Neonatology pp 1040-1066 | Cite as

Diagnosis and Treatment of Renal and Urinary Tract Malformations

  • Vassilios Fanos
  • Marco Zaffanello
  • Michele Mussap


Renal and urinary tract malformations in newborns are mostly congenital anomalies with genetic bases. The routine of antenatal ultrasound (US) scans has resulted in the early detection of these conditions and in selected cases has leaded to the development of prenatal management strategies including fetal intervention and/or the organization of the diagnostic procedures, postnatal surgical intervention and/or clinical follow-up. In minor cases, where diagnosis is not allowed during prenatal life, it may be obtained after a postnatal routine follow-up or subsequently a clinical complication, generally urinary tract infection (UTI).


Acute Kidney Injury Autosomal Dominant Polycystic Kidney Disease Renal Agenesis Autosomal Recessive Polycystic Kidney Disease Urine NGAL 


  1. 1.
    Joseph VT (2006) The management of renal conditions in the perinatal period. Early Hum Dev 82: 313–324PubMedCrossRefGoogle Scholar
  2. 2.
    Woolf AS (2008) Perspectives on human perinatal renal tract disease. Semin Fetal Neonatal Med 13: 196–201PubMedCrossRefGoogle Scholar
  3. 3.
    Kerecuk L, Schreuder MF, Woolf AS (2008) Renal tract malformations: perspectives for nephrologists. Clin Pract Nephrol 4: 312–325CrossRefGoogle Scholar
  4. 4.
    Kochhar A, Fischer SM, Kimberling WJ, Smith RJ (2007) Branchio- oto-renal syndrome. Am J Med Genet A 143: 1671–1678Google Scholar
  5. 5.
    Muroya K, Hasegawa T, Ito Y et al (2001) GATA3 abnormalities and the phenotypic spectrum of HDR syndrome. J Med Genet 38: 374–380PubMedCrossRefGoogle Scholar
  6. 6.
    Biason-Lauber A, Konrad D, Navratil F, Schoenle EJ (2004) A WNT4 mutation associated with Müllerian-duct regression and virilization in a 46,XX woman. N Engl J Med 351: 792–798PubMedCrossRefGoogle Scholar
  7. 7.
    Salomon R, Tellier AL, Attie-Bitach T et al (2001) PAX2 mutations in oligomeganephronia. Kidney Int 59: 457–462PubMedCrossRefGoogle Scholar
  8. 8.
    Edghill EL, Bingham C, Ellard S, Hattersley ATL (2006) Mutations in hepatocyte nuclear factor-1B and their related phenotypes. J Med Genet 43: 84–90PubMedCrossRefGoogle Scholar
  9. 9.
    Reardon W, Casserly LF, Birkenhäger R, Kohlhase J (2007) Kidney failure in Townes–Brocks syndrome: an under recognized phenomenon? Am J Med Genet A 143A: 2588–2591Google Scholar
  10. 10.
    Tobin JL, Beales PL (2007) Bardet–Biedl syndrome: beyond the cilium. Pediatr Nephrol 22: 926–936PubMedCrossRefGoogle Scholar
  11. 11.
    Sharifian M, Dadkhah-Chimeh M, Einollahi B et al (2007) Renal transplantation in patients with Bardet–Biedl syndrome. Arch Iran Med 10: 339–342PubMedGoogle Scholar
  12. 12.
    McGregor L, Makela V, Darling SM et al (2003) Fraser syndrome and mouse blebbed phenotype caused by mutations in FRAS1/ Fras1 encoding a putative extracellular matrix protein. Nat Genet 34: 203–208PubMedCrossRefGoogle Scholar
  13. 13.
    Jadeja S, Smyth I, Pitera JE et al (2005) Identification of a new gene mutated in Fraser syndrome and mouse myelencephalic blebs. Nat Genet 37: 520–525PubMedCrossRefGoogle Scholar
  14. 14.
    Beales PL, Bland E, Tobin JL et al (2007) IFT80, which encodes a conserved intraflagellar transport protein, is mutated in Jeune asphyxiating thoracic dystrophy. Nat Genet 39: 727–729PubMedCrossRefGoogle Scholar
  15. 15.
    Consugar MB, Kubly VJ, Lager DJ et al (2007) Molecular diagnostics of Meckel–Gruber syndrome highlights phenotypic differences between MKS1 and MKS3. Hum Genet 121: 591–599PubMedCrossRefGoogle Scholar
  16. 16.
    Ramasamy R, Haviland M, Woodard JR, Barone JG (2005) Patterns of inheritance in familial prune belly syndrome. Urology 65: 1227PubMedCrossRefGoogle Scholar
  17. 17.
    Duke V, Quinton R, Gordon I et al (1998) Proteinuria, hypertension and chronic renal failure in X-linked Kallmann’s syndrome, a defined genetic cause of solitary functioning kidney. Nephrol Dial Transplant 13: 1998–2003PubMedCrossRefGoogle Scholar
  18. 18.
    Grisaru S, Rosenblum ND (2001) Glypicans and the biology of renal malformations. Pediatr Nephrol 16: 302–306PubMedCrossRefGoogle Scholar
  19. 19.
    Lu W, van Eerde AM, Fan X et al (2007) Disruption of ROBO2 is associated with urinary tract anomalies and confers risk of vesicoureteral reflux. Am J Hum Genet 80: 616–632PubMedCrossRefGoogle Scholar
  20. 20.
    Murawski IJ, Gupta IR (2006)Vesicoureteric reflux and renal malformations: a developmental problem. Clin Genet 69: 105–117Google Scholar
  21. 21.
    Feather SA, Malcolm S, Woolf AS et al (2000) Primary, nonsyndromic vesicoureteric reflux and its nephropathy is genetically heterogeneous, with a locus on chromosome 1. Am J Hum Genet 66: 1420–1425PubMedCrossRefGoogle Scholar
  22. 22.
    Sanna-Cherchi S, Caridi G, Weng PL et al (2007) Localization of a gene for nonsyndromic renal hypodysplasia to chromosome 1p32–33. Am J Hum Genet 80: 539–549PubMedCrossRefGoogle Scholar
  23. 23.
    Jenkins D, Bitner-Glindzicz M, Malcolm S et al (2005) De novo Uroplakin IIIa heterozygous mutations cause human renal adysplasia leading to severe kidney failure. Am Soc Nephrol 16: 2141–2149CrossRefGoogle Scholar
  24. 24.
    Weber S, Moriniere V, Knüppel T et al (2006) Prevalence of mutations in renal developmental genes in children with renal hypodysplasia: results of the ESCAPE study. J Am Soc Nephrol 17: 2864–2870PubMedCrossRefGoogle Scholar
  25. 25.
    Stahl DA, Koul HK, Chacko JK, Mingin GC (2006) Congenital anomalies of the kidney and urinary tract ( CAKUT ): A current review of cell signaling processes in ureteral development. J Pediatr Urol 2: 2–9Google Scholar
  26. 26.
    Quinlan J, Lemire M, Hudson T et al (2007) A common variant of the PAX2 gene is associated with reduced newborn kidney size. J Am Soc Nephrol 18: 1915–1921PubMedCrossRefGoogle Scholar
  27. 27.
    Decramer S, Parant O, Beaufils S et al (2007) Anomalies of the TCF2 gene are the main cause of fetal bilateral hyperechogenic kidneys. J Am Soc Nephrol 18: 923–933PubMedCrossRefGoogle Scholar
  28. 28.
    Ulinski T, Lescure S, Beaufils S et al (2006) Renal phenotypes related to hepatocyte nuclear factor-1B (TCF2) mutations in a pediatric cohort. J Am Soc Nephrol 17: 497–503PubMedCrossRefGoogle Scholar
  29. 29.
    Zaffanello M, Brugnara M, Cecchetto M et al (2008) Renal involvement in children with vesicoureteral reflux: are prenatal detection and surgical approaches preventive? Scand J Urol Nephrol 42: 330–336PubMedCrossRefGoogle Scholar
  30. 30.
    Pouilhe M, Gilardi-Hebenstreit P, Desmarquet-Trin Dinh C, Charnay P (2007) Direct regulation of vHnf1 by retinoic acid signaling and MAF-related factors in the neural tube. Dev Biol 309:344– 357Google Scholar
  31. 31.
    Moriguchi T, Hamada M, Morito N et al (2006) MafB is essential for renal development and F4/80 expression in macrophages. Mol Cell Biol 26: 5715–5727PubMedCrossRefGoogle Scholar
  32. 32.
    Nishimura H, Yerkes E, Hohenfellner K et al (1999) Role of the angiotensin type 2 receptor gene in congenital anomalies of the kidney and urinary tract, CAKUT, of mice and men. Mol Cell 3: 1–10PubMedCrossRefGoogle Scholar
  33. 33.
    Hohenfellner K, Wingen AM, Nauroth O et al (2001) Impact of ACE I/D gene polymorphism on congenital renal malformations. Pediatr Nephrol 16: 356–361PubMedCrossRefGoogle Scholar
  34. 34.
    Winyard P, Chitty LS (2008) Dysplastic kidneys. Semin Fetal Neonatal Med 13: 142–151PubMedCrossRefGoogle Scholar
  35. 35.
    Lacoste M, Cai Y, Guicharnaud L et al (2006) Renal tubular dysgenesis, a not uncommon autosomal recessive disorder leading to oligohydramnios: Role of the Renin-Angiotensin system. J Am Soc Nephrol 17: 2253–2263PubMedCrossRefGoogle Scholar
  36. 36.
    Mahieu-Caputo D, Dommergues M, Delezoide AL et al (2000) Twin-to-twin transfusion syndrome. Role of the fetal renin–angiotensin system. Am J Pathol 156: 629–636PubMedCrossRefGoogle Scholar
  37. 37.
    Rodríguez MM, Gómez AH, Abitbol CL et al (2004) Histomorphometric analysis of postnatal glomerulogenesis in extremely preterm infants. Pediatr Dev Pathol 7: 17–25PubMedCrossRefGoogle Scholar
  38. 38.
    Quan A (2006) Fetopathy associated with exposure to angiotensin converting enzyme inhibitors and angiotensin receptor antagonists. Early Hum Dev 82: 23–28PubMedCrossRefGoogle Scholar
  39. 39.
    Wiesel A, Queisser-Luft A, Clementi M et al (2005) Prenatal detection of congenital renal malformations by fetal ultrasonographic examination: an analysis of 709,030 births in 12 European countries. Eur J Med Genet 48: 131–144PubMedCrossRefGoogle Scholar
  40. 40.
    Gunn TR, Mora JD, Pease P (1995) Antenatal diagnosis of urinary tract abnormalities by ultrasonography after 28 weeks’ gestation: incidence and outcome. Am J Obstet Gynecol 172: 479–486PubMedCrossRefGoogle Scholar
  41. 41.
    Mendelsohn C (2004) Functional obstruction: the renal pelvis rules. J Clin Invest 113: 957–959PubMedGoogle Scholar
  42. 42.
    Garne E, Loane M, Wellesley D et al (2009) Congenital hydronephrosis: prenatal diagnosis and epidemiology in Europe. J Pediatr Urol 5: 47–52PubMedCrossRefGoogle Scholar
  43. 43.
    Boubaker A, Prior JO, Meuwly JY, Bischof-Delaloye A(2006) Radionuclide investigations of the urinary tract in the era of multimodality imaging. J Nucl Med 47: 1819–1836Google Scholar
  44. 44.
    Ismaili K, Avni FE, Wissing KM et al (2004) Long-term clinical outcome of infants with mild and moderate fetal pyelectasis: validation of neonatal ultrasound as a screening tool to detect significant nephrouropathies. J Pediatr 144: 759–765PubMedGoogle Scholar
  45. 45.
    Piepsz A(2007) Antenatally detected hydronephrosis. Semin Nucl Med 37:249–260Google Scholar
  46. 46.
    Chaumoitre K, Brun M, Cassart M et al (2006) Differential diagnosis of fetal hyperechogenic cystic kidneys unrelated to renal tract anomalies: A multicenter study. Ultrasound Obstet Gynecol 28: 911–917PubMedCrossRefGoogle Scholar
  47. 47.
    Woolf AS, Jenkins D (2006) Development of the kidney. In: Jennette JC, Olson JL, Schwartz MM, Silva FG (eds) Heptinstall’s pathology of the kidney, 6th edn. Lippincott Williams & Wilkins, Philadelphia, pp 71–95Google Scholar
  48. 48.
    Mishra A(2007) Renal agenesis: report of an interesting case. Br J Radiol 80:e167–e169Google Scholar
  49. 49.
    Scott RJ, Goodburn SF, Stahl DA et al (2006) Congenital anomalies of the kidney and urinary tract (CAKUT): A current review of cell signaling processes in ureteral development. Potter’s syndrome in the second trimester—prenatal screening and pathological findings in 60 cases of oligohydramnios sequence. J Pediatr Urol 2: 2–9CrossRefGoogle Scholar
  50. 50.
    Slickers JE, Olshan AF, Siega-Riz AM et al (2008) Maternal body mass index and lifestyle exposures and the risk of bilateral renal agenesis or hypoplasia: the National Birth Defects Prevention Study. Am J Epidemiol 168: 1259–1267PubMedCrossRefGoogle Scholar
  51. 51.
    Hill LM, Nowak A, Hartle R, Tush B (2000) Fetal compensatory renal hypertrophy with a unilateral functioning kidney. Ultrasound Obstet Gynecol 15: 191–193PubMedCrossRefGoogle Scholar
  52. 52.
    Cascio S, Paran S, Puri P (1999) Associated urological anomalies in children with unilateral renal agenesis. J Urol 162 (3 Part 2): 1081–1083PubMedGoogle Scholar
  53. 53.
    Zaffanello M, Brugnara M, Zuffante M et al (2009) Are children with congenital solitary kidney at risk for lifelong complications? Alack of prediction demands caution. Int Urol Nephrol 41: 127–135PubMedCrossRefGoogle Scholar
  54. 54.
    Palmer LS, Andros GJ, Maizels M et al (1997) Management considerations for treating vesicoureteral reflux in children with solitary kidneys. Urology 49: 604–608PubMedCrossRefGoogle Scholar
  55. 55.
    Choo KL, Borzi PA (2001) Surgical correction of pelviureteric junction obstruction in childhood—dorsal lumbotomy approach and selective internal ureteric stenting. Pediatr Surg Int 17: 152–156PubMedCrossRefGoogle Scholar
  56. 56.
    Weizer AZ, Silverstein AD, Auge BK et al (2003) Determining the incidence of horseshoe kidney from radiographic data at a single institution. J Urol 170: 1722–1726PubMedCrossRefGoogle Scholar
  57. 57.
    Glodny B, Petersen J, Hofmann KJ et al (2009) Kidney fusion anomalies revisited: clinical and radiological analysis of 209 cases of crossed fused ectopia and horseshoe kidney. BJU Int 103: 224–235PubMedCrossRefGoogle Scholar
  58. 58.
    Puddu M, Fanos V, Podda F, Zaffanello M (2009) The kidney from prenatal to adult life: perinatal programming and reduction of number of nephrons during development. Am J Nephrol 30: 162–170PubMedCrossRefGoogle Scholar
  59. 59.
    Vujic A, Kosutic J, Bogdanovic R et al (2007) Sonographic assessment of normal kidney dimensions in the first year of life—a study of 992 healthy infants. Pediatr Nephrol 22: 1143–1150PubMedCrossRefGoogle Scholar
  60. 60.
    Daïkha-Dahmane F, Dommergues M, Muller F et al (1997) Development of human fetal kidney in obstructive uropathy: correlations with ultrasonography and urine biochemistry. Kidney Int 52: 21–32PubMedCrossRefGoogle Scholar
  61. 61.
    Matsell DG, Bennett T, Goodyer P et al (1996) The pathogenesis of multicystic dysplastic kidney disease: insights from the study of fetal kidneys. Lab Invest 74: 883–893PubMedGoogle Scholar
  62. 62.
    Hiraoka M, Tsukahara H, Ohshima Y et al (2002) Renal aplasia is he predominant cause of congenital solitary kidneys. Kidney Int 61: 1840–1844PubMedCrossRefGoogle Scholar
  63. 63.
    Damen-Elias HA, Stoutenbeek PH, Visser GH et al (2005) Concomitant anomalies in 100 children with unilateral multicystic kidney. Ultrasound Obstet Gynecol 25: 384–388PubMedCrossRefGoogle Scholar
  64. 64.
    Narchi H (2005) Risk of hypertension with multicystic kidney disease: a systematic review. Arch Dis Child 90: 921–924PubMedCrossRefGoogle Scholar
  65. 65.
    Thomas DF (2008) Prenatally diagnosed urinary tract abnormalities: long-term outcome. Semin Fetal Neonatal Med 13: 189–195PubMedCrossRefGoogle Scholar
  66. 66.
    Wilson PD (2004) Polycystic kidney disease: new understanding in the pathogenesis. Int J Biochem Cell Biol 36: 1868–1873PubMedCrossRefGoogle Scholar
  67. 67.
    Bissler JJ, Dixon BP (2005) A mechanistic approach to inherited polycystic kidney disease. Pediatr Nephrol 20: 558–566PubMedCrossRefGoogle Scholar
  68. 68.
    Valente EM, Brancati F, Silhavy JL et al (2006) International JSRD Study Group. AHI1 gene mutations cause specific forms of Joubert syndrome-related disorders. Ann Neurol 59: 527–534PubMedCrossRefGoogle Scholar
  69. 69.
    Bergmann C, Senderek J, Schneider F et al (2004) PKHD1 mutations in families requesting prenatal diagnosis for autosomal recessive polycystic kidney disease (ARPKD). Hum Mutat 23: 487–495PubMedCrossRefGoogle Scholar
  70. 70.
    Lissauer D, Morris RK, Kilby MD (2007) Fetal lower urinary tract obstruction. Semin Fetal Neonatal Med 12: 464–470PubMedCrossRefGoogle Scholar
  71. 71.
    Woodward M, Frank D (2002) Postnatal management of antenatal hydronephrosis. BJU Int 89: 149–156PubMedCrossRefGoogle Scholar
  72. 72.
    Pates JA, Dashe JS (2006) Prenatal diagnosis and management of hydronephrosis. Early Hum Dev 82: 3–8PubMedCrossRefGoogle Scholar
  73. 73.
    Onen A(2007) Treatment and outcome of prenatally detected newborn hydronephrosis. J Pediatr Urol 3:469–476Google Scholar
  74. 74.
    Agarwal SK, Fisk NM (2001) In utero therapy for lower urinary tract obstruction. Prenat Diagn 21: 970–976PubMedCrossRefGoogle Scholar
  75. 75.
    Poutamo J, Vanninen R, Partanen K, Kirkinen P (2000) Diagnosing fetal urinary tract abnormalities: benefits of MRI compared to ultrasonography. Acta Obstet Gynecol Scand 79: 65–71PubMedCrossRefGoogle Scholar
  76. 76.
    Crombleholme TM, Harrison MR, Golbus MS et al (1990) Fetal intervention in obstructive uropathy: prognostic indicators and efficacy of intervention. Am J Obstet Gynecol 162: 1239–1244PubMedGoogle Scholar
  77. 77.
    Clark TJ, Martin WL, Divakaran TG et al (2003) Prenatal bladder drainage in the management of fetal lower urinary tract obstruct tion: a systematic review and meta-analysis. Obstet Gynecol 102: 367–382PubMedCrossRefGoogle Scholar
  78. 78.
    Quintero RA, Shukla AR, Homsy YL, Bukkapatnam R (2000) Successful in utero endoscopic ablation of posterior urethral valves: a new dimension in fetal urology. Urology 1: 55: 774CrossRefGoogle Scholar
  79. 79.
    Mitchell ME, Close CE (1996) Early primary valve ablation for posterior urethral valves. Semin Pediatr Surg 5: 66–71PubMedGoogle Scholar
  80. 80.
    Jaureguizar E, Lopez Pereira P, Martinez Urrutia MJ (2000) Does neonatal pyeloureterostomy worsen blad der function in children with posterior urethral valves? J Urol 164: 1031–1033PubMedCrossRefGoogle Scholar
  81. 81.
    Bajpai M, Dave S, Gupta DK (2001) Factors ffecting outcome in the management of urethral valves. Pediatr Surg Int 17: 11–15PubMedCrossRefGoogle Scholar
  82. 82.
    Puri A, Grover VP, Agarwala S et al (2002) Initial surgical treatment as a determinant of bladder dysfunction in posterior urethral valves. Pediatr Surg Int 18: 438–443PubMedCrossRefGoogle Scholar
  83. 83.
    Sarhan O, Zaccaria I, Macher MA et al (2008) Long-term outcome of prenatally detected posterior urethral valves: single center study of 65 cases managed by primary valve ablation. J Urol 179: 307–312PubMedCrossRefGoogle Scholar
  84. 84.
    Hutton KA, Thomas DF, Davies BW (1997) Prenatally detected posterior urethral valves: qualitative assessment of second trimester scans and prediction of outcome. J Urol 158: 1022–1025PubMedCrossRefGoogle Scholar
  85. 85.
    Zhang PL, Peters CA, Rosen S (2000) Ureteropelvic junction obstruction: morphological and clinical studies. Pediatr Nephrol 14: 820–826PubMedCrossRefGoogle Scholar
  86. 86.
    Riccabona M (2004) Assessment and management of newborn hydronephrosis. World J Urol 22: 73–78PubMedGoogle Scholar
  87. 87.
    Dhillon HK (1998) Prenatally diagnosed hydronephrosis: the Great Ormond Street experience. Br J Urol 81 (Suppl 2): 39–44PubMedCrossRefGoogle Scholar
  88. 88.
    Dudley JA, Haworth JM, McGraw ME et al (1997) Clinical relevance and implications of antenatal hydronephrosis. Arch Dis Child Fetal Neonatal Ed 76: F31–F34PubMedCrossRefGoogle Scholar
  89. 89.
    Sheu JC, Koh CC, Chang PY et al (2006) Ureteropelvic junction obstruction in children: 10 years’ experience in one institution. Pediatr Surg Int 22: 519–523PubMedCrossRefGoogle Scholar
  90. 90.
    Chertin B, Rolle U, Farkas A, Puri P (2002) Does delaying pyeloplasty affect renal function in children with a prenatal diagnosis of pelvi-ureteric junction obstruction? BJU Int 90: 72–75PubMedCrossRefGoogle Scholar
  91. 91.
    Capolicchio G, Leonard MP,Wong C et al (1999) Prenatal diagnosis of hydronephrosis: impact on renal function and its recovery after pyeloplasty. J Urol 162 (3 Part 2): 1029–1032PubMedGoogle Scholar
  92. 92.
    Ylinen E, Ala-Houhala M, Wikström S (2004) Outcome of patients with antenatally detected pelviureteric junction obstruction. Pediatr Nephrol 19: 880–887PubMedGoogle Scholar
  93. 93.
    Ismaili K, Avni FE, Piepsz A et al (2004) Current management of infants with fetal renal pelvis dilation: a survey by French-speaking pediatric nephrologists and urologists. Pediatr Nephrol 19: 966–971PubMedCrossRefGoogle Scholar
  94. 94.
    Lim DJ, Park JY, Kim JH et al (2003) Clinical characteristics and outcome of hydronephrosis detected by prenatal ultrasonography. J Korean Med Sci 18: 859–862PubMedGoogle Scholar
  95. 95.
    Shukla AR, Cooper J, Patel RP Et al (2005) Prenatally detected primary megaureter: a role for extended followup. J Urol 173: 1353–1356PubMedCrossRefGoogle Scholar
  96. 96.
    Cassart M, Massez A, Metens T et al (2004) Complementary role of MRI after sonography in assessing bilateral urinary tract anomalies in the fetus. AJR Am J Roentgenol 182: 689–695PubMedGoogle Scholar
  97. 97.
    Zaffanello M, Brugnara M, Cecchetto M et al (2009) Pediatric unilateral giant hydroureteronephrosis from idiopathic ureterovesical stricture: a case report. BMJ Case Reports; doi:10.1136/bcr.08. 2008.0782Google Scholar
  98. 98.
    Shenoy MU, Rance CH (1999) Is there a place for the insertion of a JJ stent as a temporizing procedure for symptomatic partial congenital vesico-ureteric junction obstruction in infancy? BJU Int 84: 524–525PubMedCrossRefGoogle Scholar
  99. 99.
    Marra G, Barbieri G, Moioli C et al (1994) Mild fetal hydronephrosis indicating vesicoureteric reflux. Arch Dis Child Fetal Neonatal Ed 70: F147–F149PubMedCrossRefGoogle Scholar
  100. 100.
    Anderson NG, Wright S, Abbott GD et al (2003) Fetal renal pelvic dilatation—poor predictor of familial vesicoureteral reflux. Pediatr Nephrol 18: 902–905PubMedCrossRefGoogle Scholar
  101. 101.
    Risdon RA, Yeung CK, Ransley PG (1993) Reflux nephropathy in children submitted to unilateral nephrectomy: a clinicopathological study. Clin Nephrol 40: 308–314PubMedGoogle Scholar
  102. 102.
    Krishnan A, de Souza A, Konijeti R, Baskin LS (2006) The anatomy and embryology of posterior urethral valves. J Urol 172: 1214–1220Google Scholar
  103. 103.
    Novljan G, Kenig A, Rus R, Kenda RB (2003) Cyclic voiding urosonography in detecting vesicoureteral reflux in children. Pediatr Nephrol 18: 992–995PubMedCrossRefGoogle Scholar
  104. 104.
    Ascenti G, Zimbaro G, Mazziotti S et al (2003) Vesicoureteral reflux: comparison between urosonography and radionuclide cystography. Pediatr Nephrol 18: 768–771PubMedCrossRefGoogle Scholar
  105. 105.
    Fanos V, Cataldi L (2004) Antibiotics or surgery for vesicoureteric reflux in children. Lancet 364: 1720–1722PubMedCrossRefGoogle Scholar
  106. 106.
    Hodson EM, Wheeler DM, Vimalchandra D et al (2007) Interventions for primary vesicoureteric reflux. Cochrane Database Syst Rev 3:CD001532Google Scholar
  107. 107.
    Craig JC, Irwig LM, Knight JF, Roy LP (2000) Does treatment of vesicoureteric reflux in childhood prevent end-stage renal disease attributable to reflux nephropathy? Pediatrics 105: 1236–1241PubMedCrossRefGoogle Scholar
  108. 108.
    Plaire JC, Pope JC 4th, Kropp BP Et al (1997) Management of ectopic ureters: experience with the upper tract approach. J Urol 158 (3 Part 2): 1245–1247PubMedGoogle Scholar
  109. 109.
    Merlini E, Lelli Chiesa P (2004) Obstructive ureterocele-an ongoing challenge. World J Urol 22: 107–114PubMedCrossRefGoogle Scholar
  110. 110.
    Horst M, Smith GH (2008) Pelvi-ureteric junction obstruction in duplex kidneys. BJU Int 101: 1580–1584PubMedCrossRefGoogle Scholar
  111. 111.
    Whitten SM, Wilcox DT (2001) Duplex systems. Prenat Diagn 21: 952–927CrossRefGoogle Scholar
  112. 112.
    Mourtzinos A, Borer JG (2004) Current management of bladder exstrophy. Curr Urol Rep 5: 137–141PubMedCrossRefGoogle Scholar
  113. 113.
    Ben-Chaim J, Docimo SG, Jeffs RD, Gearhart JP (1996) Bladder exstrophy from childhood into adult life. J R Soc Med 89: 39P–46 PPubMedGoogle Scholar
  114. 114.
    Ludwig M, Ching B, Reutter H, Boyadjiev SA (2009) Bladder exstrophy-epispadias complex. Birth Defects Res A Clin Mol Teratol 85: 509–522PubMedCrossRefGoogle Scholar
  115. 115.
    Martínez-Frías ML, Bermejo E, Rodríguez-Pinilla E, Frías JL (2001) Exstrophy of the cloaca and exstrophy of the bladder: two different expressions of a primary developmental field defect. Am J Med Genet 99: 261–269PubMedCrossRefGoogle Scholar
  116. 116.
    Nepple KG, Cooper CS, Austin JC (2009) Rare variant of bladder exstrophy associated with urethral, bladder, and colonic duplication. Urology 73: 928. e1–e3PubMedGoogle Scholar
  117. 117.
    Gambhir L, Höller T, Müller M et al (2008) Epidemiological survey of 214 families with bladder exstrophy-epispadias complex. J Urol 179: 1539–1543PubMedCrossRefGoogle Scholar
  118. 118.
    Gargollo PC, Borer JG, Diamond DA et al (2008) Prospective followup in patients after complete primary repair of bladder exstrophy. J Urol 180 (4 Suppl): 1665–1670PubMedCrossRefGoogle Scholar
  119. 119.
    Carmichael SL, Shaw GM, Nelson V et al (2003) Hypospadias in California: trends and descriptive epidemiology. Epidemiology 14: 701–706PubMedCrossRefGoogle Scholar
  120. 120.
    Kalfa N, Philibert P, Sultan C (2009) Is hypospadias a genetic, endocrine or environmental disease, or still an unexplained malformation? Int J Androl 32: 187–197PubMedCrossRefGoogle Scholar
  121. 121.
    Soomro NA, Neal DE (1998) Treatment of hypospadias: an update of current practice. Hosp Med 59: 553–556PubMedGoogle Scholar
  122. 122.
    Leung AK, Robson WL (2004) Current status of cryptorchidism. Adv Pediatr 51: 351–377PubMedGoogle Scholar
  123. 123.
    Zagar I, Anderson PJ, Gordon I (2002) The value of radionuclide studies in children with autosomal recessive polycystic kidney disease. Clin Nucl Med 27: 339–344PubMedCrossRefGoogle Scholar
  124. 124.
    Ickowicz V, Eurin D, Maugey-Laulom B et al (2006) Meckel–Gruber syndrome: sonography and pathology. Ultrasound Obstet Gynecol 27: 296–300PubMedCrossRefGoogle Scholar
  125. 125.
    Hawkins JS, Dashe JS, Twickler DM (2008) Magnetic resonance imaging diagnosis of severe fetal renal anomalies. Am J Obstet Gynecol 198: 328. e1–5Google Scholar
  126. 126.
    Ismaili K, Hall M, Donner C et al (2003) Results of systematic screening for minor degrees of fetal renal pelvis dilatation in an unselected population. Am J Obstet Gynecol 188: 242–246PubMedCrossRefGoogle Scholar
  127. 127.
    Anderson NG, Abbott GD, Mogridge N et al (1997) Vesicoureteric reflux in the newborn: relationship to fetal renal pelvic diameter. Pediatr Nephrol 11: 610–616PubMedCrossRefGoogle Scholar
  128. 128.
    Wickstrom EA, Thangavelu M, Parilla BV et al (1996) A prospective study of the association between isolated fetal pyelectasis and chromosomal abnormality. Obstet Gynecol 88: 379–382PubMedCrossRefGoogle Scholar
  129. 129.
    Penido Silva JM, Oliveira EA, Diniz JS et al (2006) Clinical course of prenatally detected primary vesicoureteral reflux. Pediatr Nephrol 21: 86–91PubMedCrossRefGoogle Scholar
  130. 130.
    Tsatsaris V, Gagnadoux MF, Aubry MC et al (2002) Prenatal diagnosis of bilateral isolated fetal hyperechogenic kidneys: is it possible to predict long term outcome? BJOG 109: 1388–1393PubMedCrossRefGoogle Scholar
  131. 131.
    Abbott JF, Levine D, Wapner R (1998) Posterior urethral valves: inaccuracy of prenatal diagnosis. Fetal Diagn Ther 13: 179–183PubMedCrossRefGoogle Scholar
  132. 132.
    Bogart MM, Arnold HE, Greer KE (2006) Prune-belly syndrome in two children and review of the literature. Ped Dermatol 3: 342–345CrossRefGoogle Scholar
  133. 133.
    Liu YP, Cheng SJ, Shih SL, Huang JK (2006) Autosomal recessive polycystic kidney disease: appearance on fetal MRI. Pediatr Radiol 36: 169PubMedCrossRefGoogle Scholar
  134. 134.
    Nishi T (1995) Magnetic resonance imaging of autosomal recessive polycystic kidney disease in utero. J Obstet Gynaecol 21: 471–474Google Scholar
  135. 135.
    Kern S, Zimmerhackl LB, Hildebrandt F et al (2000) Appearance of autosomal recessive polycystic kidney disease in magnetic resonance imaging and RARE-MR-urography. Pediatr Radiol 30: 156–160PubMedCrossRefGoogle Scholar
  136. 136.
    Sfakianakis GN, Sfakianaki E (2001) Renal scintigraphy in infants and children. Urology 57: 1167–1177PubMedCrossRefGoogle Scholar
  137. 137.
    Ismaili K, Hall M, Piepsz Aet al (2005) Insights into the pathogenesis and natural history of fetuses with renal pelvis dilatation. Eur Urol 48: 207–214PubMedCrossRefGoogle Scholar
  138. 138.
    Coplen DE, Austin PF, Yan Y et al (2006) The magnitude of fetal renal pelvic dilatation can identify obstructive postnatal hydronephrosis, and direct postnatal evaluation and management. J Urol 176: 724–727PubMedCrossRefGoogle Scholar
  139. 139.
    de Bruyn R, Gordon I (2001) Postnatal investigation of fetal renal disease. Prenat Diagn 21: 984–91PubMedCrossRefGoogle Scholar
  140. 140.
    Belk RA, Thomas DF, Mueller RF et al (2002) A family study and the natural history of prenatally detected unilateral multicystic dysplastic kidney. J Urol 167: 666–669PubMedCrossRefGoogle Scholar
  141. 141.
    Winyard PJ, Nauta J, Lirenman DS et al (1996) Deregulation of cell survival in cystic and dysplastic renal development. Kidney Int 49: 135–146PubMedCrossRefGoogle Scholar
  142. 142.
    González Celedón C, Bitsori M, Tullus K (2007) Progression of chronic renal failure in children with dysplastic kidneys. Pediatr Nephrol 22: 1014–1120PubMedCrossRefGoogle Scholar
  143. 143.
    Woolf AS, Hillman KA (2007) Unilateral renal agenesis and the congenital solitary functioning kidney: developmental, genetic and clinical perspectives. BJU Int 99: 17–21PubMedCrossRefGoogle Scholar
  144. 144.
    Woolf AS (2006) Unilateral multicystic dysplastic kidney. Kidney Int 69: 190–193PubMedCrossRefGoogle Scholar
  145. 145.
    Heymans C, Breysem L, Proesmans W (1998) Multicystic kidney dysplasia: a prospective study on the natural history of the affected and the contralateral kidney. Eur J Pediatr 157: 673–675PubMedCrossRefGoogle Scholar
  146. 146.
    Webb NJ, Lewis MA, Bruce J et al (1997) Unilateral multicystic dysplastic kidney: the case for nephrectomy. Arch Dis Child 76: 31–34PubMedCrossRefGoogle Scholar
  147. 147.
    Winyard PJ, Bharucha T, De Bruyn R et al (2006) Perinatal renal venous thrombosis: presenting renal length predicts outcome. Arch Dis Child Fetal Neonatal Ed 91: F273–F278PubMedCrossRefGoogle Scholar
  148. 148.
    Gandy SJ, Armoogum K, Nicholas RS et al (2007) A clinical MRI investigation of the relationship between kidney volume measurements and renal function in patients with renovascular disease. Br J Radiol 80: 12–20PubMedCrossRefGoogle Scholar
  149. 149.
    Woolf AS, Wilcox DT (2004) Understanding primary vesicoureteric reflux and associated nephropathies. Curr Paediatr 14: 563–567CrossRefGoogle Scholar
  150. 150.
    Yeung CK, Godley ML, Dhillon HK et al (1998) The characteristics of primary vesico–ureteric reflux in male and female infants with pre-natal hydronephrosis. Br J Urol 80: 319–327Google Scholar
  151. 151.
    Silva JM, Oliveira EA, Diniz JS et al (2006) Gender and vesicoureteral reflux: a multivariate analysis. Pediatr Nephrol 21: 510–516PubMedCrossRefGoogle Scholar
  152. 152.
    Hoberman A, Charron M, Hickey RWet al (2003) Imaging studies after a first febrile urinary tract infection in young children. N Engl J Med 348: 195–202PubMedCrossRefGoogle Scholar
  153. 153.
    Walsh TJ, Hsieh S, Grady R, Mueller BA (2007) Antenatal hydronephrosis and the risk of pyelonephritis hospitalization during the first year of life. Urology 69: 970–974PubMedCrossRefGoogle Scholar
  154. 154.
    Lee RS, Cendron M, Kinnamon DD, Nguyen HT (2006) Antenatal hydronephrosis as a predictor of postnatal outcome: a metaanalysis. Pediatrics 118: 586–593PubMedCrossRefGoogle Scholar
  155. 155.
    Sidhu G, Beyene J, Rosenblum ND (2006) Outcome of isolated antenatal hydronephrosis: a systematic review and metaanalysis. Pediatr Nephrol 21: 218–224PubMedCrossRefGoogle Scholar
  156. 156.
    Feldenberg LR, Siegel NJ (2000) Clinical course and outcome for children with multicystic dysplastic kidneys. Pediatr Nephrol 14: 1098–1101PubMedCrossRefGoogle Scholar
  157. 157.
    Ismaili K, Hall M, Piepsz Aet al (2006) Primary vesicoureteral reflux detected in neonates with a history of fetal renal pelvis dilatation: a prospective clinical and imaging study. J Pediatr 148: 222–227PubMedCrossRefGoogle Scholar
  158. 158.
    Ransley PG, Dhillon HK, Gordon I et al (1990) The postnatal management of hydronephrosis diagnosed by prenatal ultrasound. J Urol 144: 584–587PubMedGoogle Scholar
  159. 159.
    Zaffanello M, Cecchetto M, Brugnara M et al (2008) Pelvi-ureteric junction obstruction and renal function after pyeloplasty: a retrospective study in 29 children. Minerva Urol Nefrol 60: 1–6PubMedGoogle Scholar
  160. 160.
    Ariel I, Wells TR, Landing BH, Singer DB (1991) The urinary system in Down syndrome: a study of 124 autopsy cases. Pediatr Pathol 11: 879–888PubMedCrossRefGoogle Scholar
  161. 161.
    Kari JA, Gonzalez C, Ledermann SE et al (2000) Outcome and growth of infants with severe chronic renal failure. Kidney Int 57: 1681–1687PubMedCrossRefGoogle Scholar
  162. 162.
    Klaassen I, Neuhaus TJ, Mueller-Wiefel DE, Kemper MJ (2007) Antenatal oligohydramnios of renal origin: long-term outcome. Nephrol Dial Transplant 22: 432–439PubMedCrossRefGoogle Scholar
  163. 163.
    Ylinen E, Ala-Houhala M, Wikström S (2004) Prognostic factors of posterior urethral valves and the role of antenatal detection. Pediatr Nephrol 19: 874–879PubMedGoogle Scholar
  164. 164.
    Neild GH, Dakmish A, Wood S et al (2004) Renal transplantation in adults with abnormal bladders. Transplantation 77: 1123–1127PubMedCrossRefGoogle Scholar
  165. 165.
    Wheeler DM, Vimalachandra D, Hodson EM et al (2004) Interventions for primary vesicoureteric reflux. Cochrane Database Syst Rev 3:CD001532Google Scholar
  166. 166.
    Montini G, Rigon L, Zucchetta P et al (2008) Prophylaxis after first febrile urinary tract infection in children? A multicenter, randomized, controlled, noninferiority trial. Pediatrics 122: 1064–1071PubMedCrossRefGoogle Scholar
  167. 167.
    Zaffanello M, Franchini M, Fanos V (2008) New therapeutic strategies with combined renin-angiotensin system inhibitors for pediatric nephropathy. Pharmacotherapy 28: 125–130PubMedCrossRefGoogle Scholar
  168. 168.
    Sudarsanan B, Nasir AA, Puzhankara R et al (2009) Posterior urethral valves: a single center experience over 7 years. Pediatr Surg Int 25: 283–287PubMedCrossRefGoogle Scholar
  169. 169.
    Soliman SM (2009) Primary ablation of posterior urethral valves in low birth weight neonates by a visually guided fogarty embolectomy catheter. J Urol 181: 2284–2289PubMedCrossRefGoogle Scholar
  170. 170.
    Hofmann W, Regenbogen C, Edel H, Guder W (1994) Diagnostic strategies in urinalysis. Kidney Int 46: s111–114Google Scholar
  171. 171.
    Hofmann W, Sedlmeir-Hofmann C, Ivandic M et al (1993) Assessment of urinary-protein-pattern on the basis of clinically characterized patients. Typical examples with reports. Lab Med 17: 502–512Google Scholar
  172. 172.
    Hortin GL, Sviridov D (2007) Diagnostic potential for urinary proteomics. Pharmacogenomics 8: 237–255PubMedCrossRefGoogle Scholar
  173. 173.
    Zhou H, Yuen PS, Pisitkun T et al (2006) Collection, storage preservation, and normalization of human urinary exosomes for biomarker discovery. Kidney Int 69: 1471–1476PubMedGoogle Scholar
  174. 174.
    Serafini-Cessi F, Malagolini N, Cavallone D (2003) Tamm-Horsfall glycoprotein: biology and clinical relevance. Am J Kidney Dis 42: 658–676PubMedCrossRefGoogle Scholar
  175. 175.
    Rule AD, Larson TS, Bergstralh EJ et al (2004) Using serum creatinine to estimate glomerular filtration rate: accuracy in good health and in chronic kidney disease. Ann Intern Med 141: 929–937PubMedGoogle Scholar
  176. 176.
    National Kidney Foundation (2002) K/DOQ1 Clinical practice guidelines for chronic kidney disease: evaluation, stratification and classification. Am J Kidney Dis 39: s1–s266CrossRefGoogle Scholar
  177. 177.
    Miller WG, Myers GL, Ashwood ER et al (2005) Creatinine measurement. State of the art in accuracy and interlaboratory harmonization. Arch Pathol Lab Med 129: 297–304PubMedGoogle Scholar
  178. 178.
    Panteghini M (2008) Enzymatic assay for creatinine: time for action. Scand J Clin Lab Invest Suppl. 241: 84–88PubMedCrossRefGoogle Scholar
  179. 179.
    Hogg RJ, Furth S, Lemley KV et al (2003) National Kidney Foundation’s Kidney Disease Outcomes Quality Initiative clinical practice guidelines for chronic kidney disease in children and adolescents: evaluation, classification, and stratification. Pediatrics 111: 1416–1421PubMedCrossRefGoogle Scholar
  180. 180.
    Stevens LA, Coresh J, Greene T, Levey AS (2006) Assessing kidney function - measured and estimated glomerular filtration rate. N Eng J Med 354: 2473–2483CrossRefGoogle Scholar
  181. 181.
    Levey AS, Stevens LA, Hostetter T (2006) Automatic Reporting of Estimated Glomerular Filtration Rate—Just What the Doctor Ordered. Clin Chem 52: 2188–2193PubMedCrossRefGoogle Scholar
  182. 182.
    Levey AS, Bosch JP, Lewis JB et al (1999) Amore accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 130: 461–470PubMedGoogle Scholar
  183. 183.
    Schwartz GJ, Haycock GB, Edelmann CM Jr, Spitzer A (1976) A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics 58: 259–263PubMedGoogle Scholar
  184. 184.
    Zappitelli M, Joseph L, Gupta IR et al (2007) Validation of child serum creatinine-based prediction equations for glomerular filtration rate. Pediatr Nephrol 22: 272–281PubMedCrossRefGoogle Scholar
  185. 185.
    Panteghini M, Myers GL, Miller WG, Greenberg N (2006) The importance of metrological traceability on the validity of creatinine measurement as an index of renal function. Clin Chem Lab Med 44: 1287–1292PubMedCrossRefGoogle Scholar
  186. 186.
    Levey AS, Coresh J, Greene T et al (2007) Expressing the Modification of Diet in Renal Disease Study equation for estimating glomerular filtration rate with standardized serum creatinine values. Clin Chem 53: 766–772PubMedCrossRefGoogle Scholar
  187. 187.
    Myers GL, Miller WG, Coresh J et al (2006) Recommendations for improving serum creatinine measurement: a report from the Laboratory Working Group of the National Kidney Disease Education Program. Clin Chem 52: 5–18PubMedCrossRefGoogle Scholar
  188. 188.
    Ceriotti F, Boyd JC, Klein G et al (2008) Reference intervals for serum creatinine concentrations: assessment of available data for global application. Clin Chem 54: 559–566PubMedCrossRefGoogle Scholar
  189. 189.
    Schwartz GJ, Muñoz A, Schneider MF et al (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20: 629–637PubMedCrossRefGoogle Scholar
  190. 190.
    Harmon WE (2009) Glomerular Filtration Rate in Children with Chronic Kidney Disease. Clin Chem 55: 400–401PubMedCrossRefGoogle Scholar
  191. 191.
    Dodder NG, Tai SS-C, Sniegoski LT et al (2007) Certification of Creatinine in a Human Serum Reference Material by GC-MS and LC-MS. Clin Chem 53: 1694–1699PubMedCrossRefGoogle Scholar
  192. 192.
    Bunk DM (2007) Reference materials and reference measurement procedures: an overview from a national metrology institute. Clin Biochem Rev 28: 131–137PubMedGoogle Scholar
  193. 193.
    Tomlinson PA, Dalton RN, Hartley B et al (1997) Low molecular weight protein excretion in glomerular disease: a comparative analysis. Pediatr Nephrol 11: 285–290PubMedCrossRefGoogle Scholar
  194. 194.
    Guder WG, Hofmann W (1992) Markers for the diagnosis and monitoring of renal tubular lesions. Clin Nephrol 38: s3–s7PubMedGoogle Scholar
  195. 195.
    Herget-Rosenthal S, Poppen D, Hüsing J et al (2004) Prognostic value of tubular proteinuria and enzymuria in nonoliguric acute tubular necrosis. Clin Chem 50: 552–558PubMedCrossRefGoogle Scholar
  196. 196.
    Donaldson MDC, Chambers RE, Woolridge MW, Whicher JT (1989) Stability of alpha1-microglobulin, beta2-microglobulin and retinol binding protein in urine. Clin Chim Acta 179: 73–78PubMedCrossRefGoogle Scholar
  197. 197.
    Bökenkamp A, Domanetzki M, Zinck R et al (1998) Reference values for cystatin C serum concentrations in children. Pediatr Nephrol 12: 125–129PubMedCrossRefGoogle Scholar
  198. 198.
    Harmoinen A, Ylinen E, Ala-Houhala M et al (2000) Reference intervals for cystatin C in pre- and full-term infants and children. Pediatr Nephrol 15: 105–108PubMedCrossRefGoogle Scholar
  199. 199.
    Tenstad O, Roald AB, Grubb A, Aukland K (1996) Renal handling of radiolabelled human cystatin C in the rat. Scand J Clin Lab Invest 56: 409–414PubMedCrossRefGoogle Scholar
  200. 200.
    Keevil BG, Kilpatrick ES, Nichols SP, Maylor PW (1998) Biological variation of cystatin C: implications for the assessment of glomerular filtration rate. Clin Chem 44: 1535–1539PubMedGoogle Scholar
  201. 201.
    Mussap M, Plebani M (2004) Biochemistry and clinical role of human cystatin C. Crit Rev Clin Lab Sci 41: 467–550PubMedCrossRefGoogle Scholar
  202. 202.
    Christensson A, Ekberg J, Grubb A et al (2003) Serum cystatin C is a more sensitive and more accurate marker of glomerular filtration rate than enzymatic measurements of creatinine in renal transplantation. Nephron Physiol 94: 19–27CrossRefGoogle Scholar
  203. 203.
    Filler G, Lepage N (2003) Should the Schwartz formula for estimation of GFR be replaced by cystatin C formula? Pediatr Nephrol 18: 981–985PubMedCrossRefGoogle Scholar
  204. 204.
    Laterza OF, Price CP, Scott MG (2002) Cystatin C: an improved estimator of glomerular filtration rate? Clin Chem 48: 699–707PubMedGoogle Scholar
  205. 205.
    Schwartz GJ, Furth S (2007) Glomerular filtration rate measurement and estimation. In chronic kiney disease. Pediatr Nephrol 22: 1839–1848PubMedCrossRefGoogle Scholar
  206. 206.
    Filler G, Priem F, Vollmer I et al (1999) Diagnostic sensitivity of serum cystatin for impaired glomerular filtration rate. Pediatr Nephrol 13: 501–505PubMedCrossRefGoogle Scholar
  207. 207.
    Martini S, Prévot A, Mosig D et al (2003) Glomerular filtration rate: measure creatinine and height rather than cystatin C! Acta Paediatr 92: 1052–1057PubMedCrossRefGoogle Scholar
  208. 208.
    Eknoyan G, Hostetter T, Bakris GL et al (2003) Proteinuria and other markers of chronic kidney disease: a position statement of the National Kidney Foundation (NKF) and the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). Am J Kidney Dis 42: 617–622PubMedCrossRefGoogle Scholar
  209. 209.
    Assadi FK (2002) Quantitation of microalbuminuria using random urine samples. Pediatr Nephrol 17: 107–110PubMedCrossRefGoogle Scholar
  210. 210.
    Meinhardt U, Ammann RA, Flück C et al (2003) Microalbuminuria in diabetes mellitus: efficacy of a new screening method in compar ison with timed overnight urine collection. J Diabetes Complications 17: 254 - 257PubMedCrossRefGoogle Scholar
  211. 211.
    Parson M, Newman DJ, Pugia M et al (1999) Performance of a reagent strip device for quantitation of the urine albumin: creatinine ratio in a point of care setting. Clin Nephrol 51: 220–227Google Scholar
  212. 212.
    Mogensen CE, Viberti GC, Peheim E et al (1997) Multicenter evaluation of the Micral-Test II test strip, an immunologic rapid test for the detection of microalbuminuria. Diabetes Care 20: 1642–1646PubMedCrossRefGoogle Scholar
  213. 213.
    Greive KA, Balazs ND, Comper WD (2001) Protein fragments in urine have been considerably underestimated by various protein assays. Clin Chem 47: 1717–1719PubMedGoogle Scholar
  214. 214.
    Mehta RL, Kellum JA, Shah SV et al (2007) Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 11: R31PubMedCrossRefGoogle Scholar
  215. 215.
    American Society of Nephrology (2005) Renal Research Report. J Am Soc Nephrol 16: 1886–18893CrossRefGoogle Scholar
  216. 216.
    Zerhouni E (2003) The NIH Roadmap. Science 302: 63–65PubMedCrossRefGoogle Scholar
  217. 217.
    O’Riordan E, Gross SS, Goligorsky MS (2006) Technology insight: renal proteomics–at the crossroads between promise and problems. Nat Clin Prac Nephrol 2: 445–458CrossRefGoogle Scholar
  218. 218.
    Schwarz C, Hauser P, Steininger R et al (2002) Failure of Bcl-2 upregulation in proximal tubular epithelial cells of donor kidney biopsy specimens is associated with apoptosis and delayed graft function. Lab Invest 82: 941–948PubMedGoogle Scholar
  219. 219.
    Hauser P, Schwarz C, Mitterbauer C et al (2004) Genome-wide gene-expression patterns of donor kidney biopsies distinguish primary allograft function. Lab Invest 84: 353–361PubMedCrossRefGoogle Scholar
  220. 220.
    Fleischer A, Ghadiri A, Dessauge F et al (2006) Modulating apoptosis as a target for effective therapy. Mol Immunol 43: 1065–1079PubMedCrossRefGoogle Scholar
  221. 221.
    Quadri SM, Segall L, de Perrot M et al (2005) Caspase inhibition improves ischemia-reperfusion injury after lung transplantation. Am J Transplant 5: 292–299PubMedCrossRefGoogle Scholar
  222. 222.
    Supavekin S, Zhnag W, Kucherlapati R et al (2003) Differential gene expression following early renal ischemia-reperfusion. Kidney Int 63: 1714–1724PubMedCrossRefGoogle Scholar
  223. 223.
    Mori K, Lee HT, Rapoport D et al (2005) Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia- reperfusion injury. J Clin Invest 115: 610–621PubMedGoogle Scholar
  224. 224.
    Trachtman H, Christen E, Cnaan Aet al (2006) Urinary neutrophil gelatinase-associated lipocalcin in D+HUS: a novel marker of renal injury. Pediatr Nephrol 21: 989–994PubMedCrossRefGoogle Scholar
  225. 225.
    Hirsch R, Dent C, Pfriem H et al (2007) NGAL is an early predictive biomarker of contrast-induced nephropathy in children. Pediatr Nephrol 22: 2089–2095PubMedCrossRefGoogle Scholar
  226. 226.
    Wheeler DS, Devarajan P, Ma Q et al (2008) Serum neutrophil gelatinase-associated lipocalin ( NGAL) as a marker of acute kidney injury in critically ill children with septic shock. Crit Care Med 36: 1297–1303PubMedCrossRefGoogle Scholar
  227. 227.
    Hinze CH, Suzuki M, Klein-Gitelman M et al (2009) Neutrophil gelatinase-associated lipocalin is a predictor of the course of global and renal childhood-onset systemic lupus erythematosus disease activity. Arthritis Rheum 60: 2772–2781PubMedCrossRefGoogle Scholar
  228. 228.
    Lavery AP, Meinzen-Derr JK, Anderson E et al (2008) Urinary NGAL in premature infants. Pediatr Res 64: 423–438PubMedCrossRefGoogle Scholar
  229. 229.
    Grenier FC, Ali S, Syed H et al (2010) Evaluation of the ARCHITECT urine NGAL assay: Assay performance, specimen handling requirements and biological variability. Clin Biochem 43: 615–620PubMedCrossRefGoogle Scholar
  230. 230.
    Haase-Fielitz A, Bellomo R, Devarajan P et al (2009) Novel and conventional serum biomarkers predicting acute kidney injury in adult cardiac surgery—a prospective cohort study. Crit Care Med 37: 553–560PubMedCrossRefGoogle Scholar
  231. 231.
    Ichimura T, Hung CC, Yang SA et al (2004) Kidney injury molecule- 1: a tissue and urinary biomarker for nephrotoxicant-induced renal injury. Am J Physiol Renal Physiol 286: F552–F563PubMedCrossRefGoogle Scholar
  232. 232.
    Bonventre JV (2009) Kidney injury molecule-1 (KIM-1): a urinary biomarker and much more. Nephrol Dial Transplant 24: 3265–3268PubMedCrossRefGoogle Scholar
  233. 233.
    Muramatsu Y, Tsujie M, Kohda Y et al (2002) Early detection of cysteine rich protein 61 (CYR61, CCN1) in urine following renal ischemic reperfusion injury. Kidney Int 62: 1601–1610PubMedCrossRefGoogle Scholar
  234. 234.
    Zahedi K, Wang Z, Barone S et al (2003) Expression of SSAT, a novel biomarker of tubular cell damage, increases in kidney ischemia- reperfusion injury. Am J Physiol Renal Physiol 284: F1046–F1055PubMedGoogle Scholar
  235. 235.
    Wang Z, Zahedi K, Barone S et al (2004) Overexpression of SSAT in kidney cells recapitulates various phenotypic aspects of kidney ischemia-reperfusion injury. J Am Soc Nephrol 15: 1844–1852PubMedCrossRefGoogle Scholar
  236. 236.
    Tarabishi R, Zahedi K, Mishra J et al (2005) Induction of Zf9 in the kidney following early ischemia/reperfusion. Kidney Int 68: 1511–1519PubMedCrossRefGoogle Scholar
  237. 237.
    Thakar CV, Zahedi K, Revelo MP et al (2005) Identification of thrombospondin 1 (TSP-1) as a novel mediator of cell injury in kidney ischemia. J Clin Invest 115: 3451–3459PubMedCrossRefGoogle Scholar
  238. 238.
    Molitoris BA, Melnikov VY, Okusa MD, Himmelfarb J (2008) Technology Insight: biomarker development in acute kidney injury–what can we anticipate? Nat Clin Pract Nephrol 4: 154–165PubMedCrossRefGoogle Scholar
  239. 239.
    Parikh CR, Jani A, Melnikov VY et al (2004) Urinary interleukin- 18 is a marker of human acute tubular necrosis. Am J Kidney Dis 43: 405–14PubMedCrossRefGoogle Scholar
  240. 240.
    Parikh CR, Abraham E, Ancukiewicz M, Edelstein CL (2005) Urine IL-18 is an early diagnostic marker for acute kidney injury and predicts mortality in the intensive care unit. J Am Soc Nephrol 16: 3046–52PubMedCrossRefGoogle Scholar
  241. 241.
    Parikh CR, Mishra J, Thiessen-Philbrook H et al (2006) Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery. Kidney Int 70: 199–203PubMedCrossRefGoogle Scholar
  242. 242.
    Parikh CR, Jani A, Mishra J et al (2006) Urine NGAL and IL-18 are predictive biomarkers for delayed graft function following kidney transplantation. Am J Transplant 6: 1639–1645PubMedCrossRefGoogle Scholar
  243. 243.
    Vaidya VS, Waikar SS, Ferguson MAet al (2009) Urinary biomarkers for sensitive and specific detection of acute kidney injury in humans. Clin Transl Sci 1: 200–208CrossRefGoogle Scholar
  244. 244.
    Pisitkun T, Johnstone R, Knepper MA (2006) Discovery of urinary biomarkers. Mol Cell Proteomics 5: 1760–1761PubMedCrossRefGoogle Scholar
  245. 245.
    Comper WD, Osicka TM (2005) Detection of urunary albumin. Adv Chronic Kidney Dis 12: 170–176PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Vassilios Fanos
    • 1
  • Marco Zaffanello
  • Michele Mussap
  1. 1.Neonatal Intensive Care Unit, Puericulture Institute and Neonatal SectionUniversity of CagliariCagliariItaly

Personalised recommendations