev 42: 209–233PubMedCrossRefGoogle Scholar
  104. 104.
    Synnes AR, Macnab YC, Qiu Z et al (2006) The Canadian Neonatal Network. Neonatal intensive care unit characteristics affect the incidence of severe intraventricular hemorrhage. Med Care 44: 754–759PubMedCrossRefGoogle Scholar
  105. 105.
    Armstrong-Wells J, Johnston SC, Wu YW et al (2009) Prevalence and predictors of perinatal hemorrhagic stroke: results from the Kaiser pediatric stroke study. Pediatrics 123: 823–828PubMedCrossRefGoogle Scholar
  106. 106.
    Wu YW, Hamrick SEG, Miller SP et al (2003) Intraventricular hemorrhage in term neonates caused by sinovenous thrombosis. Ann Neurol 54: 123–126PubMedCrossRefGoogle Scholar
  107. 107.
    Kersbergen K, de Vries LS, van Straaten HLM et al (2009) Anticoagulation therapy and imaging in neonates with a unilateral thalamic hemorrhage due to cerebral sinovenous thrombosis. Stroke 40: 2754–2760PubMedCrossRefGoogle Scholar
  108. 108.
    Roland EH, Flodmark O, Hill A (1990) Thalamic hemorrhagic with intraventricular hemorrhage in the full term newborn. Pediatrics 85: 737–742PubMedGoogle Scholar
  109. 109.
    Jocelyn LJ, Casiro OG (1992) Neurodevelopmental outcome of term infants with intraventricular hemorrhage. Am J Dis Child 146: 194–197PubMedGoogle Scholar
  110. 110.
    Hofmeyr GJ, Hannah ME (2003) Planned caesarean section for term breech delivery. Cochrane Database Syst Rev 3:CD000166Google Scholar
  111. 111.
    Volpe JJ (ed) (2008) Intracranial hemorrhage: subdural, primary subarachnoid, intracerebellar, intraventricular (term infant), and miscellaneous. In: JJ Volpe (ed) Neurology of the newborn. Saunders, Philadelphia, pp 483–516Google Scholar
  112. 112.
    Hanigan WC, Powell FC, Miller TC, Wright RM (1995) Symptomatic intracranial hemorrhage in full-term infants. Childs Nerv Syst 11: 698–707PubMedCrossRefGoogle Scholar
  113. 113.
    Looney CB, Smith JK, Merck LH (2007) Intracranial hemorrhage in asymptomatic neonates: prevalence on MR images and relationship to obstetric and neonatal risk factors. Radiology 242: 535–541PubMedCrossRefGoogle Scholar
  114. 114.
    Govaert P, Vanhaesebrouck P, de Praeter C (1992) Traumatic neonatal intracranial bleeding and stroke. Arch Dis Child 67: 840–845PubMedCrossRefGoogle Scholar
  115. 115.
    Chamnanvanakij S, Rollins N, Perlman JM (2002) Subdural hematoma in term infants. Pediatr Neurol 26: 301–314PubMedCrossRefGoogle Scholar
  116. 116.
    Uchil D, Arulkumaran S (2003) Neonatal subgaleal hemorrhage and its relationship to delivery by vacuum extraction. Obstet Gynecol Surv 58: 687–693PubMedCrossRefGoogle Scholar
  117. 117.
    Chadwick LM, Pemberton PJ, Kurinczuk JJ (1996) Neonatal subgaleal haematoma: associated risk factors, complications and outcome. J Paediatr Child Health 32: 228–232PubMedCrossRefGoogle Scholar
  118. 118.
    Kilani RA, Wetmore J (2006) Neonatal subgaleal hematoma: presentation and outcome radiological findings and factors associated with mortality. Am J Perinatol 23: 41–48PubMedCrossRefGoogle Scholar
  119. 119.
    Chang HY, Peng CC, Kao HA et al (2007) Neonatal subgaleal hemorrhage: clinical presentation, treatment, and predictors of poor prognosis. Pediatr Int 49: 903–907PubMedCrossRefGoogle Scholar
  120. 120.
    Dale ST, Coleman LT (2002) Neonatal alloimmune thrombocytopenia: antenatal and postnatal imaging findings in the pediatric brain. AJNR Am J Neuroradiol 23: 1457–1465PubMedGoogle Scholar
  121. 121.
    Bussel JB, Zavusky MR, Berkowitz RL, McFarland JG (1997) Fetal alloimmune thrombocytopenia. N Engl J Med 337: 22–26PubMedCrossRefGoogle Scholar
  122. 122.
    Bussel JB, Sola-Visner M (2009) Current approaches to the evaluation and management of the fetus and neonate with immune thrombocytopenia. Semin Perinatol 33: 35–42PubMedCrossRefGoogle Scholar
  123. 123.
    Hardart GE, Fackler JC (1999) Predictors of intracranial hemorrhage during neonatal extracorporeal membrane oxygenation. J Pediatr 134: 156–159PubMedCrossRefGoogle Scholar
  124. 124.
    de Mol AC, Gerrits LC, van Heijst AF, Straatman H (2008) Intravascular volume administration: a contributing risk factor for intracranial hemorrhage during extracorporeal membrane oxygenation? Pediatrics 121: e1599–e1603PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Linda S. de Vries
    • 1
  1. 1.Department of Neonatology, Wilhelmina Children’s HospitalUniversity Medical CenterUtrechtThe Netherlands

Personalised recommendations