Neonatology pp 1079-1086 | Cite as

Inflammation and Perinatal Brain Injury

  • Henrik Hagberg
  • Carina Mallard
  • Karin Sävman


Inflammation is a systemic and local immune reaction to injury secondary to microbial invasion or other damaging events like trauma and hypoxia-ischemia (Fig. 128.1). This response aids in identifying extrinsic pathogens and kills microbes (and affected cells) if the injury is caused by infection [1]. Irrespective of the primary triggering event, inflammation often causes brain damage during its acute stage (collateral damage) followed by a secondary phase that in most cases promotes tissue repair and regeneration [2].


Cerebral Palsy White Matter Injury Spastic Cerebral Palsy Microbial Invasion Neonatal Encephalopathy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Nathan C (2002) Points of control in inflammation. Nature 420: 846–852PubMedGoogle Scholar
  2. 2.
    Perry H, Newman TA, Cunningham C (2003) The impact of systemic infection on the progression of neurodegenrative disease. Nat Rev Neurosci 4: 103–112PubMedGoogle Scholar
  3. 3.
    Dammann O, O’Shea TM (2008) Cytokines and perinatal brain damage. Clin Perinatol 35: 643–663PubMedGoogle Scholar
  4. 4.
    Leviton A, Gilles F, Neff R et al (1976) Multivariate analysis of risk of perinatal telencephalic leucoencephalopathy. Am J Epidemiol 104: 621–626PubMedGoogle Scholar
  5. 5.
    Gilles FH, Averill DR Jr, Kerr CS (1977) Neonatal endotoxin encephalopathy. Ann Neurol 2: 49–56PubMedGoogle Scholar
  6. 6.
    Vilcek J (1998) The Cytokines: an overview. In: Thomson AW (ed) The Cytokine Handbook, 3rd edn. Academic Press, pp 1–21Google Scholar
  7. 7.
    Romero R, Espinoza J, Goncalves LF et al (2007) The role of inflammation and infection in preterm birth. Semin Reprod Med 25: 21–39PubMedGoogle Scholar
  8. 8.
    Gomez R, Romero R, Ghezzi F et al (1998) The fetal inflammatory response syndrome. Am J Obstet Gynecol 179: 194–202PubMedGoogle Scholar
  9. 9.
    Yoon BH, Romero R, Park JS et al (2000) Fetal exposure to an intra-amniotic inflammation and the development of cerebral palsy at the age of three years. Am J Obstet Gynecol 182: 675–681PubMedGoogle Scholar
  10. 10.
    Szaflarski J, Burtrum D, Silverstein FS (1995) Cerebral hypoxiaischemia stimulates cytokine gene expression in perinatal rats. Stroke 26: 1093–1100PubMedGoogle Scholar
  11. 11.
    McRae A, Gilland E, Bona E, Hagberg H (1995) Microglia activation after neonatal hypoxic-ischemia. Brain Res Dev Brain Res 84: 245–252PubMedGoogle Scholar
  12. 12.
    Tahraoui SL, Marret S, Bodenant C et al (2001) Central role of microglia in neonatal excitotoxic lesions of the murine periventricular white matter. Brain Pathol 11: 56–71PubMedGoogle Scholar
  13. 13.
    Giulian D, Vaca K (1993) Inflammatory glia mediate delayed neuronal damage after ischemia in the central nervous system. Stroke 24: I84–I90PubMedGoogle Scholar
  14. 14.
    Hagberg H, Gilland E, Bona E et al (1996) Enhanced expression of interleukin (IL)-1 and IL-6 messenger RNA and bioactive protein after hypoxia-ischemia in neonatal rats. Pediatr Res 40: 603–609PubMedGoogle Scholar
  15. 15.
    Dommergues MA, Patkai J, Renauld JC et al (2000) Proinflammatory cytokines and interleukin-9 exacerbate excitotoxic lesions of the newborn murine neopallium. Ann Neurol 47: 54–63PubMedGoogle Scholar
  16. 16.
