Skip to main content

Inborn Errors of Metabolism

  • Chapter
Neonatology

Abstract

Inborn errors of metabolism are disorders of great importance to physicians treating newborns because rapid diagnosis and appropriate treatment of these conditions are directly related to the patient’s outcome in terms of mortality and morbidity. Although individually rare, as a group these diseases are relatively frequent and collectively their incidence may approach 1 in 800 to 2500 births [1, 2]. The presentation of these disorders may occur in any age group, from fetuses and newborns to adulthood. Neonatal onset is common because the newborn period is a time of substantial catabolism. The main problems facing the physician caring for the sick newborn are when to consider an inborn error of metabolism, what test to order to determine quickly and efficiently whether the patient has an inborn error of metabolism, and what therapy to initiate given a specific or a suspected diagnosis. Unfortunately, given the limited repertoire of symptoms of the newborn, the early presentation is generally non-specific and usually includes poor feeding, breathing difficulties, lethargy, hypotonia, vomiting, hypothermia, and seizures. Therefore, patients with acute metabolic presentation are often misdiagnosed with other more common conditions such as sepsis, pulmonary disease, pyloric stenosis, and Reye syndrome. However, clues from the history, from the clinical presentation or from basic biochemical studies should raise the suspicion of a metabolic disease (Tables 120.1120.7). A wide range of tests are required for the diagnosis of inborn errors of metabolism and the level of clinical and biochemical experience required is often substantial. Nevertheless, the neonatologist can initiate appropriate investigation with a relatively small number of laboratory tests which are readily available in most hospitals (Table 120.8). In many circumstances, the prevention of death or permanent neurologic sequelae is dependent on early diagnosis and institution of appropriate treatments. In addition, an accurate diagnosis is of primary importance for parental counselling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Applegarth DA, Toone JR, Lowry RB (2000) Incidence of inborn errors of metabolism in British Columbia, 1969–1996. Pediatrics 105: e10

    Google Scholar 

  2. Sanderson S, Green A, Preece MA, Burton H (2006) The incidence of inherited metabolic disorders in the West Midlands, UK. Arch Dis Child 91: 896–899

    Google Scholar 

  3. Saudubray JM, Charpentier C (2001) Clinical phenotypes: Diagnosis/ Algorithms. In: Scriver CR, Beaudet AL, Sly WS et al (eds) The metabolic & molecular bases of inherited disease. McGraw- Hill, New York

    Google Scholar 

  4. von Kleist-Retzow JC, Cormier-Daire V, Viot G et al (2003) Antenatal manifestations of mitochondrial respiratory chain deficiency. J Pediatr 143: 208–212

    Article  Google Scholar 

  5. North KN, Hoppel CL, De Girolami U et al (1995) Lethal neonatal deficiency of carnitine palmitoyltransferase II associated with dysgenesis of the brain and kidneys. J Pediatr 127: 414–420

    Article  PubMed  CAS  Google Scholar 

  6. Profitlich LE, Kirmse B, Wasserstein MP et al (2009) High prevalence of structural heart disease in children with cblC-type methylmalonic aciduria and homocystinuria. Mol Genet Metab 98: 344–348

    Article  PubMed  CAS  Google Scholar 

  7. de Koning TJ, Klomp LW, van Oppen AC et al (2004) Prenatal and early postnatal treatment in 3-phosphoglycerate-dehydrogenase deficiency. Lancet 364: 2221–2222

    Article  PubMed  Google Scholar 

  8. Porter FD (2003) Human malformation syndromes due to inborn errors of cholesterol synthesis. Curr Opin Pediatr 15: 607–613

    Article  PubMed  Google Scholar 

  9. Haberle J, Gorg B, Rutsch F et al (2005) Congenital glutamine deficiency with glutamine synthetase mutations. N Engl J Med 353: 1926–1933

    Article  PubMed  Google Scholar 

  10. Norton ME (1994) Nonimmune hydrops fetalis. Semin Perinatol 18: 321–332

    PubMed  CAS  Google Scholar 

  11. Bellini C, Hennekam RC, Fulcheri E et al (2009) Etiology of nonimmune hydrops fetalis: a systematic review. Am J Med Genet A 149A: 844–851

    Google Scholar 

  12. Wraith JE (2002) Lysosomal disorders. Semin Neonatol 7: 75–83

    Article  PubMed  CAS  Google Scholar 

  13. Staretz-Chacham O, Lang TC, LaMarca ME et al (2009) Lysosomal storage disorders in the newborn. Pediatrics. 123: 1191–1207

    Article  PubMed  Google Scholar 

  14. Mignot C, Gelot A, Bessieres B et al (2003) Perinatal-lethal Gaucher disease. Am J Med Genet A 120A: 338–344

    Article  Google Scholar 

  15. Garver WS, Francis GA, Jelinek D et al (2007) The National Niemann- Pick C1 disease database: report of clinical features and health problems. Am J Med Genet A 143A: 1204–1211

