Neonatology pp 1118-1130 | Cite as

Neuroimaging Studies

  • Luca A. Ramenghi
  • Petra S. Hüppi


Many years have passed since the introduction of cranial transfontanellar ultrasound (CUS) to diagnose acquired brain lesions in neonates. CUS remains an important technique in the daily practice of neonatal units but major improvements have been obtained by combining different imaging modalities. Magnetic resonance imaging (MRI) is the modality that allows assessment of the developing brain in great detail because of its resolving power and non-invasiveness. MR techniques are unique in that they provide not only detailed structural but also metabolic and functional information without the use of ionizing radiation. Conventional MRI is therefore now widely used for identifying normal and pathologic brain morphology, and giving objective information about the structure of the neonatal brain during development and injury.


White Matter Apparent Diffusion Coefficient Diffusion Weight Imaging Conventional Magnetic Resonance Imaging Perinatal Asphyxia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ramenghi LA, Hüppi PS (2009) Imaging of the neonatal brain. In: Levene MI, Chevernak FA (eds) Fetal and neonatal neurology and neurosurgery. Churchill Livingstone, London, Edinburgh, pp 68–103Google Scholar
  2. 2.
    Ramenghi LA, Mosca F, Counsell S, Rutherford M (2005) Magnetic resonance imaging of the brain in preterm infants. In: Tortori Donati P (ed) Pediatric neuroradiology. Springer, Berlin, pp 199–234CrossRefGoogle Scholar
  3. 3.
    Rutherford M (2001) MRI of the neonatal brain. Saunders, LondonGoogle Scholar
  4. 4.
    Govaert P, Ramenghi L, Taal R et al (2009) Diagnosis of perinatal stroke I: definitions, differential diagnosis and registration. Acta Paediatr 98: 1556–1567PubMedCrossRefGoogle Scholar
  5. 5.
    Cowan FM, Pennock JM, Hanrahan et al (1994) Early detection of cerebral infarction and hypoxic ischemic encephalopathy in neonates using diffusion-weighted magnetic resonance imaging. Neuropediatrics 25: 172–175PubMedCrossRefGoogle Scholar
  6. 6.
    Bouza H, Dubowitz LM, Rutherford M et al (1994) Late magnetic resonance imaging and clinical findings in neonates with unilateral lesions on cranial ultrasound. Dev Med Child Neurol 36: 951–964PubMedCrossRefGoogle Scholar
  7. 7.
    D’Arceuil HE, de Crespigny AJ, Röther J et al (1998) Diffusion and perfusion magnetic resonance imaging of the evolution of hypoxic ischemic encephalopathy in the neonatal rabbit. J Magn Reson Imaging 8: 820–828PubMedCrossRefGoogle Scholar
  8. 8.
    Tuor UI, Kozlowski P, Del Bigio MR (1998) Diffusion- and T2- weighted increases in magnetic resonance images of immature brain during hypoxia-ischemia: transient reversal posthypoxia. Exp Neurol 150: 321–328PubMedCrossRefGoogle Scholar
  9. 9.
    Dudnik J, Mercuri E, Al-Nakib et al (2009) Evolution of unilateral arterial ischemic stroke on conventional and diffusion-weighted MR imaging. AJNR Am J Neuroradiol 30: 998–1004CrossRefGoogle Scholar
  10. 10.
    Cheong JL, Cowan FM (2009) Neonatal arterial ischaemic stroke: obstetric issues. Semin Fetal Neonatal Med 14: 267–271PubMedCrossRefGoogle Scholar
  11. 11.
    Benders MJ, Groenendaal F, Uiterwaal CS et al (2007) Maternal and infant characteristics associated with perinatal arterial stroke in the preterm infant. Stroke 38: 1759–1765PubMedCrossRefGoogle Scholar
  12. 12.
    Benders MJ, Groenendaal F, De Vries LS (2009) Preterm arterial ischemic stroke. Semin Fetal Neonatal Med 14: 272–277PubMedCrossRefGoogle Scholar
  13. 13.
    Rutherford MA, Pennock JM, Counsell SJ et al (1998) Abnormal magnetic resonance signal in the internal capsule predicts poor neurodevelopmental outcome in infants with hypoxic-ischemic encephalopathy. Pediatrics 102: 323–328PubMedCrossRefGoogle Scholar
  14. 14.
