Neonatology pp 1160-1172 | Cite as

Clinical Aspects and Treatment of the Hypoxic-Ischemic Syndrome

  • Floris Groenendaal
  • Frank van Bel


In the Western world, perinatal asphyxia is still a relatively common phenomenon in perinatal care. Since differences in causes and patterns of brain injury following perinatal asphyxia exist between full-term and preterm neonates, this chapter will focus on full-term neonates.


Cerebral Palsy Apgar Score Perinatal Asphyxia Fetal Hypoxia Neonatal Encephalopathy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hull J, Dodd KL (1992) Falling incidence of hypoxic-ischaemic encephalopathy in term infants. Br J Obstet Gynaecol 99: 386–391PubMedGoogle Scholar
  2. 2.
    Smith J, Wells L, Dodd K (2000) The continuing fall in incidence of hypoxic-ischaemic encephalopathy in term infants. BJOG 107: 461–466PubMedGoogle Scholar
  3. 3.
    Casey BM, McIntire DD, Leveno KJ (2001) The continuing value of the Apgar score for the assessment of newborn infants. N Engl J Med 344: 467–471PubMedGoogle Scholar
  4. 4.
    Cowan F, Rutherford M, Groenendaal F et al (2003) Origin and timing of brain lesions in term infants with neonatal encephalopathy. Lancet 361: 736–742PubMedGoogle Scholar
  5. 5.
    Squier W (2002) Acquired damage to the developing brain: timing and causation. Oxford University Press/Hodder Arnold Publication, OxfordGoogle Scholar
  6. 6.
    O’Brien MJ, Ash JM, Gilday DL (1979) Radionuclide brain scanning in perinatal hypoxia/ischemia. Dev Med Child Neurol 21: 161Google Scholar
  7. 7.
    Volpe JJ, Herscovitch P, Perlman JM et al (1985) Positron emission tomography in the asphyxiated term newborn: parasagittal impairment of cerebral blood flow. Ann Neurol 17: 287–296PubMedGoogle Scholar
  8. 8.
    Groenendaal F, de Vries LS (2005) Watershed infarcts in the full term neonatal brain. Arch Dis Child Fetal Neonatal Ed 90: F488PubMedGoogle Scholar
  9. 9.
    Apgar V (1953) A proposal for a new method of evaluation of the newborn infant. Curr Res Anesth Analg 32: 260–267PubMedGoogle Scholar
  10. 10.
    Carter BS, Haverkamp AD, Merenstein GB (1993) The definition of acute perinatal asphyxia. Clin Perinatol 20: 287–304PubMedGoogle Scholar
  11. 11.
    Chou YH, Tsou Yau KI, Wang PJ (1998) Clinical application of the measurement of cord plasma lactate and pyruvate in the assessment of high-risk neonates. Acta Paediatr 87: 764–768PubMedGoogle Scholar
  12. 12.
    Meis PJ, Hall M III, Marshall JR et al (1978) Meconium passage: a new classification for risk assessment during labor. Am J Obstet Gynecol 131: 509–513PubMedGoogle Scholar
  13. 13.
    Low JA, Galbraith RS, Muir DW et al (1984) Factors associated with motor and cognitive deficits in children after intrapartum fetal hypoxia. Am J Obstet Gynecol 148: 533–539PubMedGoogle Scholar
  14. 14.
    Walther FJ, Siassi B, Ramadan NA et al (1985) Cardiac output in newborn infants with transient myocardial dysfunction. J Pediatr 107: 781–785PubMedGoogle Scholar
  15. 15.
    Goodwin TM, Belai I, Hernandez P et al (1992) Asphyxial complications in the term newborn with severe umbilical acidemia. Am J Obstet Gynecol 167: 1506–1512PubMedGoogle Scholar
  16. 16.
    Perlman JM, Tack ED, Martin T et al (1989) Acute systemic organ injury in term infants after asphyxia. Am J Dis Child 143: 617–620PubMedGoogle Scholar
  17. 17.
    Volpe JJ (2008) Neurology of the newborn, 5th edn. Saunders Elsevier, PhiladelphiaGoogle Scholar
  18. 18.
    Sasidharan P (1992) Breathing pattern abnormalities in full term asphyxiated newborn infants. Arch Dis Child 67: 440–442PubMedGoogle Scholar
  19. 19.
    Clancy R, Malin S, Laraque D et al (1985) Focal motor seizures heralding stroke in full-term neonates. Am J Dis Child 139: 601–606PubMedGoogle Scholar
  20. 20.
    Levy SR, Abroms IF, Marshall PC et al (1985) Seizures and cerebral infarction in the full-term newborn. Ann Neurol 17: 366–370PubMedGoogle Scholar
  21. 21.
    Rollins NK, Morriss MC, Evans D et al (1994) The role of early MR in the evaluation of the term infant with seizures. AJNR Am J Neuroradiol 15: 239–248PubMedGoogle Scholar
  22. 22.
    Jayashree G, Dutta AK, Sarna MS et al (1991) Acute renal failure in asphyxiated newborns. Indian Pediatr 28: 19–23PubMedGoogle Scholar
  23. 23.
    Van Bel F, Walther FJ (1990) Myocardial dysfunction and cerebral blood flow velocity following birth asphyxia. Acta Paediatr Scand 79: 756–762PubMedGoogle Scholar
  24. 24.
    Barnett CP, Perlman M, Ekert PG (1997) Clinicopathological correlations in postasphyxial organ damage: a donor organ perspective. Pediatrics 99: 797–799PubMedGoogle Scholar
  25. 25.
    Sarnat HB, Sarnat MS (1976) Neonatal encephalopathy following fetal distress; a clinical and electroencephalographic study. ArchGoogle Scholar
  26. 26.
    Scott H (1976) Outcome of very severe birth asphyxia. Arch Dis Child 51: 712–716PubMedGoogle Scholar
  27. 27.
    Hope PL, Costello AMdL, Cady EB et al (1984) Cerebral energy metabolism studied with phosphorous NMR spectroscopy in normal and birth asphyxiated infants. Lancet 8399: 366–370Google Scholar
  28. 28.
    Lorek A, Takei Y, Cady EB et al (1994) Delayed (“secondary”) cerebral energy failure after acute hypoxia-ischemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic resonance spectroscopy. Pediatr Res 36: 699–706PubMedGoogle Scholar
  29. 29.
    Brown JK, Purvis RJ, Forfar JO et al (1974) Neurological aspects of perinatal asphyxia. Dev Med Child Neurol 16: 567–580PubMedGoogle Scholar
  30. 30.
    Fenichel GM (1983) Hypoxic-ischemic encephalopathy in the newborn. Arch Neurol 40: 261–266PubMedGoogle Scholar
  31. 31.
    Levene MI, Sands C, Grindulis H et al (1986) Comparison of two methods of predicting outcome in perinatal asphyxia. Lancet 1: 67–69PubMedGoogle Scholar
  32. 32.
    Archer LN, Levene MI, Evans DH (1986) Cerebral artery Doppler ultrasonography for prediction of outcome after perinatal asphyxia. Lancet 2: 1116–1118PubMedGoogle Scholar
  33. 33.
    Thompson CM, Puterman AS, Linley LL et al (1997) The value of a scoring system for hypoxic ischaemic encephalopathy in predicting neurodevelopmental outcome. Acta Paediatr 86: 757–761PubMedGoogle Scholar
  34. 34.
    Robertson C, Finer N (1985) Term infants with hypoxic-ischemic encephalopathy: outcome at 3.5 years. Dev Med Child Neurol 27: 473–484PubMedGoogle Scholar
  35. 35.
    Thornberg E, Thiringer K, Odeback A et al (1995) Birth asphyxia: incidence, clinical course and outcome in a Swedish population. Acta Paediatr 84: 927–932PubMedGoogle Scholar
  36. 36.
    Gluckman PD, Wyatt JS, Azzopardi D et al (2005) Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet 365: 663–670PubMedGoogle Scholar
  37. 37.
    Shankaran S, Laptook AR, Ehrenkranz RA et al (2005) Wholebody hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med 353: 1574–1584PubMedGoogle Scholar
  38. 38.
    Benders MJ, Bos AF, Rademaker CM et al (2006) Early postnatal allopurinol does not improve short-term outcome after severe birth asphyxia. Arch Dis Child Fetal Neonatal Ed 91: F163–F165PubMedGoogle Scholar
  39. 39.
    Gunes T, Ozturk MA, Koklu E et al (2007) Effect of allopurinol supplementation on nitric oxide levels in asphyxiated newborns. Pediatr Neurol 36: 17–24PubMedGoogle Scholar
  40. 40.
    Grant A, O’Brien N, Joy MT et al (1989) Cerebral palsy among children born during the Dublin randomised trial of intrapartum monitoring. Lancet 2: 1233–1236PubMedGoogle Scholar
  41. 41.
    Low JA, Pickersgill H, Killen H et al (2001) The prediction and prevention of intrapartum fetal asphyxia in term pregnancies. Am J Obstet Gynecol 184: 724–730PubMedGoogle Scholar
  42. 42.
    Kwee A, van der Hoorn-van den Beld CW, Veerman J et al (2004) STAN S21 fetal heart monitor for fetal surveillance during labor: an observational study in 637 patients. J Matern Fetal Neonatal Med 15: 400–407Google Scholar
  43. 43.
    Torrance HL, Benders MJ, Derks JB et al (2009) Maternal allopurinol treatment during fetal hypoxia lowers cord blood levels of the brain injury marker protein S-100B. Pediatrics 124: 350–357PubMedGoogle Scholar
  44. 44.
    Shankaran S, Woldt E, Koepke T et al (1991) Acute neonatal morbidity and long-term central nervous system sequelae of perinatal asphyxia in term infants. Early Hum Dev 25: 135–148PubMedGoogle Scholar
  45. 45.
    Saili A, Sarna MS, Gathwala G et al (1990) Liver dysfunction in severe birth asphyxia. Indian Pediatr 27: 1291–1294PubMedGoogle Scholar
  46. 46.
    Saugstad OD (2003) Oxygen toxicity at birth: the pieces are put together. Pediatr Res 54: 789Google Scholar
  47. 47.
    Vento M, Asensi M, Sastre J et al (2002) Hyperoxemia caused by resuscitation with pure oxygen may alter intracellular redox status by increasing oxidized glutathione in asphyxiated newly born infants. Semin Perinatol 26: 406–410PubMedGoogle Scholar
  48. 48.
    Sola A, Rogido MR, Deulofeut R (2007) Oxygen as a neonatal health hazard: call for detente in clinical practice. Acta Paediatr 96: 801–812 Neurol 33: 696–705PubMedGoogle Scholar
  49. 49.
    Hay WW Jr, Thilo E, Curlander JB (1991) Pulse oximetry in neonatal medicine. Clin Perinatol 18: 441–472PubMedGoogle Scholar
  50. 50.
    Klinger G, Beyene J, Shah P et al (2005) Do hyperoxaemia and hypocapnia add to the risk of brain injury after intrapartum asphyxia? Arch Dis Child Fetal Neonatal Ed 90: F49–F52PubMedGoogle Scholar
  51. 51.
    Caplan MS, Hedlund E, Adler L et al (1994) Role of asphyxia and feeding in a neonatal rat model of necrotizing enterocolitis. Pediatr Pathol 14: 1017–1028PubMedGoogle Scholar
  52. 52.
    Williams CE, Gunn AJ, Mallard C et al (1992) Outcome after ischemia in the developing sheep brain: an electroencephalographic and histological study. Ann Neurol 31: 14–21PubMedGoogle Scholar
  53. 53.
    Castle V, Andrew M, Kelton J et al (1986) Frequency and mechanismof neonatal thrombocytopenia. J Pediatr 108: 749–755PubMedGoogle Scholar
  54. 54.
    Luciano R, Gallini F, Romagnoli C et al (1998) Doppler evaluation of renal blood flow velocity as a predictive index of acute renal failure in perinatal asphyxia. Eur J Pediatr 157: 656–660PubMedGoogle Scholar
  55. 55.
    Toet MC, Hellström-Westas L, Groenendaal F et al (1999) Amplitude integrated EEG at 3 and 6 hours after birth in fullterm neonates with hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed 81: F19–F23PubMedGoogle Scholar
  56. 56.
    Toet MC, van der Meij W, de Vries LS et al (2002) Comparison between simultaneously recorded amplitude integrated electroencephalogram (cerebral function monitor) and standard electroencephalogram in neonates. Pediatrics 109: 772–779PubMedGoogle Scholar
  57. 57.
    Cataltepe O, Vannucci RC, Heitjan DF et al (1995) Effect of status epilepticus on hypoxic-ischemic brain damage in the immature rat. Pediatr Res 38: 251–257PubMedGoogle Scholar
  58. 58.
    van Straaten HL, Rademaker CM, de Vries LS (1992) Comparison of the effect of midazolam or vecuronium on blood pressure and cerebral blood flow velocity in the premature newborn. Dev Pharmacol Ther 19: 191–195PubMedGoogle Scholar
  59. 59.
    Malingre MM, Van Rooij LG, Rademaker CM et al (2006) Development of an optimal lidocaine infusion strategy for neonatal seizures. Eur J Pediatr 165: 598–604PubMedGoogle Scholar
  60. 60.
    Roka A, Melinda KT, Vasarhelyi B et al (2008) Elevated morphine concentrations in neonates treated with morphine and prolonged hypothermia for hypoxic ischemic encephalopathy. Pediatrics 121: e844–e849PubMedGoogle Scholar
  61. 61.
    Fellman V, Raivio KO (1997) Reperfusion injury as the mechanism of brain damage after perinatal asphyxia. Pediatr Res 41: 599–606PubMedGoogle Scholar
  62. 62.
    Ferriero DM (2004) Neonatal brain injury. N Engl J Med 351: 1985–1995PubMedGoogle Scholar
  63. 63.
    Vannucci RC, Towfighi J, Vannucci SJ (2004) Secondary energy failure after cerebral hypoxia-ischemia in the immature rat. J Cereb Blood Flow Metab 24: 1090–1097PubMedGoogle Scholar
  64. 64.
    Peeters C, Van Bel F (2001) Pharmacotherapeutical reduction of post-hypoxic-ischemic brain injury in the newborn. Biol Neonate 79: 274–280PubMedGoogle Scholar
  65. 65.
    Van Bel F, Groenendaal F (2008) Long-term pharmacologic neuroprotection after birth asphyxia: where do we stand? Neonatology 94: 203–210PubMedGoogle Scholar
  66. 66.
    Azzopardi D, Edwards AD (2007) Hypothermia. Semin Fetal Neonatal Med 12: 303–310PubMedGoogle Scholar
  67. 67.
    Jacobs S, Hunt R, Tarnow-Mordi W et al (2007) Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst Rev 4:CD003311Google Scholar
  68. 68.
    Groenendaal F, Brouwer AJ (2009) Clinical aspects of induced hypothermia in full term neonates with perinatal asphyxia. Early Hum Dev 85: 73–76PubMedGoogle Scholar
  69. 69.
    Ranck JB, Windle WF (1959) Brain damage in the monkey, Macaca mulatta, by asphyxia neonatorum. Exp Neurol 1: 130–154Google Scholar
  70. 70.
    Myers RE (1977) Experimental models of perinatal brain damage: relevance to human pathology. In: Gluck L (ed) Intrauterine asphyxia and the developing fetal brain. Year Book Medical Publications, Chicago, pp 37–97Google Scholar
  71. 71.
    Arduini D, Rizzo G, Romanini C et al (1989) Are blood flow velocity waveforms related to umbilical cord acid- base status in the human fetus? Gynecol Obstet Invest 27: 183–187PubMedGoogle Scholar
  72. 72.
    Schifrin BS (1994) The ABCs of electronic fetal monitoring. J Perinatol 14: 396–402PubMedGoogle Scholar
  73. 73.
    Arabin B, Ragosch V, Mohnhaupt A (1995) From biochemical to biophysical placental function tests in fetal surveillance. Am J Perinatol 12: 168–171PubMedGoogle Scholar
  74. 74.
    Herrmann U Jr, Durig P, Amato M et al (1989) Outcome of fetuses with abnormal biophysical profile. Gynecol Obstet Invest 27: 122–125PubMedGoogle Scholar
  75. 75.
    Maeda K, Tatsumura M, Nakajima K (1991) Objective and quantitative evaluation of fetal movement with ultrasonic Doppler actocardiogram. Biol Neonate 60 (Suppl 1): 41–51PubMedGoogle Scholar
  76. 76.
    Boenisch H, Saling E (1976) The reliability of pH values in fetal blood samples: a study of the second stage. J Perinat Med 4: 45PubMedGoogle Scholar
  77. 77.
    Fujikura T, Klionsky B (1975) The significance of meconium staining. Am J Obstet Gynecol 121: 45–50PubMedGoogle Scholar
  78. 78.
    Nelson KB, Dambrosia JM, Ting TY et al (1996) Uncertain value of electronic fetal monitoring in predicting cerebral palsy. N Engl J Med 334: 613–618PubMedGoogle Scholar
  79. 79.
    Amer-Wahlin I, Hellsten C, Noren H et al (2001) Cardiotocography only versus cardiotocography plus ST analysis of fetal electrocardiogram for intrapartum fetal monitoring: a Swedish randomized controlled trial. Lancet 358:534–538PubMedGoogle Scholar
  80. 80.
    American Academy of Pediatrics, Committee on Fetus and Newborn, American College of Obstetricians and Gynecologists and Committee on Obstetric Practice(2006) The Apgar score. Pediatrics 117: 1444–1447Google Scholar
  81. 81.
    de Vries LS, Eken P, Groenendaal F et al (1998) Antenatal onset of haemorrhagic and/or ischaemic lesions in preterm infants: prevalence and associated obstetric variables. Arch Dis Child Fetal Neonatal Ed 78: F51–F56PubMedGoogle Scholar
  82. 82.
    Adamson SJ, Alessandri LM, Badawi N et al (1995) Predictors of neonatal encephalopathy in full-term infants. BMJ 311: 598–602PubMedGoogle Scholar
  83. 83.
    Holden KR, Mellits ED, Freeman JM (1982) Neonatal seizures. I. Correlation of prenatal and perinatal events with outcomes. Pediatrics 70: 165–176PubMedGoogle Scholar
  84. 84.
    Catlin EA, Carpenter MW, Brann BS et al (1986) The Apgar score revisited: influence of gestational age. J Pediatr 109: 865–868PubMedGoogle Scholar
  85. 85.
    Daniel SS, Adamsons K, James LS (1966) Lactate and pyruvate as an index of prenatal oxygen deprivation. Pediatrics 37: 942–953PubMedGoogle Scholar
  86. 86.
    Sykes GS, Molloy PM, Johnson P et al (1982) Do Apgar scores indicate asphyxia? Lancet 1: 494–496PubMedGoogle Scholar
  87. 87.
    Ruth VJ, Raivio KO (1988) Perinatal brain damage: predictive value of metabolic acidosis and the Apgar score. BMJ 297: 24–27PubMedGoogle Scholar
  88. 88.
    Winkler CL, Hauth JC, Tucker JM et al (1991) Neonatal complications at term as related to the degree of umbilical artery acidemia. Am J Obstet Gynecol 164: 637–641PubMedGoogle Scholar
  89. 89.
    van den Berg PP, Nelen WL, Jongsma HW et al (1996) Neonatal complications in newborns with an umbilical artery pH 7.00. Am J Obstet Gynecol 175: 1152–1157PubMedGoogle Scholar
  90. 90.
    Lavrijsen SW, Uiterwaal CSPM, Stigter RH et al (2005) Severe umbilical cord acidemia and neurological outcome in preterm and full-term neonates. Biol Neonate 88: 27–34PubMedGoogle Scholar
  91. 91.
    Low JA, Galbraith RS, Muir DW et al (1985) The relationship between perinatal hypoxia and newborn encephalopathy. Am J Obstet Gynecol 152: 256–260PubMedGoogle Scholar
  92. 92.
    King TA, Jackson GL, Josey AS et al (1998) The effect of profound umbilical artery acidemia in term neonates admitted to a newborn nursery. J Pediatr 132: 624–629PubMedGoogle Scholar
  93. 93.
    Nylund L, Dahlin I, Lagercrantz H (1987) Fetal catecholamines and the Apgar score. J Perinat Med 15: 340–344PubMedGoogle Scholar
  94. 94.
    Belai Y, Goodwin TM, Durand M et al (1998) Umbilical arteriovenous PO2 and PCO2 differences and neonatal morbidity in term infants with severe acidosis. Am J Obstet Gynecol 178: 13–19PubMedGoogle Scholar
  95. 95.
    Portman RJ, Carter BS, Gaylord MS et al (1990) Predicting neonatal morbidity after perinatal asphyxia: a scoring system. Am J Obstet Gynecol 162: 174–182PubMedGoogle Scholar
  96. 96.
    Perlman JM, Risser R (1996) Can asphyxiated infants at risk for neonatal seizures be rapidly identified by current high-risk markers? Pediatrics 97: 456–462PubMedGoogle Scholar
  97. 97.
    Ekert P, Perlman M, Steinlin M et al (1997) Predicting the outcome of postasphyxial hypoxic-ischemic encephalopathy within 4 hours of birth. J Pediatr 131: 613–617PubMedGoogle Scholar
  98. 98.
    Carter BS, McNabb F, Merenstein GB (1998) Prospective validation of a scoring system for predicting neonatal morbidity after acute perinatal asphyxia. J Pediatr 132: 619–623PubMedGoogle Scholar
  99. 99.
    Sehdev HM, Stamilio DM, Macones GA et al (1997) Predictive factors for neonatal morbidity in neonates with an umbilical arterial cord pH less than 7.00. Am J Obstet Gynecol 177: 1030–1034PubMedGoogle Scholar
  100. 100.
    Mathew OP, Bland H, Boxerman SB et al (1980) CSF lactate levels in high risk neonates with and without asphyxia. Pediatrics 66: 224–227PubMedGoogle Scholar
  101. 101.
    Huang CC, Wang ST, Chang YC et al (1999) Measurement of the urinary lactate:creatinine ratio for the early identification of newborn infants at risk for hypoxic-ischemic encephalopathy. N Engl J Med 341: 328–335PubMedGoogle Scholar
  102. 102.
    Pourcyrous M, Bada HS, Yang W et al (1999) Prognostic significance of cerebrospinal fluid cyclic adenosine monophosphate in neonatal asphyxia. J Pediatr 134: 90–96PubMedGoogle Scholar
  103. 103.
    Saugstad OD (1976) Hypoxanthine as a measurement of hypoxia. Pediatr Res 9: 575Google Scholar
  104. 104.
    Ruth V, Fyhrquist F, Clemons G et al (1988) Cord plasma vasopressin, erythropoietin, and hypoxanthine as indices of asphyxia at birth. Pediatr Res 24: 490–494PubMedGoogle Scholar
  105. 105.
    Buonocore G, Zani S, Perrone S et al (1998) Intraerythrocyte nonprotein- bound iron and plasma malondialdehyde in the hypoxic newborn. Free Radic Biol Med 25: 766–770PubMedGoogle Scholar
  106. 106.
    Buonocore G, Perrone S, Gioia D et al (1999) Nucleated red blood cell count at birth as an index of perinatal brain damage. Am J Obstet Gynecol 181: 1500–1505PubMedGoogle Scholar
  107. 107.
    Buonocore G, Perrone S, Longini M et al (2003) Non protein bound iron as early predictive marker of neonatal brain damage. Brain 126: 1224–1230PubMedGoogle Scholar
  108. 108.
    Niklinski W, Palynyczko Z, Jozwik M et al (1987) Cord blood serum creatine kinase isoenzymes with placental dysfunction. J Perinat Med 15: 350–354PubMedGoogle Scholar
  109. 109.
    Thornberg E, Thiringer K, Hagberg H et al (1995) Neuron specific enolase in asphyxiated newborns: association with encephalopathy and cerebral function monitor trace. Arch Dis Child Fetal Neonatal Ed 72: F39–F42PubMedGoogle Scholar
  110. 110.
    Nagdyman N, Grimmer I, Scholz T et al (2003) Predictive value of brain-specific proteins in serum for neurodevelopmental outcome after birth asphyxia. Pediatr Res 54: 270–275PubMedGoogle Scholar
  111. 111.
    Blennow M, Savman K, Ilves P et al (2001) Brain-specific proteins in the cerebrospinal fluid of severely asphyxiated newborn infants. Acta Paediatr 90: 1171–1175PubMedGoogle Scholar
  112. 112.
    Gazzolo D, Marinoni E, Di Iorio R et al (2004) Urinary S100B protein measurements: A tool for the early identification of hypoxicischemic encephalopathy in asphyxiated full-term infants. Crit Care Med 32: 131–136Google Scholar
  113. 113.
    Martin-Ancel A, Garcia-Alix A, Pascual-Salcedo D et al (1997) Interleukin-6 in the cerebrospinal fluid after perinatal asphyxia is related to early and late neurological manifestations. Pediatrics 100: 789–794PubMedGoogle Scholar
  114. 114.
    Savman K, Blennow M, Gustafson K et al (1998) Cytokine response in cerebrospinal fluid after birth asphyxia. Pediatr Res 43: 746–751PubMedGoogle Scholar
  115. 115.
    Oygur N, Sonmez O, Saka O et al (1998) Predictive value of plasma and cerebrospinal fluid tumour necrosis factor-alpha and interleukin-1 beta concentrations on outcome of full term infantswith hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed 79: F190–F193PubMedGoogle Scholar
  116. 116.
    Foster-Barber A, Dickens B, Ferriero DM (2001) Human perinatal asphyxia: correlation of neonatal cytokines with MRI and outcome. Dev Neurosci 23: 213–218PubMedGoogle Scholar
  117. 117.
    Xanthou M, Fotopoulos S, Mouchtouri A et al (2002) Inflammatory mediators in perinatal asphyxia and infection. Acta Paediatr Suppl 91: 92–97PubMedGoogle Scholar
  118. 118.
    Chiesa C, Pellegrini G, Panero A et al (2003) Umbilical cord interleukin-6 levels are elevated in term neonates with perinatal asphyxia. Eur J Clin Invest 33: 352–358PubMedGoogle Scholar
  119. 119.
    Levene MI, Kornberg J, Williams THC (1985) The incidence and severity of postasphyxial encephalopathy in full-term infants. Early Hum Dev 11: 21–28PubMedGoogle Scholar
  120. 120.
    Mellits ED, Holden KR, Freeman JM (1982) Neonatal seizures. II. A multivariate analysis of factors associated with outcome. Pediatrics 70: 177–185Google Scholar
  121. 121.
    Wayenberg JL, Vermeylen D, Bormans J et al (1994) Diagnosis of severe birth asphyxia and early prediction of neonatal neurological outcome in term asphyxiated newborns. J Perinat Med 22: 129–136PubMedGoogle Scholar
  122. 122.
    Perlman JM, Adcock L, DeWitt S et al (1999) Early identification of infants at highest risk for abnormal (Abn) outcome secondary to intrapartum hypoxia ischemia ( HI)- Texas Regional Survey. Pediatr Res 45: 218AGoogle Scholar
  123. 123.
    Wyatt JS (1993) Near-infrared spectroscopy in asphyxial brain injury. Clin Perinatol 20: 369–378PubMedGoogle Scholar
  124. 124.
    Van Bel F, Van de Bor M, Stijnen T et al (1987) Cerebral blood flow velocity pattern in healthy and asphyxiated newborns: a controlled study. Eur J Pediatr 146: 461–467PubMedGoogle Scholar
  125. 125.
    Toet MC, Lemmers PM, van Schelven LJ et al (2006) Cerebral oxygenation and electrical activity after birth asphyxia: their relation to outcome. Pediatrics 117: 333–339PubMedGoogle Scholar
  126. 126.
    Eken P, Jansen GH, Groenendaal F et al (1994) Intracranial lesions in the fullterm infant with hypoxic ischaemic encephalopathy: ultrasound and autopsy correlation. Neuropediatr 25: 301–307Google Scholar
  127. 127.
    Baenziger O, Martin E, Steinlin M et al (1993) Early pattern recognition in severe perinatal asphyxia: a prospective MRI study. Neuroradiology 35: 437–442PubMedGoogle Scholar
  128. 128.
    Barkovich AJ, Westmark K, Partridge C et al (1995) Perinatal asphyxia: MR findings in the first 10 days. AJNR Am J Neuroradiol 16: 427–438PubMedGoogle Scholar
  129. 129.
    Rutherford M, Pennock J, Schwieso J et al (1996) Hypoxic-ischaemic encephalopathy: early and late magnetic resonance imaging findings in relation to outcome. Arch Dis Child Fetal Neonatal Ed 75: F145–F151PubMedGoogle Scholar
  130. 130.
    Rutherford MA, Pennock JM, Counsell SJ et al (1998) Abnormal magnetic resonance signal in the internal capsule predicts poor neurodevelopmental outcome in infants with hypoxic- ischemic encephalopathy. Pediatrics 102: 323–328PubMedGoogle Scholar
  131. 131.
    Rutherford M, Counsell S, Allsop J et al (2004) Diffusion-weighted magnetic resonance imaging in term perinatal brain injury: a comparison with site of lesion and time from birth. Pediatrics 114: 1004–1014PubMedGoogle Scholar
  132. 132.
    L’Abee C, de Vries LS, van der Grond J et al (2005) Early diffusion- weighted MRI and 1H-magnetic resonance spectroscopy in asphyxiated fullterm neonates. Biol Neonate 88: 306–312PubMedGoogle Scholar
  133. 133.
    Sie LT, van der Knaap MS, Oosting J et al (2000) MR patterns of hypoxic-ischemic brain damage after prenatal, perinatal or postnatal asphyxia. Neuropediatr 31: 128–136Google Scholar
  134. 134.
    Okereafor A, Allsop J, Counsell SJ et al (2008) Patterns of brain injury in neonates exposed to perinatal sentinel events. Pediatrics 121: 906–914PubMedGoogle Scholar
  135. 135.
    Roth SC, Edwards AD, Cady EB et al (1992) Relation between cerebral oxidative metabolism following birth asphyxia, and neurodevelopmental outcome and brain growth at one year. Dev Med Child Neurol 34: 285–295PubMedGoogle Scholar
  136. 136.
    Lorek A, Takei Y, Cady EB et al (1994) Delayed (“secondary”) cerebral energy failure after acute hypoxia-ischemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic resonance spectroscopy. Pediatr Res 36: 699–706PubMedGoogle Scholar
  137. 137.
    Robertson NJ, Cowan FM, Cox IJ et al (2002) Brain alkaline intracellular pH after neonatal encephalopathy. Ann Neurol 52: 732–742PubMedGoogle Scholar
  138. 138.
    Groenendaal F, Veenhoven RH, van der Grond J et al (1994) Cerebral lactate and N-acetyl-aspartate/choline ratios in asphyxiated full-term neonates demonstrated in vivo using proton magnetic resonance spectroscopy. Pediatr Res 35: 148–151PubMedGoogle Scholar
  139. 139.
    Holmes G, Rowe J, Hafford J et al (1982) Prognostic value of the electroencephalogram in neonatal asphyxia. Electroencephalogr Clin Neurophysiol 53: 60–72PubMedGoogle Scholar
  140. 140.
    Watanabe K, Miyazaki S, Hara K et al (1980) Behavioral state cycles, background EEGs and prognosis of newborns with perinatal hypoxia. Electroencephalogr Clin Neurophysiol 49: 618–625PubMedGoogle Scholar
  141. 141.
    Monod N, Pajot N, Guidasci S (1972) The neonatal EEG: statistical studies and prognostic value in fullterm and preterm babies. Electroencephalogr Clin Neurophysiol 32: 529–544PubMedGoogle Scholar
  142. 142.
    Grigg-Damberger MM, Coker SB, Halsey CL et al (1989) Neonatal burst suppression: its developmental significance. Pediatr Neurol 5: 84–92PubMedGoogle Scholar
  143. 143.
    Connell J, Oozeer R, de Vries L et al (1989) Clinical and EEG response to anticonvulsants in neonatal seizures. Arch Dis Child 64: 459–464PubMedGoogle Scholar
  144. 144.
    Bjerre I, Hellström-Westas L, Rosen I et al (1983) Monitoring of cerebral function after severe asphyxia in infancy. Arch Dis Child 58: 997–1002PubMedGoogle Scholar
  145. 145.
    Archbald F, Verma UL, Tejani NA et al (1984) Cerebral function monitor in the neonate. II: Birth asphyxia. Dev Med Child Neurol 26: 162–168PubMedGoogle Scholar
  146. 146.
    Thornberg E, Thiringer K (1990) Normal pattern of the cerebral function monitor trace in term and preterm neonates. Acta Paediatr Scand 79: 20–25PubMedGoogle Scholar
  147. 147.
    Hellström-Westas L (1992) Comparison between tape-recorded and amplitude-integrated EEG monitoring in sick newborn infants. Acta Paediatr 81: 812–819PubMedGoogle Scholar
  148. 148.
    van Rooij LGM, Toet MC, Osredkar D et al (2005) Recovery of amplitude integrated electroencephalographic background patterns within 24 hours of perinatal asphyxia. Arch Dis Child Fetal Neonatal Ed 90: F245–F251PubMedGoogle Scholar
  149. 149.
    Hellström-Westas L, Rosen I, Svenningsen NW (1995) Predictive value of early continuous amplitude integrated EEG recordings on outcome after severe birth asphyxia in full term infants. Arch Dis Child Fetal Neonatal Ed 72: F34–F38PubMedGoogle Scholar
  150. 150.
    Eken P, Toet MC, Groenendaal F et al (1995) Predictive value of early neuroimaging, pulsed Doppler and neurophysiology in full term infants with hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed 73: F75–F80PubMedGoogle Scholar
  151. 151.
    Taylor MJ, Murphy WJ, Whyte HE (1992) Prognostic reliability of somatosensory and visual evoked potentials of asphyxiated term infants. Dev Med Child Neurol 34: 507–515PubMedGoogle Scholar
  152. 152.
    Mercuri E, von Siebenthal K, Daniels H et al (1994) Multimodality evoked responses in the neurological assessment of the newborn. Eur J Pediatr 153: 622–631PubMedGoogle Scholar
  153. 153.
    Muttitt SC, Taylor MJ, Kobayashi JS et al (1991) Serial visual evoked potentials and outcome in term birth asphyxia. Pediatr Neurol 7: 86–90PubMedGoogle Scholar
  154. 154.
    de Vries LS (1993) Somatosensory-evoked potentials in term neonates with postasphyxial encephalopathy. Clin Perinatol 20: 463–482PubMedGoogle Scholar
  155. 155.
    Gibson NA, Graham M, Levene MI (1992) Somatosensory evoked potentials and outcome in perinatal asphyxia. Arch Dis Child 67: 393–398PubMedGoogle Scholar
  156. 156.
    van den Broek MP, Huitema AD, van Hasselt JG et al (2011) Lidocaine (lignocaine) dosing regimen based upon a population pharmacokinetic model for preterm and term neonates with seizures. Clin Pharmacokinet 50: 461–469PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Floris Groenendaal
    • 1
  • Frank van Bel
  1. 1.Department of Neonatology, Wilhelmina Children’s HospitalUniversity Medical Center UtrechtUtrechtThe Netherlands

Personalised recommendations