    Google Scholar 

  16. Baumgartner MR, Verhoeven NM, Jakobs C et al (1998) Defective peroxisome biogenesis with a neuromuscular disorder resembling Werdnig–Hoffmann disease. Neurology 51: 1427–1432

    PubMed  CAS  Google Scholar 

  17. Weller S, Gould SJ, Valle D (2003) Peroxisome biogenesis disorders. Annu Rev Genomics Hum Genet 4: 165–211

    Article  PubMed  CAS  Google Scholar 

  18. Jaeken J, Matthijs G (2007) Congenital disorders of glycosylation: a rapidly expanding disease family. Annu Rev Genomics Hum Genet 8: 261–278

    Article  PubMed  CAS  Google Scholar 

  19. Lenke RR, Levy HL (1980) Maternal phenylketonuria and hyperphenylalaninemia. An international survey of the outcome of untreated and treated pregnancies. N Engl J Med 303: 1202–1208

    Google Scholar 

  20. National Institutes of Health Consensus Development Panel (2001) National Institutes of Health Consensus Development Conference Statement: phenylketonuria: screening and management, October 16–18, 2000. Pediatrics 108: 972–982

    Google Scholar 

  21. Chiong MA, Sim KG, Carpenter K et al (2007) Transient multiple acyl-CoA dehydrogenation deficiency in a newborn female caused by maternal riboflavin deficiency. Mol Genet Metab 92: 109–114

    Article  PubMed  CAS  Google Scholar 

  22. Hinton CF, Ojodu JA, Fernhoff PM et al (2010) Maternal and neonatal vitamin B12 deficiency detected through expanded newborn screening–United States, 2003-2007. J Pediatr 157: 162–163

    Article  PubMed  Google Scholar 

  23. Ibdah JA, Bennett MJ, Rinaldo P et al (1999) A fetal fatty-acid oxidation disorder as a cause of liver disease in pregnant women. N Engl J Med 340: 1723–1731

    Article  PubMed  CAS  Google Scholar 

  24. Stanley CA, Lieu YK, Hsu BY et al (1998) Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene. N Engl J Med 338: 1352–1357

    Article  PubMed  CAS  Google Scholar 

  25. Hsu BY, Kelly A, Thornton PS et al (2001) Protein-sensitive and fasting hypoglycemia in children with the hyperinsulinism/hyperammonemia syndrome. J Pediatr 138: 383–389

    Article  PubMed  CAS  Google Scholar 

  26. Wilcken B (2010) Fatty acid oxidation disorders: outcome and long-term prognosis. J Inherit Metab Dis 33: 501–506

    Article  PubMed  CAS  Google Scholar 

  27. Andresen BS, Dobrowolski SF, O’Reilly L et al (2001) Mediumchain acyl-CoA dehydrogenase (MCAD) mutations identified by MS/MS-based prospective screening of newborns differ from those observed in patients with clinical symptoms: identification and characterization of a new, prevalent mutation that results in mild MCAD deficiency. Am J Hum Genet 68: 1408–1418

    Article  PubMed  CAS  Google Scholar 

  28. Wilcken B, Carpenter KH, Hammond J (1993) Neonatal symptoms in medium chain acyl coenzyme A dehydrogenase deficiency. Arch Dis Child 69: 292–294

    Article  PubMed  CAS  Google Scholar 

  29. Wilcken B, Haas M, Joy P et al (2007) Outcome of neonatal screening for medium-chain acyl-CoA dehydrogenase deficiency in Australia: a cohort study. Lancet 369: 37–42

    Article  PubMed  CAS  Google Scholar 

  30. Albers S, Marsden D, Quackenbush E et al (2001) Detection of neonatal carnitine palmitoyltransferase II deficiency by expanded newborn screening with tandem mass spectrometry. Pediatrics 107: E103

    Article  PubMed  CAS  Google Scholar 

  31. Nezu J, Tamai I, Oku A et al (1999) Primary systemic carnitine deficiency is caused by mutations in a gene encoding sodium ion-dependent carnitine transporter. Nat Genet 21: 91–94

    Article  PubMed  CAS  Google Scholar 

  32. Schimmenti LA, Crombez EA, Schwahn BC et al (2007) Expanded newborn screening identifies maternal primary carnitine deficiency. Mol Genet Metab 90: 441–445

    Article  PubMed  CAS  Google Scholar 

  33. Boneh A, Allan S, Mendelson D et al (2008) Clinical, ethical and legal considerations in the treatment of newborns with non-ketotic hyperglycinaemia. Mol Genet Metab 94: 143–147

