Neonatology pp 1067-1078 | Cite as

Brain Development and Perinatal Vulnerability to Cerebral Damage

  • Luca A. Ramenghi
  • Monica Fumagalli
  • Veena Supramaniam


The recent exponential rise in detailed magnetic resonance (MR) imaging studies has emphasized the concept of gestationally determined regional vulnerability in the brain: the site and nature of the injury sustained being determined by a combination of the characteristics of the insult, the specific tissue and cell vulnerability and the gestation of the infant. The type of insult may also be partly dependent on gestation. However, it is now known that acute perinatal hypoxic ischemic events, previously considered characteristic for the term born neonate presenting with hypoxic-ischemic encephalopathy (HIE), may occur at earlier points in gestation [1, 2]. Nevertheless, such events occur less often in the infant born preterm where lesions develop in similar brain regions and in other areas characteristically more vulnerable in more premature babies (Fig. 127.1). Similarly, white matter (WM) lesions, which are considered the hallmark of injury to the preterm brain because they are characteristic of perinatal injury relating to inflammation, infection or hypoglycemia in the term brain, may also occur in a small percentage of neonates with an encephalopathy (Fig. 127.2) [3].


Diffusion Tensor Imaging Hypoxic Ischemia White Matter Injury Germinal Matrix Cerebellar Hemorrhage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Barkovich AJ, Sargent SK (1995) Profound asphyxia in the premature infant: imaging findings. AJNR Am J Neuroradiol 16:1837– 1846Google Scholar
  2. 2.
    Logitharajah P, Rutherford MA, Cowan FM (2009) Hypoxic-ischemic encephalopathy in preterm infants: antecedent factors, brain imaging and outcome. Pediatr Res 66: 222–229PubMedCrossRefGoogle Scholar
  3. 3.
    Rutherford MA, Supramaniam V, Ederise A et al (2010) Magnetic resonance imaging of white matter diseases of prematurity. Neuroradiology 52: 505–521PubMedCrossRefGoogle Scholar
  4. 4.
    Patel AB, de Graaf RA, Mason GF et al (2005) The contribution of GABA to glutamate/glutamine cycling and energy metabolism in the rat cortex in vivo. Proc Natl Acad Sci USA 15: 5588–1593CrossRefGoogle Scholar
  5. 5.
    McQuillen PS, Sheldon RA, Shatz CJ, Ferriero DM (2003) Selective vulnerability of subplate neurons after early neonatal hypoxiaischemia. J Neurosci 23: 3308–3315PubMedGoogle Scholar
  6. 6.
    Volpe JJ (2009) Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 8: 110–124PubMedCrossRefGoogle Scholar
  7. 7.
    Kjellmer I (1991) Mechanism of perinatal brain damage. Ann Med 23: 675–679PubMedCrossRefGoogle Scholar
  8. 8.
    Rakic P (1978) Neuronal migration and contact guidance in the primate telencephalon. Postgrad Med J 54: 25–40PubMedGoogle Scholar
  9. 9.
    Skoff RP (1980) Neuroglia: a reevaluation of their origin and development. Pathol Res Pract 168: 279–300PubMedGoogle Scholar
  10. 10.
    Rakic S, Zecevic N (2000) Programmed cell death in the developing human telencephalon. Eur J Neurosci 12: 2721–2734PubMedCrossRefGoogle Scholar
  11. 11.
    Counsell SJ, Maalouf EF, Fletcher AM et al (2002) MR imaging assessment of myelination in the very preterm brain. AJNR Am J Neuroradiol 23: 872–881PubMedGoogle Scholar
  12. 12.
    Hüppi PS, Dubois J (2006) Diffusion tensor imaging of brain development. Semin Fetal Neonatal Medicine 11: 489–497CrossRefGoogle Scholar
  13. 13.
    Métin C, Vallee RB, Rakic P, Bhide PG (2008) Modes and mishaps of neuronal migration in the mammalian brain. J Neurosci 28: 11746–11752PubMedCrossRefGoogle Scholar
  14. 14.