    Rutherford M, Ramenghi LA, Edwards AD et al (2010) Assessment of brain tissue injury after moderate hypothermia in neonates with hypoxic-ischaemic encephalopathy: a nested substudy of a randomised controlled trial. Lancet Neurol 9: 39–45PubMedCrossRefGoogle Scholar
  15. 15.
    Groenendaal F, Veenhoven RH, van der Grond J et al (1994) Cerebral lactate and N-acetyl-aspartate/choline ratios in asphyxiated full-term neonates demonstrated in vivo using proton magnetic resonance spectroscopy. Pediatr Res 35: 148–151PubMedCrossRefGoogle Scholar
  16. 16.
    Hanrahan JD, Cox IJ, Azzopardi D et al (1999) Relation between proton magnetic resonance spectroscopy within 18 hours of birth asphyxia and neurodevelopment at 1 year of age. Dev Med Child Neurol 41: 76–82PubMedCrossRefGoogle Scholar
  17. 17.
    Hüppi PS (2001) MR imaging and spectroscopy of brain development. Magn Reson Imaging Clin N Am 9: 1–17PubMedGoogle Scholar
  18. 18.
    Burns CM, Rutherford MA, Boardman JP, Cowan FM (2008) Patterns of cerebral injury and neurodevelopmental outcomes after symptomatic neonatal hypoglycemia. Pediatrics 122: 65–74PubMedCrossRefGoogle Scholar
  19. 19.
    Tanner SF, Ramenghi LA, Ridgway JP et al (2000) Quantitative comparison of intrabrain diffusion in adults and preterm and term neonates and infants. AJR Am J Roentgenol 174: 1643–1649PubMedGoogle Scholar
  20. 20.
    Righini A, Ramenghi LA, Parini R et al (2003) Water apparent diffusion coefficient and T2 changes in the acute stage of maple syrup urine disease: evidence of intramyelinic and vasogenic-interstitial edema. J Neuroimaging 13: 162–165PubMedGoogle Scholar
  21. 21.
    Righini A, Ramenghi L, Zirpoli S et al (2005) Brain apparent diffusion coefficient decrease during correction of severe hypernatremic dehydration. AJNR Am J Neuroradiol 26: 1690–1694PubMedGoogle Scholar
  22. 22.
    Ramenghi LA, Govaert P, Fumagalli M et al (2009) Neonatal cerebral sinovenous thrombosis. Semin Fetal Neonatal Med 14: 278–283PubMedCrossRefGoogle Scholar
  23. 23.
    Ramenghi LA, Gill BJ, Tanner SF et al (2002) Cerebral venous thrombosis, intraventricular haemorrhage and white matter lesions in a preterm newborn with factor V ( Leiden) mutation. Neuropediatrics 33: 97–99Google Scholar
  24. 24.
    Wu YW, Hamrick SE, Miller SP et al (2003) Intraventricular hemorrhage in term neonates caused by sinovenous thrombosis. Ann Neurol 54: 123–126PubMedCrossRefGoogle Scholar
  25. 25.
    Ment LR, Hirtz D, Hüppi PS (2009) Imaging biomarkers of outcome in the developing preterm brain. Lancet Neurol 8: 1042–1055PubMedCrossRefGoogle Scholar
  26. 26.
    Volpe JJ (200) Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 8:110–124Google Scholar
  27. 27.
    Govaert P, de Vries L (2010) Atlas of neonatal brain sonography. John Wiley & SonsGoogle Scholar
  28. 28.
    Blankenberg FG, Norbash AM, Lane B et al (1996) Neonatal intracranial ischemia and hemorrhage: diagnosis with US, CT, and MR imaging. Radiology 199: 253–259Google Scholar
  29. 29.
    Keeney SE, Adcock EW, McArdle CB et al (1991) Prospective observations of 100 high-risk neonates by high-field (1.5 Tesla) magnetic resonance imaging of the central nervous system: I. Intraventricular and extracerebral lesions. Pediatrics 87: 421–430Google Scholar
  30. 30.
    Larroche JC (1972) Sub-ependymal pseudo-cysts in the newborn. Biol Neonate 21: 170–83PubMedCrossRefGoogle Scholar
  31. 31.
    Ramenghi LA, Domizio S, Quartulli L, Sabatino G (1997) Prenatal pseudocysts of the germinal matrix in preterm infants. J Clin Ultrasound 25: 169–173PubMedCrossRefGoogle Scholar
  32. 32.
    Fumagalli M, Ramenghi LA, Righini A et al (2009) Cerebellar haemorrhages and pons development in extremely low birth weight infants. Front Biosci 1: 537–541Google Scholar
  33. 33.
    de Vries LS, Eken P, Dubowitz LM (1992) The spectrum of leukomalacia using cranial ultrasound. Behav Brain Res 49: 1–6PubMedCrossRefGoogle Scholar
  34. 34.
    Judas M, Rados P, Jovanov-Milosevic N et al (2005) Structural, immunocytochemical and mr imaging properties of periventricular crossoroads of growing pathways in preterm infants. AJNR Am J Neuroradiol 26: 2671–2684PubMedGoogle Scholar
  35. 35.
    Back SA, Luo NL, Borenstein NS et al (2001) Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J Neurosci 21: 1302–1312PubMedGoogle Scholar
  36. 36.
    Counsell SJ, Edwards AD, Chew AT et al (2008) Specific relations between neurodevelopmental abilities and white matter microstructure in children born preterm. Brain 131: 3201–3208PubMedCrossRefGoogle Scholar
  37. 37.
    Maalouf EF, Duggan PJ, Counsell SJ et al (2001) Comparison of findings on cranial ultrasound and magnetic resonance imaging in preterm infants. Pediatrics 107: 719–727PubMedCrossRefGoogle Scholar
  38. 38.
    Childs AM, Cornette L, Ramenghi LA et al (2001) Magnetic resonance and cranial ultrasound characteristics of periventricular white matter abnormalities in newborn infants. Clin Radiol 56: 647–655PubMedCrossRefGoogle Scholar
  39. 39.
    Cornette LG, Tanner SF, Ramenghi LA et al (2002). Magnetic resonance imaging of the infant brain: anatomical characteristics and clinical significance of punctate lesions. Arch Dis Child Fetal Neonatal Ed 86: F171–F177PubMedCrossRefGoogle Scholar
  40. 40.
    Counsell SJ, Allsop JM, Harrison MC et al (2003) Diffusionweighted imaging of the brain in preterm infants with focal and diffuse white matter abnormality. Pediatrics 112: 1–7PubMedCrossRefGoogle Scholar
  41. 41.
    Inder T, Huppi PS, Zientara GP et al (1999) Early detection of periventricular leukomalacia by diffusion-weighted magnetic resonance imaging techniques. Pediatrics 107: 719–727Google Scholar
  42. 42.
    Inder TE, Huppi PS, Warfield S et al (1999) Periventricular white matter injury in the premature infant is followed by reduced cerebral cortical gray matter volume at term. Ann Neurol 46: 755–760PubMedCrossRefGoogle Scholar
  43. 43.
    Ricci D, Anker S, Cowan F et al (2006) Thalamic atrophy in infants with PVL and cerebral visual impairment. Early Hum Dev 82: 591–595PubMedCrossRefGoogle Scholar
  44. 44.
    Limperopoulos C, Soul JS, Haidar H et al (2005) Impaired trophic interactions between the cerebellum and the cerebrum among preterm infants. Pediatrics 116: 844–850PubMedCrossRefGoogle Scholar
  45. 45.
    Murphy BP, Inder TE, Huppi PS et al (2001) Impaired cerebral cortical gray matter growth after treatment with dexamethasone for neonatal chronic lung disease. Pediatrics 107: 217–221PubMedCrossRefGoogle Scholar
  46. 46.
    Ramenghi LA, Fumagalli M, Righini A et al (2007) Magnetic resonance imaging assessment of brain maturation in preterm neonates with punctate white matter lesions. Neuroradiology 49: 161–167PubMedCrossRefGoogle Scholar
  47. 47.
    Boardman JP, Counsell SJ, Rueckert D et al (2007) Early growth in brain volume is preserved in the majority of preterm infants. Ann Neurol 62: 185–192PubMedCrossRefGoogle Scholar
  48. 48.
    Arzoumanian Y, Mirmiran M, Barnes PD et al (2003) Diffusion tensor brain imaging findings at term-equivalent age may predict neurologic abnormalities in low birth weight preterm infants. AJNR Am J Neuroradiol 8: 1646–1653Google Scholar
  49. 49.
    Bassi L, Ricci D, Volzone A et al (2008) Probabilistic diffusion tractography of the optic radiations and visual function in preterm infants at term equivalent age. Brain 131: 573–582PubMedCrossRefGoogle Scholar
  50. 50.
    Dubois J, Benders M, Borradori-Tolsa C et al (2008) Primary cortical folding in the human newborn: an early marker of later functional development. Brain 131: 2028–2041PubMedCrossRefGoogle Scholar
  51. 51.
    Fransson P, Skiöld B, Horsch S et al (2007) Resting-state networks in the infant brain. Proc Natl Acad Sci USA 104: 15531–15536PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Luca A. Ramenghi
    • 1
  • Petra S. Hüppi
  1. 1.Division of NeonatologyGiannina Gaslini Children’s HospitalGenoaItaly

Personalised recommendations