    Article  PubMed  CAS  Google Scholar 

  34. Enns GM, Berry SA, Berry GT et al (2007) Survival after treatment with phenylacetate and benzoate for urea-cycle disorders. N Engl J Med 356: 2282–2292

    Article  PubMed  CAS  Google Scholar 

  35. Tuchman M, Lee B, Lichter-Konecki U et al (2008) Cross-sectional multicenter study of patients with urea cycle disorders in the United States. Mol Genet Metab 94: 397–402

    Article  PubMed  CAS  Google Scholar 

  36. Mian A, Lee B (2002) Urea-cycle disorders as a paradigm for inborn errors of hepatocyte metabolism. Trends Mol Med 8: 583–589

    Article  PubMed  CAS  Google Scholar 

  37. Bejsovec M, Kulenda Z, Ponca E (1967) Familial intrauterine convulsions in pyridoxine dependency. Arch Dis Child 42: 201–207

    Article  PubMed  CAS  Google Scholar 

  38. Mills PB, Surtees RA, Champion MP et al (2005) Neonatal epileptic encephalopathy caused by mutations in the PNPO gene encoding pyridox(am)ine 5’-phosphate oxidase. Hum Mol Genet 14: 1077–1086

    Article  PubMed  CAS  Google Scholar 

  39. Hoover-Fong JE, Shah S, Van Hove JL et al (2004) Natural history of nonketotic hyperglycinemia in 65 patients. Neurology 63: 1847–1853

    PubMed  CAS  Google Scholar 

  40. Applegarth DA, Toone JR (2001) Nonketotic hyperglycinemia (glycine encephalopathy): laboratory diagnosis. Mol Genet Metab 74: 139–146

    Article  PubMed  CAS  Google Scholar 

  41. Garcia-Cazorla A, De Lonlay P, Nassogne MC et al (2005) Longterm follow-up of neonatal mitochondrial cytopathies: a study of 57 patients. Pediatrics 116: 1170–1177

    Article  PubMed  CAS  Google Scholar 

  42. Cormier-Daire V, Chretien D, Rustin P et al (1997) Neonatal and delayed-onset liver involvement in disorders of oxidative phosphorylation. J Pediatr 130: 817–822

    Article  PubMed  CAS  Google Scholar 

  43. Krahenbuhl S, Brandner S, Kleinle S et al (2000) Mitochondrial diseases represent a risk factor for valproate-induced fulminant liver failure. Liver 20: 346–348

    Article  PubMed  CAS  Google Scholar 

  44. Verhoeven NM, Huck JH, Roos B et al (2001) Transaldolase deficiency: liver cirrhosis associated with a new inborn error in the pentose phosphate pathway. Am J Hum Genet 68: 1086–1092

    Article  PubMed  CAS  Google Scholar 

  45. Huck JH, Verhoeven NM, Struys EA et al (2004) Ribose-5- phosphate isomerase deficiency: new inborn error in the pentose phosphate pathway associated with a slowly progressive leukoencephalopathy. Am J Hum Genet 74: 745–751

    Article  PubMed  CAS  Google Scholar 

  46. Verhoeven NM, Wallot M, Huck JH et al (2005) A newborn with severe liver failure, cardiomyopathy and transaldolase deficiency. J Inherit Metab Dis 28: 169–179

    Article  PubMed  CAS  Google Scholar 

  47. Tylki-Szymańska A, Stradomska TJ, Wamelink MM et al (2009) Transaldolase deficiency in two new patients with a relative mild phenotype. Mol Genet Metab 97: 15–17

    Article  PubMed  Google Scholar 

  48. Kelly DA, Portmann B, Mowat AP et al (1993) Niemann-Pick disease type C: diagnosis and outcome in children, with particular reference to liver disease. J Pediatr 123: 242–247

    Article  PubMed  CAS  Google Scholar 

  49. Feillet F, Merten M, Battaglia-Hsu SF et al (2008) Evidence of cataplerosis in a patient with neonatal classical galactosemia presenting as citrin deficiency. J Hepatol 48: 517–522

    Article  PubMed  Google Scholar 

  50. van der Knaap MS, Valk J (2005) Pattern recognition in white matter disorders. Springer, Berlin

    Google Scholar 

  51. Arcasoy MO, Gallagher PG (1995) Hematologic disorders and nonimmune hydrops fetalis. Semin Perinatol 19: 502–515

    Article  PubMed  CAS  Google Scholar 

  52. Stone DL, Sidransky E (1999) Hydrops fetalis: lysosomal storage disorders in extremis. Adv Pediatr 46: 409–440

    PubMed  CAS  Google Scholar 

  53. Guibaud P, Cottin X, Maire I et al (1985) Fetal ascites as a manifestation of infantile sialidosis. Significance of a study of oligosaccharides in amniotic fluid. J Genet Hum 33: 317–324

    PubMed  CAS  Google Scholar 

  54. Stone DL, Tayebi N, Orvisky E et al (2000) Glucocerebrosidase gene mutations in patients with type 2 Gaucher disease. Hum Mutat 15: 181–188

    Article  PubMed  CAS  Google Scholar 

  55. Lake BD, Young EP, Winchester BG (1998) Prenatal diagnosis of lysosomal storage diseases. Brain Pathol 8: 133–149

    Article  PubMed  CAS  Google Scholar 

  56. Piraud M, Froissart R, Mandon G et al (1996) Amniotic fluid for screening of lysosomal storage diseases presenting in utero (mainly as non-immune hydrops fetalis). Clin Chim Acta 248: 143–155

    Article  PubMed  CAS  Google Scholar 

  57. Busche A, Hennermann JB, Burger F et al (2008) Neonatal manifestation of multiple sulfatase deficiency. Eur J Pediatr 168: 969–973

    Article  PubMed  Google Scholar 

  58. Bouvier R, Maire I (1997) Diagnosis of lysosomal storage diseases with fetal presentation. Ann Pathol 17: 277–280

    PubMed  CAS  Google Scholar 

  59. de Koning TJ, Toet M, Dorland L et al (1998) Recurrent nonimmune hydrops fetalis associated with carbohydrate-deficient glycoprotein syndrome. J Inherit Metab Dis 21: 681–682

    Article  PubMed  Google Scholar 

  60. van de Kamp JM, Lefeber DJ, Ruijter GJ et al (2007) Congenital disorder of glycosylation type Ia presenting with hydrops fetalis. J Med Genet 44: 277–280

    Article  PubMed  Google Scholar 

  61. Schwarz M, Thiel C, Lubbehusen J et al (2004) Deficiency of GDPMan: GlcNAc2-PP-dolichol mannosyltransferase causes congenital disorder of glycosylation type Ik. Am J Hum Genet 74: 472–481

    Article  PubMed  CAS  Google Scholar 

  62. McKenzie FA, Fietz M, Fletcher J et al (2007) A previously undescribed form of congenital disorder of glycosylation with variable presentation in siblings: early fetal loss with hydrops fetalis, and infant death with hypoproteinemia. Am J Med Genet A 143A: 2029–2034

    Google Scholar 

  63. Cox PM, Brueton LA, Murphy KW et al (1999) Early-onset fetal hydrops and muscle degeneration in siblings due to a novel variant of type IV glycogenosis. Am J Med Genet 86: 187–193

    Article  PubMed  CAS  Google Scholar 

  64. Tercanli S, Uyanik G, Hosli I et al (2000) Increased nuchal translucency in a case of long-chain 3-hydroxyacyl- coenzyme A dehydrogenase deficiency. Fetal Diagn Ther 15: 322–325

    Article  PubMed  CAS  Google Scholar 

  65. Angle B, Tint GS, Yacoub OA, Clark AL (1998) Atypical case of Smith-Lemli-Opitz syndrome: implications for diagnosis. Am J Med Genet 80: 322–326

    Article  PubMed  CAS  Google Scholar 

  66. Waterham HR, Koster J, Mooyer P et al (2003) Autosomal recessive HEM/Greenberg skeletal dysplasia is caused by 3 beta-hydroxysterol delta 14-reductase deficiency due to mutations in the lamin B receptor gene. Am J Hum Genet 72: 1013–1017

    Article  PubMed  CAS  Google Scholar 

  67. Remes AM, Rantala H, Hiltunen JK et al (1992) Fumarase deficiency: two siblings with enlarged cerebral ventricles and polyhydramnios in utero. Pediatrics 89: 730–734

    PubMed  CAS  Google Scholar 

  68. Fayon M, Lamireau T, Bioulac-Sage P et al (1992) Fatal neonatal liver failure and mitochondrial cytopathy: an observation with antenatal ascites. Gastroenterology 103: 1332–1335

    PubMed  CAS  Google Scholar 

  69. Valayannopoulos V, Verhoeven NM, Mention K et al (2006) Transaldolase deficiency: a new cause of hydrops fetalis and neonatal multi-organ disease. J Pediatr 149: 713–717

    Article  PubMed  Google Scholar 

  70. Daikha-Dahmane F, Dommergues M, Narcy F et al (2001) Congenital erythropoietic porphyria: prenatal diagnosis and autopsy findings in two sibling fetuses. Pediatr Dev Pathol 4: 180–184

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this chapter

Cite this chapter

Brunetti-Pierri, N., Parenti, G., Andria, G. (2012). Inborn Errors of Metabolism. In: Buonocore, G., Bracci, R., Weindling, M. (eds) Neonatology. Springer, Milano. https://doi.org/10.1007/978-88-470-1405-3_120

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1405-3_120

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1404-6

  • Online ISBN: 978-88-470-1405-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics