Skip to main content

Clinical Aspects and Treatment of the Hypoxic-Ischemic Syndrome

  • Chapter
Neonatology
  • 450 Accesses

Abstract

In the Western world, perinatal asphyxia is still a relatively common phenomenon in perinatal care. Since differences in causes and patterns of brain injury following perinatal asphyxia exist between full-term and preterm neonates, this chapter will focus on full-term neonates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  1. Hull J, Dodd KL (1992) Falling incidence of hypoxic-ischaemic encephalopathy in term infants. Br J Obstet Gynaecol 99: 386–391

    PubMed  CAS  Google Scholar 

  2. Smith J, Wells L, Dodd K (2000) The continuing fall in incidence of hypoxic-ischaemic encephalopathy in term infants. BJOG 107: 461–466

    PubMed  CAS  Google Scholar 

  3. Casey BM, McIntire DD, Leveno KJ (2001) The continuing value of the Apgar score for the assessment of newborn infants. N Engl J Med 344: 467–471

    PubMed  CAS  Google Scholar 

  4. Cowan F, Rutherford M, Groenendaal F et al (2003) Origin and timing of brain lesions in term infants with neonatal encephalopathy. Lancet 361: 736–742

    PubMed  Google Scholar 

  5. Squier W (2002) Acquired damage to the developing brain: timing and causation. Oxford University Press/Hodder Arnold Publication, Oxford

    Google Scholar 

  6. O’Brien MJ, Ash JM, Gilday DL (1979) Radionuclide brain scanning in perinatal hypoxia/ischemia. Dev Med Child Neurol 21: 161

    Google Scholar 

  7. Volpe JJ, Herscovitch P, Perlman JM et al (1985) Positron emission tomography in the asphyxiated term newborn: parasagittal impairment of cerebral blood flow. Ann Neurol 17: 287–296

    PubMed  CAS  Google Scholar 

  8. Groenendaal F, de Vries LS (2005) Watershed infarcts in the full term neonatal brain. Arch Dis Child Fetal Neonatal Ed 90: F488

    PubMed  CAS  Google Scholar 

  9. Apgar V (1953) A proposal for a new method of evaluation of the newborn infant. Curr Res Anesth Analg 32: 260–267

    PubMed  CAS  Google Scholar 

  10. Carter BS, Haverkamp AD, Merenstein GB (1993) The definition of acute perinatal asphyxia. Clin Perinatol 20: 287–304

    PubMed  CAS  Google Scholar 

  11. Chou YH, Tsou Yau KI, Wang PJ (1998) Clinical application of the measurement of cord plasma lactate and pyruvate in the assessment of high-risk neonates. Acta Paediatr 87: 764–768

    PubMed  CAS  Google Scholar 

  12. Meis PJ, Hall M III, Marshall JR et al (1978) Meconium passage: a new classification for risk assessment during labor. Am J Obstet Gynecol 131: 509–513

    PubMed  CAS  Google Scholar 

  13. Low JA, Galbraith RS, Muir DW et al (1984) Factors associated with motor and cognitive deficits in children after intrapartum fetal hypoxia. Am J Obstet Gynecol 148: 533–539

    PubMed  CAS  Google Scholar 

  14. Walther FJ, Siassi B, Ramadan NA et al (1985) Cardiac output in newborn infants with transient myocardial dysfunction. J Pediatr 107: 781–785

    PubMed  CAS  Google Scholar 

  15. Goodwin TM, Belai I, Hernandez P et al (1992) Asphyxial complications in the term newborn with severe umbilical acidemia. Am J Obstet Gynecol 167: 1506–1512

    PubMed  CAS  Google Scholar 

  16. Perlman JM, Tack ED, Martin T et al (1989) Acute systemic organ injury in term infants after asphyxia. Am J Dis Child 143: 617–620

    PubMed  CAS  Google Scholar 

  17. Volpe JJ (2008) Neurology of the newborn, 5th edn. Saunders Elsevier, Philadelphia

    Google Scholar 

  18. Sasidharan P (1992) Breathing pattern abnormalities in full term asphyxiated newborn infants. Arch Dis Child 67: 440–442

    PubMed  CAS  Google Scholar 

  19. Clancy R, Malin S, Laraque D et al (1985) Focal motor seizures heralding stroke in full-term neonates. Am J Dis Child 139: 601–606

    PubMed  CAS  Google Scholar 

  20. Levy SR, Abroms IF, Marshall PC et al (1985) Seizures and cerebral infarction in the full-term newborn. Ann Neurol 17: 366–370

    PubMed  CAS  Google Scholar 

  21. Rollins NK, Morriss MC, Evans D et al (1994) The role of early MR in the evaluation of the term infant with seizures. AJNR Am J Neuroradiol 15: 239–248

    PubMed  CAS  Google Scholar 

  22. Jayashree G, Dutta AK, Sarna MS et al (1991) Acute renal failure in asphyxiated newborns. Indian Pediatr 28: 19–23

    PubMed  CAS  Google Scholar 

  23. Van Bel F, Walther FJ (1990) Myocardial dysfunction and cerebral blood flow velocity following birth asphyxia. Acta Paediatr Scand 79: 756–762

    PubMed  Google Scholar 

  24. Barnett CP, Perlman M, Ekert PG (1997) Clinicopathological correlations in postasphyxial organ damage: a donor organ perspective. Pediatrics 99: 797–799

    PubMed  CAS  Google Scholar 

  25. Sarnat HB, Sarnat MS (1976) Neonatal encephalopathy following fetal distress; a clinical and electroencephalographic study. Arch

    Google Scholar 

  26. Scott H (1976) Outcome of very severe birth asphyxia. Arch Dis Child 51: 712–716

    PubMed  CAS  Google Scholar 

  27. Hope PL, Costello AMdL, Cady EB et al (1984) Cerebral energy metabolism studied with phosphorous NMR spectroscopy in normal and birth asphyxiated infants. Lancet 8399: 366–370

    Google Scholar 

  28. Lorek A, Takei Y, Cady EB et al (1994) Delayed (“secondary”) cerebral energy failure after acute hypoxia-ischemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic resonance spectroscopy. Pediatr Res 36: 699–706

    PubMed  CAS  Google Scholar 

  29. Brown JK, Purvis RJ, Forfar JO et al (1974) Neurological aspects of perinatal asphyxia. Dev Med Child Neurol 16: 567–580

    PubMed  CAS  Google Scholar 

  30. Fenichel GM (1983) Hypoxic-ischemic encephalopathy in the newborn. Arch Neurol 40: 261–266

    PubMed  CAS  Google Scholar 

  31. Levene MI, Sands C, Grindulis H et al (1986) Comparison of two methods of predicting outcome in perinatal asphyxia. Lancet 1: 67–69

    PubMed  CAS  Google Scholar 

  32. Archer LN, Levene MI, Evans DH (1986) Cerebral artery Doppler ultrasonography for prediction of outcome after perinatal asphyxia. Lancet 2: 1116–1118

    PubMed  CAS  Google Scholar 

  33. Thompson CM, Puterman AS, Linley LL et al (1997) The value of a scoring system for hypoxic ischaemic encephalopathy in predicting neurodevelopmental outcome. Acta Paediatr 86: 757–761

    PubMed  CAS  Google Scholar 

  34. Robertson C, Finer N (1985) Term infants with hypoxic-ischemic encephalopathy: outcome at 3.5 years. Dev Med Child Neurol 27: 473–484

    PubMed  CAS  Google Scholar 

  35. Thornberg E, Thiringer K, Odeback A et al (1995) Birth asphyxia: incidence, clinical course and outcome in a Swedish population. Acta Paediatr 84: 927–932

    PubMed  CAS  Google Scholar 

  36. Gluckman PD, Wyatt JS, Azzopardi D et al (2005) Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet 365: 663–670

    PubMed  Google Scholar 

  37. Shankaran S, Laptook AR, Ehrenkranz RA et al (2005) Wholebody hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med 353: 1574–1584

    PubMed  CAS  Google Scholar 

  38. Benders MJ, Bos AF, Rademaker CM et al (2006) Early postnatal allopurinol does not improve short-term outcome after severe birth asphyxia. Arch Dis Child Fetal Neonatal Ed 91: F163–F165

    PubMed  CAS  Google Scholar 

  39. Gunes T, Ozturk MA, Koklu E et al (2007) Effect of allopurinol supplementation on nitric oxide levels in asphyxiated newborns. Pediatr Neurol 36: 17–24

    PubMed  Google Scholar 

  40. Grant A, O’Brien N, Joy MT et al (1989) Cerebral palsy among children born during the Dublin randomised trial of intrapartum monitoring. Lancet 2: 1233–1236

    PubMed  CAS  Google Scholar 

  41. Low JA, Pickersgill H, Killen H et al (2001) The prediction and prevention of intrapartum fetal asphyxia in term pregnancies. Am J Obstet Gynecol 184: 724–730

    PubMed  CAS  Google Scholar 

  42. Kwee A, van der Hoorn-van den Beld CW, Veerman J et al (2004) STAN S21 fetal heart monitor for fetal surveillance during labor: an observational study in 637 patients. J Matern Fetal Neonatal Med 15: 400–407

    Google Scholar 

  43. Torrance HL, Benders MJ, Derks JB et al (2009) Maternal allopurinol treatment during fetal hypoxia lowers cord blood levels of the brain injury marker protein S-100B. Pediatrics 124: 350–357

    PubMed  Google Scholar 

  44. Shankaran S, Woldt E, Koepke T et al (1991) Acute neonatal morbidity and long-term central nervous system sequelae of perinatal asphyxia in term infants. Early Hum Dev 25: 135–148

    PubMed  CAS  Google Scholar 

  45. Saili A, Sarna MS, Gathwala G et al (1990) Liver dysfunction in severe birth asphyxia. Indian Pediatr 27: 1291–1294

    PubMed  CAS  Google Scholar 

  46. Saugstad OD (2003) Oxygen toxicity at birth: the pieces are put together. Pediatr Res 54: 789

    Google Scholar 

  47. Vento M, Asensi M, Sastre J et al (2002) Hyperoxemia caused by resuscitation with pure oxygen may alter intracellular redox status by increasing oxidized glutathione in asphyxiated newly born infants. Semin Perinatol 26: 406–410

    PubMed  Google Scholar 

  48. Sola A, Rogido MR, Deulofeut R (2007) Oxygen as a neonatal health hazard: call for detente in clinical practice. Acta Paediatr 96: 801–812 Neurol 33: 696–705

    PubMed  Google Scholar 

  49. Hay WW Jr, Thilo E, Curlander JB (1991) Pulse oximetry in neonatal medicine. Clin Perinatol 18: 441–472

    PubMed  Google Scholar 

  50. Klinger G, Beyene J, Shah P et al (2005) Do hyperoxaemia and hypocapnia add to the risk of brain injury after intrapartum asphyxia? Arch Dis Child Fetal Neonatal Ed 90: F49–F52

    PubMed  CAS  Google Scholar 

  51. Caplan MS, Hedlund E, Adler L et al (1994) Role of asphyxia and feeding in a neonatal rat model of necrotizing enterocolitis. Pediatr Pathol 14: 1017–1028

    PubMed  CAS  Google Scholar 

  52. Williams CE, Gunn AJ, Mallard C et al (1992) Outcome after ischemia in the developing sheep brain: an electroencephalographic and histological study. Ann Neurol 31: 14–21

    PubMed  CAS  Google Scholar 

  53. Castle V, Andrew M, Kelton J et al (1986) Frequency and mechanismof neonatal thrombocytopenia. J Pediatr 108: 749–755

    PubMed  CAS  Google Scholar 

  54. Luciano R, Gallini F, Romagnoli C et al (1998) Doppler evaluation of renal blood flow velocity as a predictive index of acute renal failure in perinatal asphyxia. Eur J Pediatr 157: 656–660

    PubMed  CAS  Google Scholar 

  55. Toet MC, Hellström-Westas L, Groenendaal F et al (1999) Amplitude integrated EEG at 3 and 6 hours after birth in fullterm neonates with hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed 81: F19–F23

    PubMed  CAS  Google Scholar 

  56. Toet MC, van der Meij W, de Vries LS et al (2002) Comparison between simultaneously recorded amplitude integrated electroencephalogram (cerebral function monitor) and standard electroencephalogram in neonates. Pediatrics 109: 772–779

    PubMed  Google Scholar 

  57. Cataltepe O, Vannucci RC, Heitjan DF et al (1995) Effect of status epilepticus on hypoxic-ischemic brain damage in the immature rat. Pediatr Res 38: 251–257

    PubMed  CAS  Google Scholar 

  58. van Straaten HL, Rademaker CM, de Vries LS (1992) Comparison of the effect of midazolam or vecuronium on blood pressure and cerebral blood flow velocity in the premature newborn. Dev Pharmacol Ther 19: 191–195

    PubMed  Google Scholar 

  59. Malingre MM, Van Rooij LG, Rademaker CM et al (2006) Development of an optimal lidocaine infusion strategy for neonatal seizures. Eur J Pediatr 165: 598–604

    PubMed  CAS  Google Scholar 

  60. Roka A, Melinda KT, Vasarhelyi B et al (2008) Elevated morphine concentrations in neonates treated with morphine and prolonged hypothermia for hypoxic ischemic encephalopathy. Pediatrics 121: e844–e849

    PubMed  Google Scholar 

  61. Fellman V, Raivio KO (1997) Reperfusion injury as the mechanism of brain damage after perinatal asphyxia. Pediatr Res 41: 599–606

    PubMed  CAS  Google Scholar 

  62. Ferriero DM (2004) Neonatal brain injury. N Engl J Med 351: 1985–1995

    PubMed  CAS  Google Scholar 

  63. Vannucci RC, Towfighi J, Vannucci SJ (2004) Secondary energy failure after cerebral hypoxia-ischemia in the immature rat. J Cereb Blood Flow Metab 24: 1090–1097

    PubMed  CAS  Google Scholar 

  64. Peeters C, Van Bel F (2001) Pharmacotherapeutical reduction of post-hypoxic-ischemic brain injury in the newborn. Biol Neonate 79: 274–280

    PubMed  CAS  Google Scholar 

  65. Van Bel F, Groenendaal F (2008) Long-term pharmacologic neuroprotection after birth asphyxia: where do we stand? Neonatology 94: 203–210

    PubMed  Google Scholar 

  66. Azzopardi D, Edwards AD (2007) Hypothermia. Semin Fetal Neonatal Med 12: 303–310

    PubMed  CAS  Google Scholar 

  67. Jacobs S, Hunt R, Tarnow-Mordi W et al (2007) Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst Rev 4:CD003311

    Google Scholar 

  68. Groenendaal F, Brouwer AJ (2009) Clinical aspects of induced hypothermia in full term neonates with perinatal asphyxia. Early Hum Dev 85: 73–76

    PubMed  Google Scholar 

  69. Ranck JB, Windle WF (1959) Brain damage in the monkey, Macaca mulatta, by asphyxia neonatorum. Exp Neurol 1: 130–154

    Google Scholar 

  70. Myers RE (1977) Experimental models of perinatal brain damage: relevance to human pathology. In: Gluck L (ed) Intrauterine asphyxia and the developing fetal brain. Year Book Medical Publications, Chicago, pp 37–97

    Google Scholar 

  71. Arduini D, Rizzo G, Romanini C et al (1989) Are blood flow velocity waveforms related to umbilical cord acid- base status in the human fetus? Gynecol Obstet Invest 27: 183–187

    PubMed  CAS  Google Scholar 

  72. Schifrin BS (1994) The ABCs of electronic fetal monitoring. J Perinatol 14: 396–402

    PubMed  CAS  Google Scholar 

  73. Arabin B, Ragosch V, Mohnhaupt A (1995) From biochemical to biophysical placental function tests in fetal surveillance. Am J Perinatol 12: 168–171

    PubMed  CAS  Google Scholar 

  74. Herrmann U Jr, Durig P, Amato M et al (1989) Outcome of fetuses with abnormal biophysical profile. Gynecol Obstet Invest 27: 122–125

    PubMed  Google Scholar 

  75. Maeda K, Tatsumura M, Nakajima K (1991) Objective and quantitative evaluation of fetal movement with ultrasonic Doppler actocardiogram. Biol Neonate 60 (Suppl 1): 41–51

    PubMed  Google Scholar 

  76. Boenisch H, Saling E (1976) The reliability of pH values in fetal blood samples: a study of the second stage. J Perinat Med 4: 45

    PubMed  CAS  Google Scholar 

  77. Fujikura T, Klionsky B (1975) The significance of meconium staining. Am J Obstet Gynecol 121: 45–50

    PubMed  CAS  Google Scholar 

  78. Nelson KB, Dambrosia JM, Ting TY et al (1996) Uncertain value of electronic fetal monitoring in predicting cerebral palsy. N Engl J Med 334: 613–618

    PubMed  CAS  Google Scholar 

  79. Amer-Wahlin I, Hellsten C, Noren H et al (2001) Cardiotocography only versus cardiotocography plus ST analysis of fetal electrocardiogram for intrapartum fetal monitoring: a Swedish randomized controlled trial. Lancet 358:534–538

    PubMed  CAS  Google Scholar 

  80. American Academy of Pediatrics, Committee on Fetus and Newborn, American College of Obstetricians and Gynecologists and Committee on Obstetric Practice(2006) The Apgar score. Pediatrics 117: 1444–1447

    Google Scholar 

  81. de Vries LS, Eken P, Groenendaal F et al (1998) Antenatal onset of haemorrhagic and/or ischaemic lesions in preterm infants: prevalence and associated obstetric variables. Arch Dis Child Fetal Neonatal Ed 78: F51–F56

    PubMed  Google Scholar 

  82. Adamson SJ, Alessandri LM, Badawi N et al (1995) Predictors of neonatal encephalopathy in full-term infants. BMJ 311: 598–602