    Grether JK, Nelson KB (1997) Maternal infection and cerebral palsy in infants of normal birth weight. Jama 278: 207–211PubMedGoogle Scholar
  17. 17.
    Nelson KB, Dambrosia JM, Grether JK et al (1998) Neonatal cytokines and coagulation factors in children with cerebral palsy. Ann Neurol 44: 665–675PubMedGoogle Scholar
  18. 18.
    Hagberg H, Mallard C (2005) Effect of inflammation on central nervous system development and vulnerability. Curr Opin Neurol 18: 117–123PubMedGoogle Scholar
  19. 19.
    Gaulden J, Reiter JF (2008) Neur-ons and neur-offs: regulators of neural induction in vertebrate embryos and embryonic stem cells. Hum Mol Genet 17: R60–R66PubMedGoogle Scholar
  20. 20.
    Shimazaki T, Shingo T, Weiss S (2001) The ciliary neurotrophic factor/leukemia inhibitory factor/gp130 receptor complex operates in the maintenance of mammalian forebrain neural stem cells. J Neurosci 21: 7642–7653PubMedGoogle Scholar
  21. 21.
    Giulian D, Young DG, Woodward J et al (1988) Interleukin-1 is an astroglial growth factor in the developing brain. J Neurosci 8: 709–714PubMedGoogle Scholar
  22. 22.
    de la Mano A, Gato A, Alonso MI et al (2007) Role of interleukin- 1beta in the control of neuroepithelial proliferation and differentiation of the spinal cord during development. Cytokine 37: 128–137PubMedGoogle Scholar
  23. 23.
    Vela JM, Molina-Holgado E, Arevalo-Martin A et al (2002) Interleukin- 1 regulates proliferation and differentiation of oligodendrocyte progenitor cells. Mol Cell Neurosci 20: 489 - 502PubMedGoogle Scholar
  24. 24.
    Dziembowska M, Tham TN, Lau P et al (2005) A role for CXCR4 signaling in survival and migration of neural and oligodendrocyte precursors. Glia 50: 258–269PubMedGoogle Scholar
  25. 25.
    Tran PB, Banisadr G, Ren D et al (2007) Chemokine receptor expression by neural progenitor cells in neurogenic regions of mouse brain. J Comp Neurol 500: 1007–1033PubMedGoogle Scholar
  26. 26.
    Zou YR, Kottmann AH, Kuroda M et al (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393: 595–599PubMedGoogle Scholar
  27. 27.
    Borrell V, Marin O (2006) Meninges control tangential migration of hem-derived Cajal-Retzius cells via CXCL12/CXCR4 signaling. Nat Neurosci 9: 1284–1293PubMedGoogle Scholar
  28. 28.
    Stevens B, Allen NJ, Vazquez LE et al (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131: 1164–1178PubMedGoogle Scholar
  29. 29.
    Shinjyo N, Stahlberg A, Dragunow M et al (2009) Complementderived anaphylatoxin C3a regulates in vitro differentiation and migration of neural progenitor cells. Stem Cells 27: 2824–2832PubMedGoogle Scholar
  30. 30.
    Mallard C, Wang X, Hagberg H (2009) The role of Toll-like receptors in perinatal brain injury. Clin Perinatol 36:763–772, v–viGoogle Scholar
  31. 31.
    Cameron JS, Alexopoulou L, Sloane JA et al (2007) Toll-like receptor 3 is a potent negative regulator of axonal growth in mammals. J Neurosci 27: 13033–13041PubMedGoogle Scholar
  32. 32.
    Lathia JD, Okun E, Tang SC et al (2008) Toll-like receptor 3 is a negative regulator of embryonic neural progenitor cell proliferation. J Neurosci 28: 13978–13984PubMedGoogle Scholar
  33. 33.
