Neonatology pp 949-966 | Cite as

Inborn Errors of Metabolism

  • Nicola Brunetti-Pierri
  • Giancarlo Parenti
  • Generoso Andria


Inborn errors of metabolism are disorders of great importance to physicians treating newborns because rapid diagnosis and appropriate treatment of these conditions are directly related to the patient’s outcome in terms of mortality and morbidity. Although individually rare, as a group these diseases are relatively frequent and collectively their incidence may approach 1 in 800 to 2500 births [1, 2]. The presentation of these disorders may occur in any age group, from fetuses and newborns to adulthood. Neonatal onset is common because the newborn period is a time of substantial catabolism. The main problems facing the physician caring for the sick newborn are when to consider an inborn error of metabolism, what test to order to determine quickly and efficiently whether the patient has an inborn error of metabolism, and what therapy to initiate given a specific or a suspected diagnosis. Unfortunately, given the limited repertoire of symptoms of the newborn, the early presentation is generally non-specific and usually includes poor feeding, breathing difficulties, lethargy, hypotonia, vomiting, hypothermia, and seizures. Therefore, patients with acute metabolic presentation are often misdiagnosed with other more common conditions such as sepsis, pulmonary disease, pyloric stenosis, and Reye syndrome. However, clues from the history, from the clinical presentation or from basic biochemical studies should raise the suspicion of a metabolic disease (Tables 120.1120.7). A wide range of tests are required for the diagnosis of inborn errors of metabolism and the level of clinical and biochemical experience required is often substantial. Nevertheless, the neonatologist can initiate appropriate investigation with a relatively small number of laboratory tests which are readily available in most hospitals (Table 120.8). In many circumstances, the prevention of death or permanent neurologic sequelae is dependent on early diagnosis and institution of appropriate treatments. In addition, an accurate diagnosis is of primary importance for parental counselling.


Inborn Error Biotinidase Deficiency Urea Cycle Disorder Propionic Acidemia Methylmalonic Acidemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Applegarth DA, Toone JR, Lowry RB (2000) Incidence of inborn errors of metabolism in British Columbia, 1969–1996. Pediatrics 105: e10Google Scholar
  2. 2.
    Sanderson S, Green A, Preece MA, Burton H (2006) The incidence of inherited metabolic disorders in the West Midlands, UK. Arch Dis Child 91: 896–899Google Scholar
  3. 3.
    Saudubray JM, Charpentier C (2001) Clinical phenotypes: Diagnosis/ Algorithms. In: Scriver CR, Beaudet AL, Sly WS et al (eds) The metabolic & molecular bases of inherited disease. McGraw- Hill, New YorkGoogle Scholar
  4. 4.
    von Kleist-Retzow JC, Cormier-Daire V, Viot G et al (2003) Antenatal manifestations of mitochondrial respiratory chain deficiency. J Pediatr 143: 208–212CrossRefGoogle Scholar
  5. 5.
    North KN, Hoppel CL, De Girolami U et al (1995) Lethal neonatal deficiency of carnitine palmitoyltransferase II associated with dysgenesis of the brain and kidneys. J Pediatr 127: 414–420PubMedCrossRefGoogle Scholar
  6. 6.
    Profitlich LE, Kirmse B, Wasserstein MP et al (2009) High prevalence of structural heart disease in children with cblC-type methylmalonic aciduria and homocystinuria. Mol Genet Metab 98: 344–348PubMedCrossRefGoogle Scholar
  7. 7.
    de Koning TJ, Klomp LW, van Oppen AC et al (2004) Prenatal and early postnatal treatment in 3-phosphoglycerate-dehydrogenase deficiency. Lancet 364: 2221–2222PubMedCrossRefGoogle Scholar
  8. 8.
    Porter FD (2003) Human malformation syndromes due to inborn errors of cholesterol synthesis. Curr Opin Pediatr 15: 607–613PubMedCrossRefGoogle Scholar
  9. 9.
    Haberle J, Gorg B, Rutsch F et al (2005) Congenital glutamine deficiency with glutamine synthetase mutations. N Engl J Med 353: 1926–1933PubMedCrossRefGoogle Scholar
  10. 10.
    Norton ME (1994) Nonimmune hydrops fetalis. Semin Perinatol 18: 321–332PubMedGoogle Scholar
  11. 11.
    Bellini C, Hennekam RC, Fulcheri E et al (2009) Etiology of nonimmune hydrops fetalis: a systematic review. Am J Med Genet A 149A: 844–851Google Scholar
  12. 12.
    Wraith JE (2002) Lysosomal disorders. Semin Neonatol 7: 75–83PubMedCrossRefGoogle Scholar
  13. 13.
    Staretz-Chacham O, Lang TC, LaMarca ME et al (2009) Lysosomal storage disorders in the newborn. Pediatrics. 123: 1191–1207PubMedCrossRefGoogle Scholar
  14. 14.
    Mignot C, Gelot A, Bessieres B et al (2003) Perinatal-lethal Gaucher disease. Am J Med Genet A 120A: 338–344CrossRefGoogle Scholar
  15. 15.
    Garver WS, Francis GA, Jelinek D et al (2007) The National Niemann- Pick C1 disease database: report of clinical features and health problems. Am J Med Genet A 143A: 1204–1211Google Scholar
  16. 16.
    Baumgartner MR, Verhoeven NM, Jakobs C et al (1998) Defective peroxisome biogenesis with a neuromuscular disorder resembling Werdnig–Hoffmann disease. Neurology 51: 1427–1432PubMedGoogle Scholar
  17. 17.
    Weller S, Gould SJ, Valle D (2003) Peroxisome biogenesis disorders. Annu Rev Genomics Hum Genet 4: 165–211PubMedCrossRefGoogle Scholar
  18. 18.
    Jaeken J, Matthijs G (2007) Congenital disorders of glycosylation: a rapidly expanding disease family. Annu Rev Genomics Hum Genet 8: 261–278PubMedCrossRefGoogle Scholar
  19. 19.
    Lenke RR, Levy HL (1980) Maternal phenylketonuria and hyperphenylalaninemia. An international survey of the outcome of untreated and treated pregnancies. N Engl J Med 303: 1202–1208Google Scholar
  20. 20.
    National Institutes of Health Consensus Development Panel (2001) National Institutes of Health Consensus Development Conference Statement: phenylketonuria: screening and management, October 16–18, 2000. Pediatrics 108: 972–982Google Scholar
  21. 21.
    Chiong MA, Sim KG, Carpenter K et al (2007) Transient multiple acyl-CoA dehydrogenation deficiency in a newborn female caused by maternal riboflavin deficiency. Mol Genet Metab 92: 109–114PubMedCrossRefGoogle Scholar
  22. 22.
    Hinton CF, Ojodu JA, Fernhoff PM et al (2010) Maternal and neonatal vitamin B12 deficiency detected through expanded newborn screening–United States, 2003-2007. J Pediatr 157: 162–163PubMedCrossRefGoogle Scholar
  23. 23.
    Ibdah JA, Bennett MJ, Rinaldo P et al (1999) A fetal fatty-acid oxidation disorder as a cause of liver disease in pregnant women. N Engl J Med 340: 1723–1731PubMedCrossRefGoogle Scholar
  24. 24.
    Stanley CA, Lieu YK, Hsu BY et al (1998) Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene. N Engl J Med 338: 1352–1357PubMedCrossRefGoogle Scholar
  25. 25.
    Hsu BY, Kelly A, Thornton PS et al (2001) Protein-sensitive and fasting hypoglycemia in children with the hyperinsulinism/hyperammonemia syndrome. J Pediatr 138: 383–389PubMedCrossRefGoogle Scholar
  26. 26.
    Wilcken B (2010) Fatty acid oxidation disorders: outcome and long-term prognosis. J Inherit Metab Dis 33: 501–506PubMedCrossRefGoogle Scholar
  27. 27.
    Andresen BS, Dobrowolski SF, O’Reilly L et al (2001) Mediumchain acyl-CoA dehydrogenase (MCAD) mutations identified by MS/MS-based prospective screening of newborns differ from those observed in patients with clinical symptoms: identification and characterization of a new, prevalent mutation that results in mild MCAD deficiency. Am J Hum Genet 68: 1408–1418PubMedCrossRefGoogle Scholar
  28. 28.
    Wilcken B, Carpenter KH, Hammond J (1993) Neonatal symptoms in medium chain acyl coenzyme A dehydrogenase deficiency. Arch Dis Child 69: 292–294PubMedCrossRefGoogle Scholar
  29. 29.
    Wilcken B, Haas M, Joy P et al (2007) Outcome of neonatal screening for medium-chain acyl-CoA dehydrogenase deficiency in Australia: a cohort study. Lancet 369: 37–42PubMedCrossRefGoogle Scholar
  30. 30.
    Albers S, Marsden D, Quackenbush E et al (2001) Detection of neonatal carnitine palmitoyltransferase II deficiency by expanded newborn screening with tandem mass spectrometry. Pediatrics 107: E103PubMedCrossRefGoogle Scholar
  31. 31.
    Nezu J, Tamai I, Oku A et al (1999) Primary systemic carnitine deficiency is caused by mutations in a gene encoding sodium ion-dependent carnitine transporter. Nat Genet 21: 91–94PubMedCrossRefGoogle Scholar
  32. 32.
    Schimmenti LA, Crombez EA, Schwahn BC et al (2007) Expanded newborn screening identifies maternal primary carnitine deficiency. Mol Genet Metab 90: 441–445PubMedCrossRefGoogle Scholar
  33. 33.
    Boneh A, Allan S, Mendelson D et al (2008) Clinical, ethical and legal considerations in the treatment of newborns with non-ketotic hyperglycinaemia. Mol Genet Metab 94: 143–147PubMedCrossRefGoogle Scholar
  34. 34.
    Enns GM, Berry SA, Berry GT et al (2007) Survival after treatment with phenylacetate and benzoate for urea-cycle disorders. N Engl J Med 356: 2282–2292PubMedCrossRefGoogle Scholar
  35. 35.
    Tuchman M, Lee B, Lichter-Konecki U et al (2008) Cross-sectional multicenter study of patients with urea cycle disorders in the United States. Mol Genet Metab 94: 397–402PubMedCrossRefGoogle Scholar
  36. 36.
    Mian A, Lee B (2002) Urea-cycle disorders as a paradigm for inborn errors of hepatocyte metabolism. Trends Mol Med 8: 583–589PubMedCrossRefGoogle Scholar
  37. 37.
    Bejsovec M, Kulenda Z, Ponca E (1967) Familial intrauterine convulsions in pyridoxine dependency. Arch Dis Child 42: 201–207PubMedCrossRefGoogle Scholar
  38. 38.
    Mills PB, Surtees RA, Champion MP et al (2005) Neonatal epileptic encephalopathy caused by mutations in the PNPO gene encoding pyridox(am)ine 5’-phosphate oxidase. Hum Mol Genet 14: 1077–1086PubMedCrossRefGoogle Scholar
  39. 39.
    Hoover-Fong JE, Shah S, Van Hove JL et al (2004) Natural history of nonketotic hyperglycinemia in 65 patients. Neurology 63: 1847–1853PubMedGoogle Scholar
  40. 40.
    Applegarth DA, Toone JR (2001) Nonketotic hyperglycinemia (glycine encephalopathy): laboratory diagnosis. Mol Genet Metab 74: 139–146PubMedCrossRefGoogle Scholar
  41. 41.
    Garcia-Cazorla A, De Lonlay P, Nassogne MC et al (2005) Longterm follow-up of neonatal mitochondrial cytopathies: a study of 57 patients. Pediatrics 116: 1170–1177PubMedCrossRefGoogle Scholar
  42. 42.
    Cormier-Daire V, Chretien D, Rustin P et al (1997) Neonatal and delayed-onset liver involvement in disorders of oxidative phosphorylation. J Pediatr 130: 817–822PubMedCrossRefGoogle Scholar
  43. 43.
    Krahenbuhl S, Brandner S, Kleinle S et al (2000) Mitochondrial diseases represent a risk factor for valproate-induced fulminant liver failure. Liver 20: 346–348PubMedCrossRefGoogle Scholar
  44. 44.
    Verhoeven NM, Huck JH, Roos B et al (2001) Transaldolase deficiency: liver cirrhosis associated with a new inborn error in the pentose phosphate pathway. Am J Hum Genet 68: 1086–1092PubMedCrossRefGoogle Scholar
  45. 45.
    Huck JH, Verhoeven NM, Struys EA et al (2004) Ribose-5- phosphate isomerase deficiency: new inborn error in the pentose phosphate pathway associated with a slowly progressive leukoencephalopathy. Am J Hum Genet 74: 745–751PubMedCrossRefGoogle Scholar
  46. 46.
    Verhoeven NM, Wallot M, Huck JH et al (2005) A newborn with severe liver failure, cardiomyopathy and transaldolase deficiency. J Inherit Metab Dis 28: 169–179PubMedCrossRefGoogle Scholar
  47. 47.
    Tylki-Szymańska A, Stradomska TJ, Wamelink MM et al (2009) Transaldolase deficiency in two new patients with a relative mild phenotype. Mol Genet Metab 97: 15–17PubMedCrossRefGoogle Scholar
  48. 48.
    Kelly DA, Portmann B, Mowat AP et al (1993) Niemann-Pick disease type C: diagnosis and outcome in children, with particular reference to liver disease. J Pediatr 123: 242–247PubMedCrossRefGoogle Scholar
  49. 49.
    Feillet F, Merten M, Battaglia-Hsu SF et al (2008) Evidence of cataplerosis in a patient with neonatal classical galactosemia presenting as citrin deficiency. J Hepatol 48: 517–522PubMedCrossRefGoogle Scholar
  50. 50.
    van der Knaap MS, Valk J (2005) Pattern recognition in white matter disorders. Springer, BerlinGoogle Scholar
  51. 51.
    Arcasoy MO, Gallagher PG (1995) Hematologic disorders and nonimmune hydrops fetalis. Semin Perinatol 19: 502–515PubMedCrossRefGoogle Scholar
  52. 52.
    Stone DL, Sidransky E (1999) Hydrops fetalis: lysosomal storage disorders in extremis. Adv Pediatr 46: 409–440PubMedGoogle Scholar
  53. 53.
    Guibaud P, Cottin X, Maire I et al (1985) Fetal ascites as a manifestation of infantile sialidosis. Significance of a study of oligosaccharides in amniotic fluid. J Genet Hum 33: 317–324PubMedGoogle Scholar
  54. 54.
    Stone DL, Tayebi N, Orvisky E et al (2000) Glucocerebrosidase gene mutations in patients with type 2 Gaucher disease. Hum Mutat 15: 181–188PubMedCrossRefGoogle Scholar
  55. 55.
    Lake BD, Young EP, Winchester BG (1998) Prenatal diagnosis of lysosomal storage diseases. Brain Pathol 8: 133–149PubMedCrossRefGoogle Scholar
  56. 56.
    Piraud M, Froissart R, Mandon G et al (1996) Amniotic fluid for screening of lysosomal storage diseases presenting in utero (mainly as non-immune hydrops fetalis). Clin Chim Acta 248: 143–155PubMedCrossRefGoogle Scholar
  57. 57.
    Busche A, Hennermann JB, Burger F et al (2008) Neonatal manifestation of multiple sulfatase deficiency. Eur J Pediatr 168: 969–973PubMedCrossRefGoogle Scholar
  58. 58.
    Bouvier R, Maire I (1997) Diagnosis of lysosomal storage diseases with fetal presentation. Ann Pathol 17: 277–280PubMedGoogle Scholar
  59. 59.
    de Koning TJ, Toet M, Dorland L et al (1998) Recurrent nonimmune hydrops fetalis associated with carbohydrate-deficient glycoprotein syndrome. J Inherit Metab Dis 21: 681–682PubMedCrossRefGoogle Scholar
  60. 60.
    van de Kamp JM, Lefeber DJ, Ruijter GJ et al (2007) Congenital disorder of glycosylation type Ia presenting with hydrops fetalis. J Med Genet 44: 277–280PubMedCrossRefGoogle Scholar
  61. 61.
    Schwarz M, Thiel C, Lubbehusen J et al (2004) Deficiency of GDPMan: GlcNAc2-PP-dolichol mannosyltransferase causes congenital disorder of glycosylation type Ik. Am J Hum Genet 74: 472–481PubMedCrossRefGoogle Scholar
  62. 62.
    McKenzie FA, Fietz M, Fletcher J et al (2007) A previously undescribed form of congenital disorder of glycosylation with variable presentation in siblings: early fetal loss with hydrops fetalis, and infant death with hypoproteinemia. Am J Med Genet A 143A: 2029–2034Google Scholar
  63. 63.
    Cox PM, Brueton LA, Murphy KW et al (1999) Early-onset fetal hydrops and muscle degeneration in siblings due to a novel variant of type IV glycogenosis. Am J Med Genet 86: 187–193PubMedCrossRefGoogle Scholar
  64. 64.
    Tercanli S, Uyanik G, Hosli I et al (2000) Increased nuchal translucency in a case of long-chain 3-hydroxyacyl- coenzyme A dehydrogenase deficiency. Fetal Diagn Ther 15: 322–325PubMedCrossRefGoogle Scholar
  65. 65.
    Angle B, Tint GS, Yacoub OA, Clark AL (1998) Atypical case of Smith-Lemli-Opitz syndrome: implications for diagnosis. Am J Med Genet 80: 322–326PubMedCrossRefGoogle Scholar
  66. 66.
    Waterham HR, Koster J, Mooyer P et al (2003) Autosomal recessive HEM/Greenberg skeletal dysplasia is caused by 3 beta-hydroxysterol delta 14-reductase deficiency due to mutations in the lamin B receptor gene. Am J Hum Genet 72: 1013–1017PubMedCrossRefGoogle Scholar
  67. 67.
    Remes AM, Rantala H, Hiltunen JK et al (1992) Fumarase deficiency: two siblings with enlarged cerebral ventricles and polyhydramnios in utero. Pediatrics 89: 730–734PubMedGoogle Scholar
  68. 68.
    Fayon M, Lamireau T, Bioulac-Sage P et al (1992) Fatal neonatal liver failure and mitochondrial cytopathy: an observation with antenatal ascites. Gastroenterology 103: 1332–1335PubMedGoogle Scholar
  69. 69.
    Valayannopoulos V, Verhoeven NM, Mention K et al (2006) Transaldolase deficiency: a new cause of hydrops fetalis and neonatal multi-organ disease. J Pediatr 149: 713–717PubMedCrossRefGoogle Scholar
  70. 70.
    Daikha-Dahmane F, Dommergues M, Narcy F et al (2001) Congenital erythropoietic porphyria: prenatal diagnosis and autopsy findings in two sibling fetuses. Pediatr Dev Pathol 4: 180–184PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Nicola Brunetti-Pierri
  • Giancarlo Parenti
  • Generoso Andria
    • 1
  1. 1.Department of PediatricsFederico II University of NaplesNaplesItaly

Personalised recommendations