    PubMed  CAS  Google Scholar 

  83. Holden KR, Mellits ED, Freeman JM (1982) Neonatal seizures. I. Correlation of prenatal and perinatal events with outcomes. Pediatrics 70: 165–176

    PubMed  CAS  Google Scholar 

  84. Catlin EA, Carpenter MW, Brann BS et al (1986) The Apgar score revisited: influence of gestational age. J Pediatr 109: 865–868

    PubMed  CAS  Google Scholar 

  85. Daniel SS, Adamsons K, James LS (1966) Lactate and pyruvate as an index of prenatal oxygen deprivation. Pediatrics 37: 942–953

    PubMed  CAS  Google Scholar 

  86. Sykes GS, Molloy PM, Johnson P et al (1982) Do Apgar scores indicate asphyxia? Lancet 1: 494–496

    PubMed  CAS  Google Scholar 

  87. Ruth VJ, Raivio KO (1988) Perinatal brain damage: predictive value of metabolic acidosis and the Apgar score. BMJ 297: 24–27

    PubMed  CAS  Google Scholar 

  88. Winkler CL, Hauth JC, Tucker JM et al (1991) Neonatal complications at term as related to the degree of umbilical artery acidemia. Am J Obstet Gynecol 164: 637–641

    PubMed  CAS  Google Scholar 

  89. van den Berg PP, Nelen WL, Jongsma HW et al (1996) Neonatal complications in newborns with an umbilical artery pH 7.00. Am J Obstet Gynecol 175: 1152–1157

    PubMed  Google Scholar 

  90. Lavrijsen SW, Uiterwaal CSPM, Stigter RH et al (2005) Severe umbilical cord acidemia and neurological outcome in preterm and full-term neonates. Biol Neonate 88: 27–34

    PubMed  Google Scholar 

  91. Low JA, Galbraith RS, Muir DW et al (1985) The relationship between perinatal hypoxia and newborn encephalopathy. Am J Obstet Gynecol 152: 256–260

    PubMed  CAS  Google Scholar 

  92. King TA, Jackson GL, Josey AS et al (1998) The effect of profound umbilical artery acidemia in term neonates admitted to a newborn nursery. J Pediatr 132: 624–629

    PubMed  CAS  Google Scholar 

  93. Nylund L, Dahlin I, Lagercrantz H (1987) Fetal catecholamines and the Apgar score. J Perinat Med 15: 340–344

    PubMed  CAS  Google Scholar 

  94. Belai Y, Goodwin TM, Durand M et al (1998) Umbilical arteriovenous PO2 and PCO2 differences and neonatal morbidity in term infants with severe acidosis. Am J Obstet Gynecol 178: 13–19

    PubMed  CAS  Google Scholar 

  95. Portman RJ, Carter BS, Gaylord MS et al (1990) Predicting neonatal morbidity after perinatal asphyxia: a scoring system. Am J Obstet Gynecol 162: 174–182

    PubMed  CAS  Google Scholar 

  96. Perlman JM, Risser R (1996) Can asphyxiated infants at risk for neonatal seizures be rapidly identified by current high-risk markers? Pediatrics 97: 456–462

    PubMed  CAS  Google Scholar 

  97. Ekert P, Perlman M, Steinlin M et al (1997) Predicting the outcome of postasphyxial hypoxic-ischemic encephalopathy within 4 hours of birth. J Pediatr 131: 613–617

    PubMed  CAS  Google Scholar 

  98. Carter BS, McNabb F, Merenstein GB (1998) Prospective validation of a scoring system for predicting neonatal morbidity after acute perinatal asphyxia. J Pediatr 132: 619–623

    PubMed  CAS  Google Scholar 

  99. Sehdev HM, Stamilio DM, Macones GA et al (1997) Predictive factors for neonatal morbidity in neonates with an umbilical arterial cord pH less than 7.00. Am J Obstet Gynecol 177: 1030–1034

    PubMed  CAS  Google Scholar 

  100. Mathew OP, Bland H, Boxerman SB et al (1980) CSF lactate levels in high risk neonates with and without asphyxia. Pediatrics 66: 224–227

    PubMed  CAS  Google Scholar 

  101. Huang CC, Wang ST, Chang YC et al (1999) Measurement of the urinary lactate:creatinine ratio for the early identification of newborn infants at risk for hypoxic-ischemic encephalopathy. N Engl J Med 341: 328–335

    PubMed  CAS  Google Scholar 

  102. Pourcyrous M, Bada HS, Yang W et al (1999) Prognostic significance of cerebrospinal fluid cyclic adenosine monophosphate in neonatal asphyxia. J Pediatr 134: 90–96