    Ma Y, Li J, Chiu I et al (2006) Toll-like receptor 8 functions as a negative regulator of neurite outgrowth and inducer of neuronal apoptosis. J Cell Biol 175: 209–215PubMedGoogle Scholar
  34. 34.
    Rolls A, Shechter R, London A et al (2007) Toll-like receptors modulate adult hippocampal neurogenesis. Nat Cell Biol 9: 1081–1088PubMedGoogle Scholar
  35. 35.
    Huh GS, Boulanger LM, Du H et al (2000) Functional requirement for class I MHC in CNS development and plasticity. Science 290: 2155–2159PubMedGoogle Scholar
  36. 36.
    Goldenberg RL, Culhane JF, Iams JD et al (2008) Epidemiology and causes of preterm birth. Lancet 371: 75–84PubMedGoogle Scholar
  37. 37.
    Hagberg H, Mallard C, Jacobsson B (2005) Role of cytokines in preterm labour and brain injury. BJOG 112 (Suppl 1): 16–18PubMedGoogle Scholar
  38. 38.
    Patni S, Flynn P, Wynen LP et al (2007) An introduction to Tolllike receptors and their possible role in the initiation of labour. BJOG 114: 326–1334Google Scholar
  39. 39.
    Yoon BH, Romero R, Moon JB et al (2001) Clinical significance of intra-amniotic inflammation in patients with preterm labor and intact membranes. Am J Obstet Gynecol 185: 1130–1136PubMedGoogle Scholar
  40. 40.
    Verma U, Tejani N, Klein S et al (1997) Obstetric antecedents of intraventricular hemorrhage and periventricular leukomalacia in the low-birth-weight neonate. Am J Obstet Gynecol 176: 275–281PubMedGoogle Scholar
  41. 41.
    Dammann O, Allred EN, Veelken N (1998) Increased risk of spastic diplegia among very low birth weight children after preterm labor or prelabor rupture of membranes. J Pediatr 132: 531–535PubMedGoogle Scholar
  42. 42.
    Jacobsson B, Hagberg G, Hagberg B et al (2002) Cerebral palsy in preterm infants: a population-based case-control study of antenatal and intrapartal risk factors. Acta Paediatr 91: 946–951PubMedGoogle Scholar
  43. 43.
    Leviton A, Paneth N, Reuss ML et al (1999) Maternal infection, fetal inflammatory response, and brain damage in very low birth weight infants. Developmental Epidemiology Network Investigators. Pediatr Res 46: 566–575Google Scholar
  44. 44.
    Duggan PJ, Maalouf EF, Watts TL et al (2001) Intrauterine T-cell activation and increased proinflammatory cytokine concentrations in preterm infants with cerebral lesions. Lancet 358: 1699–1700PubMedGoogle Scholar
  45. 45.
    Wu YW, Colford JM Jr (2000) Chorioamnionitis as a risk factor for cerebral palsy: a meta-analysis. JAMA 284: 1417–1424PubMedGoogle Scholar
  46. 46.
    Toti P, De Felice C, Palmeri ML et al (1998) Inflammatory pathogenesis of cortical polymicrogyria: an autopsy study. Pediatr Res 44: 291–296PubMedGoogle Scholar
  47. 47.
    Monje ML, Toda H, Palmer TD (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302: 1760–1765PubMedGoogle Scholar
  48. 48.
    Leviton A, Gressens P (2007) Neuronal damage accompanies perinatal white-matter damage. Trends Neurosci 30: 473–478PubMedGoogle Scholar
  49. 49.
    Duncan JR, Cock ML, Scheerlinck JP et al (2002) White matter injury after repeated endotoxin exposure in the preterm ovine fetus. Pediatr Res 52: 941–949PubMedGoogle Scholar
  50. 50.
    Mallard C, Welin AK, Peebles D et al (2003) White matter injury following systemic endotoxemia or asphyxia in the fetal sheep. Neurochem Res 28: 215–223PubMedGoogle Scholar
  51. 51.
    Yan E, Castillo-Melendez M, Nicholls T et al (2004) Cerebrovascular responses in the fetal sheep brain to low-dose endotoxin. Pediatr Res 55: 855–863PubMedGoogle Scholar
  52. 52.
    Dean JM, Farrag D, Zahkouk SA et al (2009) Cerebellar white matter injury following systemic endotoxemia in preterm fetal sheep. Neuroscience 160: 606–615PubMedGoogle Scholar
  53. 53.
    Nitsos I, Rees SM, Duncan J et al (2006) Chronic exposure to intraamniotic lipopolysaccharide affects the ovine fetal brain. J Soc Gynecol Investig 13: 239–247PubMedGoogle Scholar
  54. 54.
    Gavilanes AW, Strackx E, Kramer BW et al (2009) Chorioamnionitis induced by intraamniotic lipopolysaccharide resulted in an interval- dependent increase in central nervous system injury in the fetal sheep. Am J Obstet Gynecol 200: 437 e431–e438Google Scholar
  55. 55.
    Young RS, Hernandez MJ, Yagel SK (1982) Selective reduction of blood flow to white matter during hypotension in newborn dogs: a possible mechanism of periventricular leukomalacia. Ann Neurol 12: 445–448PubMedGoogle Scholar
  56. 56.
    Ando M, Takashima S, Mito T (1988) Endotoxin, cerebral blood flow, amino acids and brain damage in young rabbits. Brain Dev 10: 365–370PubMedGoogle Scholar
  57. 57.
    Dalitz P, Harding R, Rees SM et al (2003) Prolonged reductions in placental blood flow and cerebral oxygen delivery in preterm fetal sheep exposed to endotoxin: possible factors in white matter injury after acute infection. J Soc Gynecol Investig 10: 283–290PubMedGoogle Scholar
  58. 58.
    Duncan JR, Cock ML, Suzuki K et al (2006) Chronic endotoxin exposure causes brain injury in the ovine fetus in the absence of hypoxemia. J Soc Gynecol Investig 13: 87–96PubMedGoogle Scholar
  59. 59.
    Kaukola T, Herva R, Perhomaa M et al (2006) Population cohort associating chorioamnionitis, cord inflammatory cytokines and neurologic outcome in very preterm, extremely low birth weight infants. Pediatr Res 59: 478–483PubMedGoogle Scholar
  60. 60.
    Reiman M, Kujari H, Maunu J et al (2008) Does placental inflammation relate to brain lesions and volume in preterm infants? J Pediatr 152: 642–647PubMedGoogle Scholar
  61. 61.
    Chau V, Poskitt KJ, McFadden DE et al (2009) Effect of chorioamnionitis on brain development and injury in premature newborns. Ann Neurol 66: 155–164PubMedGoogle Scholar
  62. 62.
    Kumazaki K, Nakayama M, Sumida Y et al (2002) Placental features in preterm infants with periventricular leukomalacia. Pediatrics 109: 650–655PubMedGoogle Scholar
  63. 63.
    Stanley FJ (1994) The aetiology of cerebral palsy. Early Hum Dev 36: 81–88PubMedGoogle Scholar
  64. 64.
    Lee R, Ng D, Fung G et al (2006) Chorioamnionitis with or without funisitis increases the risk of hypotension in very low birthweight infants on the first postnatal day but not later. Arch dis Child 91: F346–F348Google Scholar
  65. 65.
    Martin-Ancel A, Garcia-Alix A, Pascual-Salcedo D et al (1997) Interleukin- 6 in the cerebrospinal fluid after perinatal asphyxia is related to early and late neurological manifestations. Pediatrics 100: 789–794PubMedGoogle Scholar
  66. 66.
    Savman K, Blennow M, Gustafson K et al (1998) Cytokine response in cerebrospinal fluid after birth asphyxia. Pediatr Res 43: 746–751PubMedGoogle Scholar
  67. 67.
