Neonatology pp 1173-1179 | Cite as

Neuroprotective Strategies

  • Angela M. Kaindl
  • Géraldine Favrais
  • Pierre Gressens


The mortality of infants, especially premature infants, has decreased remarkably in recent decades, but their morbidity has not followed the path at the same pace. Thus, neurocognitive morbidity, especially following premature birth, is a dominating health care issue. While the development of strategies to improve the neurologic outcome of infants suffering from perinatal brain damage is thereby essential, currently available intervention strategies are limited. Perinatal brain damage is believed to be a multifactorial, multihit process that varies in severity between individuals, affects infants of different genetic backgrounds and occurs at various stages of the physiological developmental program (Fig. 137.1). This said, it becomes clear that the respective pathologies, even following one type of injury, are likely multiple. Patterns of brain lesions depend on developmental stage. Periventricular leucomalacia is particularly frequent in the premature infant, while hypoxicischemic encephalopathy affects predominantly the term infant. The development of novel neuroprotective strategies thereby demands a clear understanding of the pathophysiology of each of the disorders in order to identify readouts or targets/ pathways to test for the efficacy of candidate molecules. Since many developmental processes underlie a fine balance, careful attention needs to be paid to acute and long-term toxic effects. It remains to be elucidated, for example, when a decrease of apoptotic cell death is beneficial or detrimental.


Traumatic Brain Injury Premature Infant Neurologic Outcome Premature Birth Moderate Hypothermia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Perlman JM (2006) Intervention strategies for neonatal hypoxicischemic cerebral injury. Clin Ther 28: 1353–1365PubMedCrossRefGoogle Scholar
  2. 2.
    Nedelcu J, Klein MA, Aguzzi A et al (1999) Biphasic edema after hypoxic-ischemic brain injury in neonatal rats reflects early neuronal and late glial damage. Pediatr Res 46: 297–304PubMedCrossRefGoogle Scholar
  3. 3.
    Candelario-Jalil E, Taheri S, Yang Y et al (2007) Cyclooxygenase inhibition limits blood-brain barrier disruption following intracerebral injection of tumor necrosis factor-alpha in the rat. J Pharmacol Exp Ther 323: 488–498PubMedCrossRefGoogle Scholar
  4. 4.
    Favrais G, Schwendimann L, Gressens P, Lelièvre V (2007) Cyclooxygenase- 2 mediates the sensitizing effects of systemic IL-1-beta on excitotoxic brain lesions in newborn mice. Neurobiol Dis 25: 496–505PubMedCrossRefGoogle Scholar
  5. 5.
    Candelario-Jalil E (2008) Nimesulide as a promising neuroprotectant in brain ischemia: new experimental evidences. Pharmacol Res 57: 266–273PubMedCrossRefGoogle Scholar
  6. 6.
    Doyle LW, Crowther CA, Middleton P et al (2009) Magnesium sulphate for women at risk of preterm birth for neuroprotection of the fetus. Cochrane Database Syst Rev 1:CD004661Google Scholar
  7. 7.
    Marret S, Marpeau L, Zupan-Simunek V et al (2007) Magnesium sulphate given before very-preterm birth to protect infant brain: the randomised controlled PREMAG trial*. BJOG 114: 310–318PubMedGoogle Scholar
  8. 8.
    Stippler M, Fischer MR, Puccio AM et al (2007) Serum and cerebrospinal fluid magnesium in severe traumatic brain injury outcome. J Neurotrauma 24: 1347–1354PubMedCrossRefGoogle Scholar
  9. 9.
    Temkin NR, Anderson GD, Winn HR et al (2007) Magnesium sulfate for neuroprotection after traumatic brain injury: a randomized controlled trial. Lancet Neurol 6: 29–38PubMedCrossRefGoogle Scholar
  10. 10.
    McKee JA, Brewer RP, Macy GE et al (2005) Analysis of the brain bioavailability of peripherally administered magnesium sulfate: A study in humans with acute brain injury undergoing prolonged induced hypermagnesemia. Crit Care Med 33: 661–666Google Scholar
  11. 11.
    Sfaello I, Baud O, Arzimanoglou A, Gressens P (2005) Topiramate prevents excitotoxic damage in the newborn rodent brain. Neurobiol Dis 20: 837–848PubMedCrossRefGoogle Scholar
  12. 12.
    Gunes T, Ozturk MA, Koklu E et al (2007) Effect of allopurinol supplementation on nitric oxide levels in asphyxiated newborns. Pediatr Neurol 36: 17–24PubMedCrossRefGoogle Scholar
  13. 13.
    Chaudhari T, McGuire W (2008) Allopurinol for preventing mortality and morbidity in newborn infants with suspected hypoxic-ischaemic encephalopathy. Cochrane Database Syst Rev 2: CD006817Google Scholar
  14. 14.
    Then SM, Mazlan M, Mat Top G, Wan Ngah WZ (2009) Is vitamin E toxic to neuron cells? Cell Mol Neurobiol 29: 485–496Google Scholar
  15. 15.
    Brion LP, Bell EF, Raghuveer TS (2003) Vitamin E supplementation for prevention of morbidity and mortality in preterm infants. Cochrane Database Syst Rev 4:CD003665Google Scholar
  16. 16.
    Paintlia MK, Paintlia AS, Barbosa E et al (2004) N-acetylcysteine prevents endotoxin-induced degeneration of oligodendrocyte progenitors and hypomyelination in developing rat brain. J Neurosci Res 78: 347–361PubMedCrossRefGoogle Scholar
  17. 17.
    Wang X, Svedin P, Nie C et al (2007) N-acetylcysteine reduces lipopolysaccharide-sensitized hypoxic-ischemic brain injury. Ann Neurol 61: 263–271PubMedCrossRefGoogle Scholar
  18. 18.
    Soghier LM, Brion LP (2006) Cysteine, cystine or N-acetylcysteine supplementation in parenterally fed neonates. Cochrane Database Syst Rev 4:CD004869Google Scholar
  19. 19.
    Husson I, Mesplès B, Bac P et al (2002) Melatoninergic neuroprotection of the murine periventricular white matter against neonatal excitotoxic challenge. Ann Neurol 51: 82–92PubMedCrossRefGoogle Scholar
  20. 20.
    Bouslama M, Renaud J, Olivier P et al (2007) Melatonin prevents learning disorders in brain-lesioned newborn mice. Neuroscience 150: 712–719PubMedCrossRefGoogle Scholar
  21. 21.
    González-Burgos I, Letechipía-Vallejo G, López-Loeza E et al (2007) Long-term study of dendritic spines from hippocampal CA1 pyramidal cells, after neuroprotective melatonin treatment following global cerebral ischemia in rats. Neurosci Lett 423:162– 166Google Scholar
  22. 22.
    Kumral A, Baskin H, Gokmen N et al (2004) Selective inhibition of nitric oxide in hypoxic-ischemic brain model in newborn rats: is it an explanation for the protective role of erythropoietin? Biol Neonate 85: 51–54PubMedCrossRefGoogle Scholar
  23. 23.
    Kumral A, Baskin H, Yesilirmak DC et al (2007) Erythropoietin attenuates lipopolysaccharide-induced white matter injury in the neonatal rat brain. Neonatology 92: 269–278PubMedCrossRefGoogle Scholar
  24. 24.
    Kaindl AM, Sifringer M, Koppelstaetter A et al (2008) Erythropoietin protects the developing brain from hyperoxia-induced cell death and proteome changes. Ann Neurol 64: 523–534PubMedCrossRefGoogle Scholar
  25. 25.
    Xiong Y, Chopp M, Lee CP (2008) Erythropoietin improves brain mitochondrial function in rats after traumatic brain injury. Neurol Res 31: 496–502PubMedCrossRefGoogle Scholar
  26. 26.
    Ohls RK, Ehrenkranz RA, Das A et al (2004) Neurodevelopmental outcome and growth at 18 to 22 months’ corrected age in extremely low birth weight infants treated with early erythropoietin and iron. Pediatrics 114: 1287–1291PubMedCrossRefGoogle Scholar
  27. 27.
    Thoresen M (2000) Cooling the newborn after asphyxia–physiological and experimental background and its clinical use. Semin Neonatol 5: 61–73PubMedCrossRefGoogle Scholar
  28. 28.
    Jacobs S, Hunt R, Tarnow-Mordi W et al (2007) Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst Rev 4:CD003311Google Scholar
  29. 29.
    Vawda R, Woodbury J, Covey M et al (2007) Stem cell therapies for perinatal brain injuries. Semin Fetal Neonatal Med 12: 259–272PubMedCrossRefGoogle Scholar
  30. 30.
    Vink R, Nimmo AJ (2009) Multifunctional drugs for head injury. Neurotherapeutics 6: 28–42PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Angela M. Kaindl
  • Géraldine Favrais
  • Pierre Gressens
    • 1
  1. 1.Inserm U676, and Paris 7 UniversityRobert Debré HospitalParisFrance

Personalised recommendations