    PubMed  CAS  Google Scholar 

  103. Saugstad OD (1976) Hypoxanthine as a measurement of hypoxia. Pediatr Res 9: 575

    Google Scholar 

  104. Ruth V, Fyhrquist F, Clemons G et al (1988) Cord plasma vasopressin, erythropoietin, and hypoxanthine as indices of asphyxia at birth. Pediatr Res 24: 490–494

    PubMed  CAS  Google Scholar 

  105. Buonocore G, Zani S, Perrone S et al (1998) Intraerythrocyte nonprotein- bound iron and plasma malondialdehyde in the hypoxic newborn. Free Radic Biol Med 25: 766–770

    PubMed  CAS  Google Scholar 

  106. Buonocore G, Perrone S, Gioia D et al (1999) Nucleated red blood cell count at birth as an index of perinatal brain damage. Am J Obstet Gynecol 181: 1500–1505

    PubMed  CAS  Google Scholar 

  107. Buonocore G, Perrone S, Longini M et al (2003) Non protein bound iron as early predictive marker of neonatal brain damage. Brain 126: 1224–1230

    PubMed  Google Scholar 

  108. Niklinski W, Palynyczko Z, Jozwik M et al (1987) Cord blood serum creatine kinase isoenzymes with placental dysfunction. J Perinat Med 15: 350–354

    PubMed  CAS  Google Scholar 

  109. Thornberg E, Thiringer K, Hagberg H et al (1995) Neuron specific enolase in asphyxiated newborns: association with encephalopathy and cerebral function monitor trace. Arch Dis Child Fetal Neonatal Ed 72: F39–F42

    PubMed  CAS  Google Scholar 

  110. Nagdyman N, Grimmer I, Scholz T et al (2003) Predictive value of brain-specific proteins in serum for neurodevelopmental outcome after birth asphyxia. Pediatr Res 54: 270–275

    PubMed  CAS  Google Scholar 

  111. Blennow M, Savman K, Ilves P et al (2001) Brain-specific proteins in the cerebrospinal fluid of severely asphyxiated newborn infants. Acta Paediatr 90: 1171–1175

    PubMed  CAS  Google Scholar 

  112. Gazzolo D, Marinoni E, Di Iorio R et al (2004) Urinary S100B protein measurements: A tool for the early identification of hypoxicischemic encephalopathy in asphyxiated full-term infants. Crit Care Med 32: 131–136

    Google Scholar 

  113. Martin-Ancel A, Garcia-Alix A, Pascual-Salcedo D et al (1997) Interleukin-6 in the cerebrospinal fluid after perinatal asphyxia is related to early and late neurological manifestations. Pediatrics 100: 789–794

    PubMed  CAS  Google Scholar 

  114. Savman K, Blennow M, Gustafson K et al (1998) Cytokine response in cerebrospinal fluid after birth asphyxia. Pediatr Res 43: 746–751

    PubMed  CAS  Google Scholar 

  115. Oygur N, Sonmez O, Saka O et al (1998) Predictive value of plasma and cerebrospinal fluid tumour necrosis factor-alpha and interleukin-1 beta concentrations on outcome of full term infantswith hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed 79: F190–F193

    PubMed  CAS  Google Scholar 

  116. Foster-Barber A, Dickens B, Ferriero DM (2001) Human perinatal asphyxia: correlation of neonatal cytokines with MRI and outcome. Dev Neurosci 23: 213–218

    PubMed  CAS  Google Scholar 

  117. Xanthou M, Fotopoulos S, Mouchtouri A et al (2002) Inflammatory mediators in perinatal asphyxia and infection. Acta Paediatr Suppl 91: 92–97

    PubMed  CAS  Google Scholar 

  118. Chiesa C, Pellegrini G, Panero A et al (2003) Umbilical cord interleukin-6 levels are elevated in term neonates with perinatal asphyxia. Eur J Clin Invest 33: 352–358

    PubMed  CAS  Google Scholar 

  119. Levene MI, Kornberg J, Williams THC (1985) The incidence and severity of postasphyxial encephalopathy in full-term infants. Early Hum Dev 11: 21–28

    PubMed  CAS  Google Scholar 

  120. Mellits ED, Holden KR, Freeman JM (1982) Neonatal seizures. II. A multivariate analysis of factors associated with outcome. Pediatrics 70: 177–185

    Google Scholar 

  121. Wayenberg JL, Vermeylen D, Bormans J et al (1994) Diagnosis of severe birth asphyxia and early prediction of neonatal neurological outcome in term asphyxiated newborns. J Perinat Med 22: 129–136