    Oygur N, Sonmez O, Saka O et al (1998) Predictive value of plasma and cerebrospinal fluid tumour necrosis factor-alpha and interleukin-1 beta concentrations on outcome of full term infants with hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed 79: F190–F193PubMedGoogle Scholar
  68. 68.
    Aly H, Khashaba MT, El-Ayouty M et al (2006) IL-1beta, IL-6 and TNF-alpha and outcomes of neonatal hypoxic ischemic encephalopathy. Brain Dev 28: 178–182PubMedGoogle Scholar
  69. 69.
    Silveira RC, Procianoy RS (2003) Interleukin-6 and tumor necrosis factor-alpha levels in plasma and cerebrospinal fluid of term newborn infants with hypoxic-ischemic encephalopathy. J Pediatr 143: 625–629PubMedGoogle Scholar
  70. 70.
    Wu YW, Croen LA, Torres AR et al (2009) Interleukin-6 genotype and risk for cerebral palsy in term and near-term infants. Ann Neurol 66: 663–670PubMedGoogle Scholar
  71. 71.
    Bartha AI, Foster-Barber A, Miller SP et al (2004) Neonatal encephalopathy: association of cytokines with MR spectroscopy and outcome. Pediatr Res 56: 960–966PubMedGoogle Scholar
  72. 72.
    Wu YW, Escobar GJ, Grether JK et al (2003) Chorioamnionitis and cerebral palsy in term and near-term infants. JAMA 290: 2677–2684PubMedGoogle Scholar
  73. 73.
    Cowan F, Rutherford M, Groenendaal F et al (2003) Origin and timing of brain lesions in term infants with neonatal encephalopathy. Lancet 361: 736–742PubMedGoogle Scholar
  74. 74.
    Nelson KB, Grether JK (1998) Potentially asphyxiating conditions and spastic cerebral palsy in infants of normal birth weight. Am J Obstet Gynecol 179: 507–513PubMedGoogle Scholar
  75. 75.
    Shalak LF, Laptook AR, Jafri HS et al (2002) Clinical chorioamnionitis, elevated cytokines, and brain injury in term infants. Pediatrics 110: 673–680PubMedGoogle Scholar
  76. 76.
    Hudome S, Palmer C, Roberts RL et al (1997) The role of neutrophils in the production of hypoxic-ischemic brain injury in the neonatal rat. Pediatr Res 41: 607–616PubMedGoogle Scholar
  77. 77.
    Bona E, Andersson AL, Blomgren K et al (1999) Chemokine and inflammatory cell response to hypoxia-ischemia in immature rats. Pediatr Res 45: 500–509PubMedGoogle Scholar
  78. 78.
    Kim SU, de Vellis J (2005) Microglia in health and disease. J Neurosci Res 81: 302–313Google Scholar
  79. 79.
    Hedtjarn M, Mallard C, Hagberg H (2004) Inflammatory gene profiling in the developing mouse brain after hypoxia-ischemia. J Cereb Blood Flow Metab 24: 1333–1351PubMedGoogle Scholar
  80. 80.
    Martin D, Chinookoswong N, Miller G (1994) The interleukin-1 receptor antagonist (rhIL-1ra) protects against cerebral infarction in a rat model of hypoxia-ischemia. Exp Neurol 130: 362–367PubMedGoogle Scholar
  81. 81.
    Hedtjarn M, Mallard C, Iwakura Y et al (2005) Combined deficiency of IL-1beta18, but not IL-1alphabeta, reduces susceptibility to hypoxia- ischemia in the immature brain. Dev Neurosci 27: 143–148PubMedGoogle Scholar
  82. 82.
    Hedtjarn M, Leverin AL, Eriksson K et al (2002) Interleukin-18 involvement in hypoxic-ischemic brain injury. J Neurosci 22: 5910–5919PubMedGoogle Scholar
  83. 83.
    Liu XH, Kwon D, Schielke GP et al (1999) Mice deficient in interleukin- 1 converting enzyme are resistant to neonatal hypoxic-ischemic brain damage. J Cereb Blood Flow Metab 19: 1099–1108PubMedGoogle Scholar
  84. 84.
    Svedin P, Hagberg H, Savman K et al (2007) Matrix metalloproteinase- 9 gene knock-out protects the immature brain after cerebral hypoxia-ischemia. J Neurosci 27: 1511–1518PubMedGoogle Scholar
  85. 85.
    Matsuo Y, Onodera H, Shiga Y et al (1994) Correlation between myeloperoxidase-quantified neutrophil accumulation and ischemic brain injury in the rat. Effects of neutrophil depletion. Stroke 25: 1469–1475Google Scholar
  86. 86.
    Palmer C, Roberts RL, Young PI (2004) Timing of neutrophil depletion influences long-term neuroprotection in neonatal rat hypoxic- ischemic brain injury. Pediatr Res 55: 549–556PubMedGoogle Scholar
  87. 87.
    Matsuo Y, Kihara T, Ikeda M et al (1995) Role of neutrophils in radical production during ischemia and reperfusion of the rat brain: effect of neutrophil depletion on extracellular ascorbyl radical formation. J Cereb Blood Flow Metab 15: 941–947PubMedGoogle Scholar
  88. 88.
    Walder CE, Green SP, Darbonne WC et al (1997) Ischemic stroke injury is reduced in mice lacking a functional NADPH oxidase. Stroke 28: 2252–2258PubMedGoogle Scholar
  89. 89.
    Doverhag C, Keller M, Karlsson A et al (2008) Pharmacological and genetic inhibition of NADPH oxidase does not reduce brain damage in different models of perinatal brain injury in newborn mice. Neurobiol Dis 31: 133–144PubMedGoogle Scholar
  90. 90.
    Kitamura Y, Takata K, Inden M et al (2004) Intracerebroventricular injection of microglia protects against focal brain ischemia. J Pharmacol Sci 94: 203–206PubMedGoogle Scholar
  91. 91.
    Imai F, Suzuki H, Oda J et al (2007) Neuroprotective effect of exogenous microglia in global brain ischemia. J Cereb Blood Flow Metab 27: 488–500PubMedGoogle Scholar
  92. 92.
    Arvin KL, Han BH, Du Y et al (2002) Minocycline markedly protects the neonatal brain against hypoxic-ischemic injury. Ann Neurol 52: 54–61PubMedGoogle Scholar
  93. 93.
    Tsuji M, Wilson MA, Lange MS et al (2004) Minocycline worsens hypoxic-ischemic brain injury in a neonatal mouse model. Exp Neurol 189: 58–65PubMedGoogle Scholar
  94. 94.
    Fox C, Dingman A, Derugin N et al (2005) Minocycline confers early but transient protection in the immature brain following focal cerebral ischemia-reperfusion. J Cereb Blood Flow Metab 25: 1138–1149PubMedGoogle Scholar
  95. 95.
    Lalancette-Hebert M, Gowing G, Simard A et al (2007) Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci 27: 2596–2605PubMedGoogle Scholar
  96. 96.
    Doverhag C, Hedtjärn M, Poirier F et al (2010) Galectin-3 contributes to neonatal hypoxic-ischemic brain injury. Neurobiol Dis 38: 36–46PubMedGoogle Scholar
  97. 97.
    Almkvist J, Fäldt J, Dahlgren C et al (2001) Lipopolysaccharideinduced gelatinase granule mobilization primes neutrophils for activation by galectin-3 and formylmethionyl-Leu-Phe. Infect Immun 69: 832–837PubMedGoogle Scholar
  98. 98.
    Colnot C, Ripoche MA, Milon G et al (1998) Maintenance of granulocyte numbers during acute peritonitis is defective in galectin-3- null mutant mice. Immunology 94: 290–296PubMedGoogle Scholar
  99. 99.
    Hsu DK, Yang RY, Pan Z et al (2000) Targeted disruption of the galectin-3 gene results in attenuated peritoneal inflammatory responses. Am J Pathol 156: 1073–1083PubMedGoogle Scholar
  100. 100.
    Johnston MV, Hagberg H (2007) Sex and the pathogenesis of cerebral palsy. Dev Med Child Neurol 49: 74–78PubMedGoogle Scholar
  101. 101.
    Eklind S, Mallard C, Leverin AL et al (2001) Bacterial endotoxin sensitizes the immature brain to hypoxic—ischaemic injury. Eur J Neurosci 13: 1101–1106PubMedGoogle Scholar
  102. 102.
    Coumans AB, Middelanis JS, Garnier Y et al (2003) Intracisternal application of endotoxin enhances the susceptibility to subsequent hypoxic-ischemic brain damage in neonatal rats. Pediatr Res 53: 770–775PubMedGoogle Scholar
  103. 103.
    Yang L, Sameshima H, Ikeda T et al (2004) Lipopolysaccharide administration enhances hypoxic-ischemic brain damage in newborn rats. J Obstet Gynaecol Res 30: 142–147PubMedGoogle Scholar
  104. 104.
    Wang X, Hagberg H, Nie C et al (2007) Dual role of intrauterine immune challenge on neonatal and adult brain vulnerability to hypoxia- ischemia. J Neuropathol Exp Neurol 66: 552–561PubMedGoogle Scholar
  105. 105.
    Ikeda T, Mishima K, Aoo N et al (2004) Combination treatment of neonatal rats with hypoxia-ischemia and endotoxin induces longlasting memory and learning impairment that is associated with extended cerebral damage. Am J Obstet Gynecol 191: 2132–2141PubMedGoogle Scholar
  106. 106.
    Lehnardt S, Massillon L, Follett P et al (2003) Activation of innate immunity in the CNS triggers neurodegeneration through a Tolllike receptor 4-dependent pathway. Proc Natl Acad Sci USA 100: 8514–8519PubMedGoogle Scholar
  107. 107.
    Wang X, Stridh L, Li W et al (2009) Lipopolysaccharide sensitizes neonatal hypoxic-ischemic brain injury in a MyD88-dependent manner. J Immunol 183: 7471–7477PubMedGoogle Scholar
  108. 108.
    Lehnardt S, Lachance C, Patrizi S et al (2002) The toll-like receptor TLR4 is necessary for lipopolysaccharide-induced oligodendrocyte injury in the CNS. J Neurosci 22: 2478–2486PubMedGoogle Scholar
  109. 109.
    Dean JM, Wang X, Kaindl AM et al (2009) Microglial MyD88 signaling regulates acute neuronal toxicity of LPS-stimulated microglia in vitro. Brain Behav Immun 24: 776–783PubMedGoogle Scholar
  110. 110.
    Wang X, Svedin P, Nie C et al (2007) N-acetylcysteine reduces lipopolysaccharide-sensitized hypoxic-ischemic brain injury. Ann Neurol 61: 263–271PubMedGoogle Scholar
  111. 111.
    Mallard C, Hagberg H (2007) Inflammation-induced preconditioning in the immature brain. Semin Fetal Neonatal Med 12: 280–286PubMedGoogle Scholar
  112. 112.
    Ikeda T, Yang L, Ikenoue T et al (2006) Endotoxin-induced hypoxic- ischemic tolerance is mediated by up-regulation of corticosterone in neonatal rat. Pediatr Res 59: 56–60PubMedGoogle Scholar
  113. 113.
    Ikeda T, Mishima K, Aoo N et al (2005) Dexamethasone prevents long-lasting learning impairment following a combination of lipopolysaccharide and hypoxia-ischemia in neonatal rats. Am J Obstet Gynecol 192: 719–726PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Henrik Hagberg
    • 1
  • Carina Mallard
  • Karin Sävman
  1. 1.Institute of Reproductive and Developmental BiologyImperial CollegeLondonUK

Personalised recommendations