    Nadarajah B, Parnavelas JG (2002). Modes of neuronal migration in the developing cerebral cortex. Nat Rev Neurosci 3: 423–432PubMedCrossRefGoogle Scholar
  15. 15.
    Tabata H, Nakajima K (2003) Multipolar migration: the third mode of radial neuronal migration in the developing cerebral cortex. J Neurosci 23: 9996–10001PubMedGoogle Scholar
  16. 16.
    Zhang Y, Allodi S, Sandeman DC, Beltz BS (2009) Adult neurogenesis in the crayfish brain: proliferation, migration, and possible origin of precursor cells. Dev Neurobiol 69: 415–436PubMedCrossRefGoogle Scholar
  17. 17.
    Miyoshi G, Hjerling-Leffler J, Karayannis T et al (2010) Genetic fate mapping reveals that the caudal ganglionic eminence produces a large and diverse population of superficial cortical interneurons. J Neurosci 30: 1582–1594PubMedCrossRefGoogle Scholar
  18. 18.
    Marcorelles P, Laquerrière A, Adde-Michel C et al (2010) Evidence for tangential migration disturbances in human lissencephaly resulting from a defect in LIS1, DCX and ARX genes. Acta Neuropathol May 120: 503–515CrossRefGoogle Scholar
  19. 19.
    Luo MH, Hannemann H, Kulkarni AS et al (2010) Human cytomegalovirus infection causes premature and abnormal differentiation of human neural progenitor cells. J Virol 84: 3528–3541PubMedCrossRefGoogle Scholar
  20. 20.
    Barkovich AJ, Lindan CE (1994) Congenital cytomegalovirus infection of the brain: imaging analysis and embryologic consideration. AJNR Am J Neuroradiol 15: 703–715PubMedGoogle Scholar
  21. 21.
    Lee CT, Chen J, Worden LT, Freed WJ (2010) Cocaine causes deficits in radial migration and alters the distribution of glutamate and GABA neurons in the developing rat cerebral cortex. Synapse 65: 21–34CrossRefGoogle Scholar
  22. 22.
    Allendoerfer KL, Shatz CJ (1994) The subplate, a transient neocortical structure: its role in the development of connections between thalamus and cortex. Annu Rev Neurosci 17: 185–218PubMedCrossRefGoogle Scholar
  23. 23.
    Kostovic I, Rakic P (1990) Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. J Comp Neurol 297: 441–470PubMedCrossRefGoogle Scholar
  24. 24.
    Dudink J, Buijs J, Govaert P et al (2010) Diffusion tensor imaging of the cortical plate and subplate in very-low-birth-weight infants. Pediatr Radiol 40: 1397–1404PubMedCrossRefGoogle Scholar
  25. 25.
    Widjaja E, Geibprasert S, Mahmoodabadi SZ et al (2010) Alteration of human fetal subplate layer and intermediate zone during normal development on MR and diffusion tensor imaging. AJNR Am J Neuroradiol 31: 1091–1099PubMedCrossRefGoogle Scholar
  26. 26.
    Ajayi-Obe M, Saeed N, Cowan FM et al (2000) Reduced development of cerebral cortex in extremely preterm infants. Lancet 356: 1162–1163PubMedCrossRefGoogle Scholar
  27. 27.
    Kapellou O, Counsell SJ, Kennea N et al (2006) Abnormal cortical development after premature birth shown by altered allometric scaling of brain growth. PLoS Med 3: e265Google Scholar
  28. 28.
    Ramenghi LA, Fumagalli M, Righini A et al (2007) Magnetic Resonance imaging assessment of brain maturation in preterm neonates with punctate white matter lesions. Neuroradiology 49: 161–167PubMedCrossRefGoogle Scholar
  29. 29.
    McQuillen PS, Sheldon RA, Shatz CJ, Ferriero DM (2003) Selective vulnerability of subplate neurons after early neonatal hypoxiaischemia. J Neurosci 23: 3308–3315PubMedGoogle Scholar
  30. 30.
    Ghosh A, Shatz CJ (1992) Involvement of subplate neurons in the formation of ocular dominance columns. Science 255: 1441–1443PubMedCrossRefGoogle Scholar
  31. 31.
    Kostovic I, Judas M (2006) Prolonged coexistence of transient and permanent circuitry elements in the developing cerebral cortex of fetuses and preterm infants. Dev Med Child Neurol 48: 388–393PubMedCrossRefGoogle Scholar
  32. 32.
    Cioni G, Fazzi B, Coluccini M et al (1997) Cerebral visual impairment in preterm infants with periventricular leukomalacia. Pediatr Neurol 17: 331–338PubMedCrossRefGoogle Scholar
  33. 33.
    Inder TE, Huppi PS, Warfield S et al (1999) Periventricular white matter injury in the premature infant is followed by reduced cerebral cortical gray matter volume at term. Ann Neurol 46: 755–760PubMedCrossRefGoogle Scholar
  34. 34.
    Ricci D, Anker S, Cowan F et al (2006) Thalamic atrophy in infants with PVL and cerebral visual impairment. Early Human Dev 82: 591–595CrossRefGoogle Scholar
  35. 35.
    Bassi L, Ricci D, Volzone A et al (2008) Probabilistic diffusion tractography of the optic radiations and visual function in preterm infants at term equivalent age. Brain 131: 573–582PubMedCrossRefGoogle Scholar
  36. 36.
    Ramenghi LA, Ricci D, Mercuri E et al (2010) Visual performance and brain structure in the developing brain of preterm infants. Early Hum Dev 86 (Suppl 1): 73–75PubMedCrossRefGoogle Scholar
  37. 37.
    Widjaja E, Geibprasert S, Mahmoodabadi SZ et al (2010) Alteration of human fetal subplate layer and intermediate zone during normal development on MR and diffusion tensor imaging. AJNR Am J Neuroradiol 31: 1091–1099PubMedCrossRefGoogle Scholar
  38. 38.
    Banker BQ, Larroche JC (1962) Periventricular leukomalacia of infancy. A form of neonatal anoxic encephalopathy. Arch Neurol 7: 386–410Google Scholar
  39. 39.
    Khwaja O, Volpe JJ (2008) Pathogenesis of cerebral white matter injury of prematurity. Arch Dis Child Fetal Neonatal Ed 93: F153–F161PubMedCrossRefGoogle Scholar
  40. 40.
    Haynes RL, Folkerth RD, Keefe RJ et al (2003) Nitrosative and oxidative injury to premyelinating oligodendrocytes in periventricular leukomalacia. J Neuropathol Exp Neurol 62: 441–450PubMedGoogle Scholar
  41. 41.
    Deng W, Wang H, Rosenberg PA et al (2004) Role of metabotropic glutamate receptors in oligodendrocytes excitotoxicity and oxidative stress. Proc Natl Acad Sci USA 101: 7751–7756PubMedCrossRefGoogle Scholar
  42. 42.
    Segovia KN, McClure M, Moravec M et al (2008) Arrested oligodendrocyte lineage maturation in chronic perinatal white matter injury. Ann Neurol 63: 520–530PubMedCrossRefGoogle Scholar
  43. 43.
    Boardman JP, Counsell SJ, Rueckert D et al (2006) Abnormal deep grey matter development following preterm birth detected using deformation-based morphometry. Neuroimage 32: 70–78PubMedCrossRefGoogle Scholar
  44. 44.
    Srinivasan L, Allsop J, Counsell SJ et al (2006) Smaller cerebellar volumes in very preterm infants at term equivalent age are associated with the presence of supratentorial lesions. AJNR Am J Neuroradiol 117: 376–386Google Scholar
  45. 45.
    Ligam P, Haynes RL, Folkerth RD et al (2009) Thalamic damage in periventricular leukomalacia: novel pathologic observations relevant to cognitive deficits in survivors of prematurity. Pediatr Res 65: 524–529PubMedCrossRefGoogle Scholar
  46. 46.
    Andiman SE, Haynes RL, Trachtenberg FL et al (2010) The cerebral cortex overlying periventricular leukomalacia: analysis of pyramidal neurons. Brain Pathol 20: 803–814PubMedCrossRefGoogle Scholar
  47. 47.
    Rezaie P, Male D (1999) Colonisation of the developing human brain and spinal cord by microglia: a review. Microsc Res Tech 45: 359–382PubMedCrossRefGoogle Scholar
  48. 48.
    Elkabes S, Peng L, Black IB (1998) Lipopolysaccharide differentially regulates microglial trk receptor and neurotrophin expression. J Neurosci Res 54: 117–122PubMedCrossRefGoogle Scholar
  49. 49.
    Billiard SS, Haynes RL, Folkerth RD et al (2006) Development of microglia in the cerebral white matter of the human fetus and infant. J Comp Neurol 497: 199–208CrossRefGoogle Scholar
  50. 50.
    Judas M, Rados M, Jovanov-Milosevic N et al (2005) Structural, immunocytochemical, and MR imaging properties of periventricular crossorads of growing cortical pathways in preterm infants. AJNR Am J Neuroradiol 26: 2671–2684PubMedGoogle Scholar
  51. 51.
    Supramaniam V, Srinivasan L, Doherty K et al (2010) The distribution and morphology of microglial (MG) cells in the periventricular white matter ( PVWM) of immature human brain. PAS Meeting Abstract 3105Google Scholar
  52. 52.
    Dommergues MA, Plaisant F, Verney C, Gressens P (2003) Early microglial activation following neonatal excitotoxic brain damage in mice: a potential target for neuroprotection. Neuroscience 121: 619–628PubMedCrossRefGoogle Scholar
  53. 53.
    Dean JM, Wang X, Kaindl AM et al (2009) Microglial MyD88 signaling regulates acute neuronal toxicity of LPS-stimulated microglia in vitro. Brain, Behaviour and Immunity. J Neurosci 16: 2508–2521Google Scholar
  54. 54.
    Wang X, Stridh L, Li W et al 2009 Lipopolysaccharide sensitizes neonatal hypoxic-ischemic brain injury in a MyD88-dependent manner. J Immunol 183: 7471–7477PubMedCrossRefGoogle Scholar
  55. 55.
    Marsh B, Stevens SL, Packard AE et al (2009) Systemic lipopolysaccharide protects the brain from Ischemic Injury by reprogramming the response of the brain to stroke: a critical role for IRF3. J Neurosci 29: 9839–9849PubMedCrossRefGoogle Scholar
  56. 56.
    Kinoshita Y, Okudera T, Tsuru E, Yokota A (2001) Volumetric analysis of the germinal matrix and lateral ventricles performed using MR images of postmortem fetuses. AJNR Am J Neuroradiol 22: 382–388PubMedGoogle Scholar
  57. 57.
    Wu YW, Hamrick SE, Miller SP et al (2003) Intraventricular hemorrhage in term neonates caused by sinovenous thrombosis. Ann Neurol 54: 123–126PubMedCrossRefGoogle Scholar
  58. 58.
    Ramenghi LA, Gill BJ, Tanner SF et al (2002) Cerebral venous thrombosis, intraventricular haemorrhage and white matter lesions in a preterm newborn with factor V ( Leiden) mutation. Neuropediatrics 33: 97–99Google Scholar
  59. 59.
    Hambleton G, Wigglesworth JS (1976) Origin of intraventricular haemorrhage in the preterm infant. Arch Dis Child 51: 651–659PubMedCrossRefGoogle Scholar
  60. 60.
    Ghazi-Birry HS, Brown WR, Moody DM et al (1997) Human germinal matrix: venous origing of hemorrhage and vascular characteristics. AJNR Am J Neuroradiol 18: 219–239PubMedGoogle Scholar
  61. 61.
    Towbin A (1968) Cerebral intraventricular hemorrhage and subependymal matrix infarction in the fetus and premature newborn. Am J Pathol 52: 121–140PubMedGoogle Scholar
  62. 62.
    Leech RW, Kohnen P (1974). Subependymal and intraventricular hemorrhage in the newborn 77: 465–475Google Scholar
  63. 63.
    Marin Padilla M (1999) Developmental neuropathology and impact of perinatal brain damage. III: gray matter lesions of the neocortex. J Neuropathol Exp Neurol 58: 407–429PubMedCrossRefGoogle Scholar
  64. 64.
    Whitelaw A, Jary S, Kmita G et al (2010) Randomized trial of drainage, irrigation and fibrinolytic therapy for premature infants with posthemorrhagic ventricular dilatation: developmental outcome at 2 years. Pediatrics 125: e852–e858PubMedCrossRefGoogle Scholar
  65. 65.
    De Carli A, Jary S, Ramenghi LA et al (2010) Magnetic resonance imaging (MRI) at term equivalent age correlates with neurodevelopment at 2 years in preterm infants with post-hemorrhagic ventricular dilatation. PAS Meeting Abstract 3746Google Scholar
  66. 66.
    Limperopoulos C, Benson CB, Bassan H et al (2005) Cerebellar hemorrhage in the preterm infant: ultrasonographic findings and risk factors.Pediatrics 116: 717–724Google Scholar
  67. 67.
    Fumagalli M, Ramenghi LA, Righini A et al (2009) Cerebellar haemorrhages and pons development in extremely low birth weight infants. Front Biosci 1: 537–541Google Scholar
  68. 68.
    Limperopoulos C, Bassan H, Gauvreau K et al (2007) Does cerebellar injury in premature infants contribute to the high prevalence of long-term cognitive, learning, and behavioral disability in survivors? Pediatrics 120: 584–593PubMedCrossRefGoogle Scholar
  69. 69.
    Limperopoulos C, Robertson RL, Sullivan NR et al (2009) Cerebellar injury in term infants: clinical characteristics, magnetic resonance imaging findings, and outcome. Pediatr Neurol 41: 1–8PubMedCrossRefGoogle Scholar
  70. 70.
    Takashima S (1982) Olivocerebellar lesions in infants born prematurely. Brain Dev 4: 361–366PubMedCrossRefGoogle Scholar
  71. 71.
    Ment LR, Allan WC, Makuch RW et al (2005) Grade 3 to 4 intraventricular hemorrhage and Bayley scores predict outcome. Pediatrics 116: 1597–1598PubMedCrossRefGoogle Scholar
  72. 72.
    Miller SP, Ferriero DM, Leonard C et al (2005) Early brain injury in premature newborns detected with magnetic resonance imaging is associated with adverse early neurodevelopmental outcome. J Pediatr 147: 609–616PubMedCrossRefGoogle Scholar
  73. 73.
    Vollmer B, Roth S, Riley K et al (2006) Neurodevelopmental outcome of preterm infants with ventricular dilatation with and without associated haemorrhage. Dev Med Child Neurol 48: 348–352PubMedCrossRefGoogle Scholar
  74. 74.
    Dyet LE, Kennea N, Counsell SJ et al (2006) Natural history of brain lesions in extremely preterm infants studied with serial magnetic resonance imaging from birth and neurodevelopmental assessment. Pediatrics 118: 536–548PubMedCrossRefGoogle Scholar
  75. 75.
    Mateus J, Fox K, Jain S et al (2010) Preterm premature rupture of membranes: clinical outcomes of late-preterm infants. Clin Pediatr (Phila) 49: 60–65CrossRefGoogle Scholar
  76. 76.
    Melamed N, Klinger G, Tenenbaum-Gavish K et al (2009) Shortterm neonatal outcome in low-risk, spontaneous, singleton, late preterm deliveries. Obstet Gynecol 114 (2 Part 1): 253–260PubMedCrossRefGoogle Scholar
  77. 77.
    Kitsommart R, Janes M, Mahajan V et al (2009) Outcomes of latepreterm infants: a retrospective, single-center, Canadian study. Clin Pediatr (Phila) 48: 844–850Google Scholar
  78. 78.
    Gurka MJ, LoCasale-Crouch J, Blackman JA (2010) Long-term cognition, achievement, socioemotional, and behavioral development of healthy late-preterm infants. Arch Pediatr Adolesc Med 164: 525–532PubMedCrossRefGoogle Scholar
  79. 79.
    Morse SB, Zheng H, Tang Y, Roth J (2009) Early school-age outcomes of late preterm infants Pediatrics 123: e622–e629Google Scholar
  80. 80.
    Romeo DM, Di Stefano A, Conversano M et al (2010) Neurodevelopmental outcome at 12 and 18 months in late preterm infants. Eur J Paediatr Neurol 14: 503–507PubMedCrossRefGoogle Scholar
  81. 81.
    Hüppi PS, Schuknecht B, Boesch C et al (1996) Structural and neurobehavioral delay in postnatal brain development of preterm infants. Pediatr Res 39: 895–901PubMedCrossRefGoogle Scholar
  82. 82.
    Jiang ZD, Brosi DM, Wu YY, Wilkinson AR (2009) Relative maturation of peripheral and central regions of the human brainstem from preterm to term and the influence of preterm birth. Pediatr Res 65: 657–662PubMedCrossRefGoogle Scholar
  83. 83.
    McQuillen PS, Ferriero DM (2004) Selective vulnerability in the developing central nervous system. Pediatr Neurol 30: 227–235PubMedCrossRefGoogle Scholar
  84. 84.
    Ferriero DM, Arcavi LJ, Sagar SM et al (1988) Selective sparing of NADPH-diaphorase neurons in neonatal hypoxia-ischemia. Ann Neurol 24: 670–676PubMedCrossRefGoogle Scholar
  85. 85.
    Ferriero DM, Sheldon RA, Black SM, Chuai J (1995) Selective destruction of nitric oxide synthase neurons with quisqualate reduces damage after hypoxia-ischemia in the neonatal rat. Pediatr Res 38: 912–918PubMedCrossRefGoogle Scholar
  86. 86.
    Ferriero DM, Holtzman DM, Black SM, Sheldon RA (1996) Neonatal mice lacking neuronal nitric oxide synthase are less vulnerable to hypoxic-ischemic injury. Neurobiol Dis 3: 64–71PubMedCrossRefGoogle Scholar
  87. 87.
    Chugani HT, Shewmon DA, Shields WD et al (1993) Surgery for intractable infantile spasms: neuroimaging perspectives. Epilepsia 34: 764–771PubMedCrossRefGoogle Scholar
  88. 88.
    Leuchtmann EA, Ratner AE, Vijitruth R et al (2003) AMPA receptors are the major mediators of excitotoxic death in mature oligodendrocytes. Neurobiol Dis 14: 336–348PubMedCrossRefGoogle Scholar
  89. 89.
    Northington FJ, Graham EM, Martin LJ (2005) Apoptosis in perinatal hypoxic-ischemic brain injury: how important is it and should it be inhibited? Brain Res Brain Res Rev 50: 244–257PubMedCrossRefGoogle Scholar
  90. 90.
    de Graaf-Peters V, Hadders-Algra M (2006) Ontogeny of the human central nervous system: What is happening when? Early Human Develop 82: 257–266CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Luca A. Ramenghi
    • 1
  • Monica Fumagalli
  • Veena Supramaniam
  1. 1.Division of NeonatologyGiannina Gaslini Children’s HospitalGenoaItaly

Personalised recommendations