    PubMed  CAS  Google Scholar 

  122. Perlman JM, Adcock L, DeWitt S et al (1999) Early identification of infants at highest risk for abnormal (Abn) outcome secondary to intrapartum hypoxia ischemia ( HI)- Texas Regional Survey. Pediatr Res 45: 218A

    Google Scholar 

  123. Wyatt JS (1993) Near-infrared spectroscopy in asphyxial brain injury. Clin Perinatol 20: 369–378

    PubMed  CAS  Google Scholar 

  124. Van Bel F, Van de Bor M, Stijnen T et al (1987) Cerebral blood flow velocity pattern in healthy and asphyxiated newborns: a controlled study. Eur J Pediatr 146: 461–467

    PubMed  Google Scholar 

  125. Toet MC, Lemmers PM, van Schelven LJ et al (2006) Cerebral oxygenation and electrical activity after birth asphyxia: their relation to outcome. Pediatrics 117: 333–339

    PubMed  Google Scholar 

  126. Eken P, Jansen GH, Groenendaal F et al (1994) Intracranial lesions in the fullterm infant with hypoxic ischaemic encephalopathy: ultrasound and autopsy correlation. Neuropediatr 25: 301–307

    CAS  Google Scholar 

  127. Baenziger O, Martin E, Steinlin M et al (1993) Early pattern recognition in severe perinatal asphyxia: a prospective MRI study. Neuroradiology 35: 437–442

    PubMed  CAS  Google Scholar 

  128. Barkovich AJ, Westmark K, Partridge C et al (1995) Perinatal asphyxia: MR findings in the first 10 days. AJNR Am J Neuroradiol 16: 427–438

    PubMed  CAS  Google Scholar 

  129. Rutherford M, Pennock J, Schwieso J et al (1996) Hypoxic-ischaemic encephalopathy: early and late magnetic resonance imaging findings in relation to outcome. Arch Dis Child Fetal Neonatal Ed 75: F145–F151

    PubMed  CAS  Google Scholar 

  130. Rutherford MA, Pennock JM, Counsell SJ et al (1998) Abnormal magnetic resonance signal in the internal capsule predicts poor neurodevelopmental outcome in infants with hypoxic- ischemic encephalopathy. Pediatrics 102: 323–328

    PubMed  CAS  Google Scholar 

  131. Rutherford M, Counsell S, Allsop J et al (2004) Diffusion-weighted magnetic resonance imaging in term perinatal brain injury: a comparison with site of lesion and time from birth. Pediatrics 114: 1004–1014

    PubMed  Google Scholar 

  132. L’Abee C, de Vries LS, van der Grond J et al (2005) Early diffusion- weighted MRI and 1H-magnetic resonance spectroscopy in asphyxiated fullterm neonates. Biol Neonate 88: 306–312

    PubMed  Google Scholar 

  133. Sie LT, van der Knaap MS, Oosting J et al (2000) MR patterns of hypoxic-ischemic brain damage after prenatal, perinatal or postnatal asphyxia. Neuropediatr 31: 128–136

    CAS  Google Scholar 

  134. Okereafor A, Allsop J, Counsell SJ et al (2008) Patterns of brain injury in neonates exposed to perinatal sentinel events. Pediatrics 121: 906–914

    PubMed  Google Scholar 

  135. Roth SC, Edwards AD, Cady EB et al (1992) Relation between cerebral oxidative metabolism following birth asphyxia, and neurodevelopmental outcome and brain growth at one year. Dev Med Child Neurol 34: 285–295

    PubMed  CAS  Google Scholar 

  136. Lorek A, Takei Y, Cady EB et al (1994) Delayed (“secondary”) cerebral energy failure after acute hypoxia-ischemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic resonance spectroscopy. Pediatr Res 36: 699–706

    PubMed  CAS  Google Scholar 

  137. Robertson NJ, Cowan FM, Cox IJ et al (2002) Brain alkaline intracellular pH after neonatal encephalopathy. Ann Neurol 52: 732–742

    PubMed  CAS  Google Scholar 

  138. Groenendaal F, Veenhoven RH, van der Grond J et al (1994) Cerebral lactate and N-acetyl-aspartate/choline ratios in asphyxiated full-term neonates demonstrated in vivo using proton magnetic resonance spectroscopy. Pediatr Res 35: 148–151

    PubMed  CAS  Google Scholar 

  139. Holmes G, Rowe J, Hafford J et al (1982) Prognostic value of the electroencephalogram in neonatal asphyxia. Electroencephalogr Clin Neurophysiol 53: 60–72

    PubMed  CAS  Google Scholar 

  140. Watanabe K, Miyazaki S, Hara K et al (1980) Behavioral state cycles, background EEGs and prognosis of newborns with perinatal hypoxia. Electroencephalogr Clin Neurophysiol 49: 618–625

    PubMed  CAS  Google Scholar 

  141. Monod N, Pajot N, Guidasci S (1972) The neonatal EEG: statistical studies and prognostic value in fullterm and preterm babies. Electroencephalogr Clin Neurophysiol 32: 529–544

    PubMed  CAS  Google Scholar 

  142. Grigg-Damberger MM, Coker SB, Halsey CL et al (1989) Neonatal burst suppression: its developmental significance. Pediatr Neurol 5: 84–92

    PubMed  CAS  Google Scholar 

  143. Connell J, Oozeer R, de Vries L et al (1989) Clinical and EEG response to anticonvulsants in neonatal seizures. Arch Dis Child 64: 459–464

    PubMed  CAS  Google Scholar 

  144. Bjerre I, Hellström-Westas L, Rosen I et al (1983) Monitoring of cerebral function after severe asphyxia in infancy. Arch Dis Child 58: 997–1002

    PubMed  CAS  Google Scholar 

  145. Archbald F, Verma UL, Tejani NA et al (1984) Cerebral function monitor in the neonate. II: Birth asphyxia. Dev Med Child Neurol 26: 162–168

    PubMed  CAS  Google Scholar 

  146. Thornberg E, Thiringer K (1990) Normal pattern of the cerebral function monitor trace in term and preterm neonates. Acta Paediatr Scand 79: 20–25

    PubMed  CAS  Google Scholar 

  147. Hellström-Westas L (1992) Comparison between tape-recorded and amplitude-integrated EEG monitoring in sick newborn infants. Acta Paediatr 81: 812–819

    PubMed  Google Scholar 

  148. van Rooij LGM, Toet MC, Osredkar D et al (2005) Recovery of amplitude integrated electroencephalographic background patterns within 24 hours of perinatal asphyxia. Arch Dis Child Fetal Neonatal Ed 90: F245–F251

    PubMed  Google Scholar 

  149. Hellström-Westas L, Rosen I, Svenningsen NW (1995) Predictive value of early continuous amplitude integrated EEG recordings on outcome after severe birth asphyxia in full term infants. Arch Dis Child Fetal Neonatal Ed 72: F34–F38

    PubMed  Google Scholar 

  150. Eken P, Toet MC, Groenendaal F et al (1995) Predictive value of early neuroimaging, pulsed Doppler and neurophysiology in full term infants with hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed 73: F75–F80

    PubMed  CAS  Google Scholar 

  151. Taylor MJ, Murphy WJ, Whyte HE (1992) Prognostic reliability of somatosensory and visual evoked potentials of asphyxiated term infants. Dev Med Child Neurol 34: 507–515

    PubMed  CAS  Google Scholar 

  152. Mercuri E, von Siebenthal K, Daniels H et al (1994) Multimodality evoked responses in the neurological assessment of the newborn. Eur J Pediatr 153: 622–631

    PubMed  CAS  Google Scholar 

  153. Muttitt SC, Taylor MJ, Kobayashi JS et al (1991) Serial visual evoked potentials and outcome in term birth asphyxia. Pediatr Neurol 7: 86–90

    PubMed  CAS  Google Scholar 

  154. de Vries LS (1993) Somatosensory-evoked potentials in term neonates with postasphyxial encephalopathy. Clin Perinatol 20: 463–482

    PubMed  Google Scholar 

  155. Gibson NA, Graham M, Levene MI (1992) Somatosensory evoked potentials and outcome in perinatal asphyxia. Arch Dis Child 67: 393–398

    PubMed  CAS  Google Scholar 

  156. van den Broek MP, Huitema AD, van Hasselt JG et al (2011) Lidocaine (lignocaine) dosing regimen based upon a population pharmacokinetic model for preterm and term neonates with seizures. Clin Pharmacokinet 50: 461–469

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this chapter

Cite this chapter

Groenendaal, F., van Bel, F. (2012). Clinical Aspects and Treatment of the Hypoxic-Ischemic Syndrome. In: Buonocore, G., Bracci, R., Weindling, M. (eds) Neonatology. Springer, Milano. https://doi.org/10.1007/978-88-470-1405-3_136

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1405-3_136

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1404-6

  • Online ISBN: 978-88-470-1405-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics