Neonatology pp 931-939 | Cite as

Neonatal Septic Shock

  • Rajesh K. Aneja
  • Ruby V. Aneja
  • Robert Cicco
  • Joseph A. Carcillo


Group B Streptococcus (GBS) continues to be a leading infectious cause of neonatal morbidity and mortality in the United States [1]. Overall, the incidence of GBS early onset disease (EOD) over the last 3 decades has decreased from 1.7 to 0.4 per 1,000 live births, a 70% reduction [2]. This success has largely been attributed to the institution of intrapartum prophylaxis. Since implementation of Group B streptococcal (GBS) prophylaxis, there has been a reduction in GBS EOD from 5.9 to 1.7 per 1000 live births of infants weighing 401–1500 g, but a concomitant increase in the rate of Escherichia coli sepsis from 3.2 to 6.8 per 1000 live births [3].


Septic Shock Disseminate Intravascular Coagulation Periventricular Leukomalacia Early Onset Disease Late Onset Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Centers for Disease Control and Prevention (CDC) (2009) Trends in perinatal group B streptococcal disease - United States, 2000- 2006. MMWR Morb Mortal Wkly Rep 58: 109–112Google Scholar
  2. 2.
    Nandyal RR (2008) Update on group B streptococcal infections: perinatal and neonatal periods. J Perinat Neonatal Nurs 22: 230–237PubMedGoogle Scholar
  3. 3.
    Fanaroff AA, Stoll BJ, Wright LL et al (2007) Trends in neonatal morbidity and mortality for very low birthweight infants. Am J Obstet Gynecol 196: 147. e1–e8PubMedGoogle Scholar
  4. 4.
    Watson RS, Carcillo JA, Linde-Zwirble WT et al (2003) The epidemiology of severe sepsis in children in the United States. Am J Respir Crit Care Med 167: 695–701PubMedCrossRefGoogle Scholar
  5. 5.
    Angus DC, Linde-Zwirble WT, Lidicker J et al (2001) Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29: 1303–1310PubMedCrossRefGoogle Scholar
  6. 6.
    Hartman M, Clermont G, Angus D, Watson R (2008) Pediatric Severe Sepsis in the US: 1995 vs. 2005. Crit Care Med 36: A76Google Scholar
  7. 7.
    Stoll BJ, Holman RC, Schuchat A (1998) Decline in sepsis-associated neonatal and infant deaths in the United States, 1979 through 1994. Pediatrics 102: e18Google Scholar
  8. 8.
    Stoll BJ, Hansen N, Fanaroff AA et al (2002) Changes in pathogens causing early-onset sepsis in very-low-birth-weight infants. N Engl J Med 347: 240–247PubMedCrossRefGoogle Scholar
  9. 9.
    Stoll BJ, Hansen N, Fanaroff AA et al (2002) Late-onset sepsis in very low birth weight neonates: the experience of the NICHD Neonatal Research Network. Pediatrics 110: 285–291PubMedCrossRefGoogle Scholar
  10. 10.
    Graves GR, Rhodes PG (1984) Tachycardia as a sign of early onset neonatal sepsis. Pediatr Infect Dis 3: 404–406PubMedCrossRefGoogle Scholar
  11. 11.
    Paternoster DM, Laureti E (1996) Persistent foetal tachycardia as an early marker of chorion-amnionitis. Description of a clinical case. Minerva Ginecol 48: 371–374Google Scholar
  12. 12.
    Küster H, Weiss M, Willeitner AE et al (1998) Interleukin-1 receptor antagonist and interleukin-6 for early diagnosis of neonatal sepsis 2 days before clinical manifestation. Lancet 352: 1271–1277PubMedCrossRefGoogle Scholar
  13. 13.
    Silveira RC, Procianoy RS (1999) Evaluation of interleukin-6, tumour necrosis factor-alpha and interleukin-1beta for early diagnosis of neonatal sepsis. Acta Paediatr 88: 647–650PubMedCrossRefGoogle Scholar
  14. 14.
    Janota J, Stranak Z, Belohlavkova S et al (2001) Postnatal increase of procalcitonin in premature newborns is enhanced by chorioamnionitis and neonatal sepsis. Eur J Clin Invest 31: 978–983PubMedCrossRefGoogle Scholar
  15. 15.
    Ng PC, Cheng SH, Chui KM et al (1997) Diagnosis of late onset neonatal sepsis with cytokines, adhesion molecule, and C-reactive protein in preterm very low birthweight infants. Arch Dis Child Fetal Neonatal Ed 77: F221–F227PubMedCrossRefGoogle Scholar
  16. 16.
    Rogers BB, Alexander JM, Head J et al (2002) Umbilical vein interleukin- 6 levels correlate with the severity of placental inflammation and gestational age. Hum Pathol 33: 335–340PubMedCrossRefGoogle Scholar
  17. 17.
    Krueger M, Nauck MS, Sang S et al (2001) Cord blood levels of interleukin-6 and interleukin-8 for the immediate diagnosis of earlyonset infection in premature infants. Biol Neonate 80: 118–123PubMedCrossRefGoogle Scholar
  18. 18.
    Romagnoli C, Frezza S, Cingolani A et al (2001) Plasma levels of interleukin-6 and interleukin-10 in preterm neonates evaluated for sepsis. Eur J Pediatr 160: 345–350PubMedCrossRefGoogle Scholar
  19. 19.
    Kashlan F, Smulian J, Shen-Schwarz S et al (2000) Umbilical vein interleukin 6 and tumor necrosis factor alpha plasma concentrations in the very preterm infant. Pediatr Infect Dis J 19: 238–243PubMedCrossRefGoogle Scholar
  20. 20.
    Smulian JC, Vintzileos AM, Lai YL et al (1999) Maternal chorioamnionitis and umbilical vein interleukin-6 levels for identifying early neonatal sepsis. J Matern Fetal Med 8: 88–94PubMedCrossRefGoogle Scholar
  21. 21.
    Bang AT, Bang RA, Baitule SB et al (1999) Effect of home-based neonatal care and management of sepsis on neonatal mortality: field trial in rural India. Lancet 354: 1955–1961PubMedCrossRefGoogle Scholar
  22. 22.
    Han YY, Carcillo JA, Dragotta MA et al (2003) Early reversal of pediatric-neonatal septic shock by community physicians is associated with improved outcome. Pediatrics 112: 793–799PubMedCrossRefGoogle Scholar
  23. 23.
    Rivers E, Nguyen B, Havstad S et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345: 1368–1377PubMedCrossRefGoogle Scholar
  24. 24.
    Haque K, Mohan P (2003) Pentoxifylline for neonatal sepsis. Cochrane Database Syst Rev 4:CD004205Google Scholar
  25. 25.
    Nguyen T, Hall M, Han Y et al (2001) Microvascular thrombosis in pediatric multiple organ failure: Is it a therapeutic target? Pediatr Crit Care Med 2: 187–196PubMedCrossRefGoogle Scholar
  26. 26.
    Román J, Velasco F, Fernandez F et al (1992) Protein C, protein S and C4b-binding protein in neonatal severe infection and septic shock. J Perinat Med 20: 111–116PubMedCrossRefGoogle Scholar
  27. 27.
    Román J, Velasco F, Fernandez F et al (1993) Coagulation, fibrinolytic and kallikrein systems in neonates with uncomplicated sepsis and septic shock. Haemostasis 23: 142–148PubMedGoogle Scholar
  28. 28.
    Dempsey EM, Barrington KJ (2009) Evaluation and treatment of hypotension in the preterm infant. Clin Perinatol 36: 75–85PubMedCrossRefGoogle Scholar
  29. 29.
    Dempsey EM, Barrington KJ (2006) Diagnostic criteria and therapeutic interventions for the hypotensive very low birth weight infant. J Perinatol 26: 677–681PubMedCrossRefGoogle Scholar
  30. 30.
    British Association of Perinatal Medicine, Neonatal Nurses Association (1992) Report of working group of the British Association of Perinatal Medicine and Neonatal Nurses Association on categories of babies requiring neonatal care. Arch Dise Child 67: 868–869CrossRefGoogle Scholar
  31. 31.
    Wardle SP, Yoxall CW, Weindling AM (1999) Peripheral oxygenation in hypotensive preterm babies. Pediatr Res 45: 343–349PubMedCrossRefGoogle Scholar
  32. 32.
    Perry EH, Bada HS, Ray JD et al (1990) Blood pressure increases, birth weight-dependent stability boundary, and intraventricular hemorrhage. Pediatrics 85: 727–732PubMedGoogle Scholar
  33. 33.
    Miall-Allen VM, de Vries LS, Whitelaw AG (1987) Mean arterial blood pressure and neonatal cerebral lesions. Arch Dis Child 62: 1068–1069Google Scholar
  34. 34.
    Soliman AT, Taman KH, Rizk MM et al (2004) Circulating adrenocorticotropic hormone (ACTH) and cortisol concentrations in normal, appropriate-for-gestational-age newborns versus those with sepsis and respiratory distress: Cortisol response to low-dose and standard-dose ACTH tests. Metabolism 53: 209–214Google Scholar
  35. 35.
    Ng PC, Lee CH, Bnur FL et al (2006) A double-blind, randomized, controlled study of a “stress dose” of hydrocortisone for rescue treatment of refractory hypotension in preterm infants. Pediatrics 117: 367–375PubMedCrossRefGoogle Scholar
  36. 36.
    Brierley J, Carcillo J, Choong K et al (2008) Clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock: 2007 update from the American College of Critical Care Medicine. Crit Care Med 37: 666–688CrossRefGoogle Scholar
  37. 37.
    Carcillo JA, Fields AI (2002) Clinical practice parameters for hemodynamic support of pediatric and neonatal patients in septic shock. Crit Care Med 30: 1365–1378PubMedCrossRefGoogle Scholar
  38. 38.
    Lauterbach R, Pawlik D, Kowalczyk D et al (1999) Effect of the immunomodulating agent, pentoxifylline, in the treatment of sepsis in prematurely delivered infants: a placebo-controlled, double-blind trial. Crit Care Med 27: 807–814PubMedCrossRefGoogle Scholar
  39. 39.
    Gill AB, Weindling AM (1993) Echocardiographic assessment of cardiac function in shocked very low birthweight infants. Arch Dis Child 68: 17–21PubMedCrossRefGoogle Scholar
  40. 40.
    Schonberger W, Grimm W, Gempp W, Dinkel E (1979) Transient hypothyroidism associated with prematurity, sepsis, and respiratory distress. Eur J Pediatr 132: 85–92PubMedCrossRefGoogle Scholar
  41. 41.
    Roberton NR, Smith MA (1975) Early neonatal hypocalcaemia. Arch Dis Child 50: 604–609PubMedCrossRefGoogle Scholar
  42. 42.
    Zimmerman JJ (1999) Appraising the potential of pentoxifylline in septic premies. Crit Care Med 27: 695–697PubMedCrossRefGoogle Scholar
  43. 43.
    Pladys P, Wodey E, Betremieux P et al (1997) Effects of volume expansion on cardiac output in the preterm infant. Acta Paediatr 86: 1241–1245PubMedCrossRefGoogle Scholar
  44. 44.
    Lambert HJ, Baylis PH, Coulthard MG (1998) Central-peripheral temperature difference, blood pressure, and arginine vasopressin in preterm neonates undergoing volume expansion. Arch Dis Child Fetal Neonatal Ed 78: F43–F45Google Scholar
  45. 45.
    Allen E, Pettigrew A, Frank D et al (1997) Alterations in dopamine clearance and catechol-O-methyltransferase activity by dopamine infusions in children. Crit Care Med 25: 181–189PubMedCrossRefGoogle Scholar
  46. 46.
    Padbury JF, Agata Y, Baylen BG et al (1987) Dopamine pharmacokinetics in critically ill newborn infants. J Pediatr 110: 293–298PubMedCrossRefGoogle Scholar
  47. 47.
    Hentschel R, Hensel D, Brune T et al (1995) Impact on blood pressure and intestinal perfusion of dobutamine or dopamine in hypotensive preterm infants. Biol Neonate 68: 318–324PubMedCrossRefGoogle Scholar
  48. 48.
    Klarr JM, Faix RG, Pryce CJ, Bhatt-Mehta V (1994) Randomized, blind trial of dopamine versus dobutamine for treatment of hypotension in preterm infants with respiratory distress syndrome. J Pediatr 125: 117–122PubMedCrossRefGoogle Scholar
  49. 49.
    Yunge M, Petros A (2000) Angiotensin for septic shock unresponsive to noradrenaline. Arch Dis Child 82: 388–389PubMedCrossRefGoogle Scholar
  50. 50.
    Rosenzweig EB, Starc TJ, Chen JM et al (1999) Intravenous arginine- vasopressin in children with vasodilatory shock after cardiac surgery. Circulation 100(19 Suppl):II182–186Google Scholar
  51. 51.
    Uzuner N, Islekel H, Ozkan H et al (1997) Urinary nitrite excretion in low birth weight neonates with systemic inflammatory response syndrome. Biol Neonate 71: 362–366PubMedCrossRefGoogle Scholar
  52. 52.
    Driscoll W, Thurin S, Carrion V et al (1996) Effect of methylene blue on refractory neonatal hypotension. J Pediatr 129: 904–908PubMedCrossRefGoogle Scholar
  53. 53.
    Harada K, Tamura M, Ito T et al (1996) Effects of low-dose dobutamine on left ventricular diastolic filling in children. Pediatr Cardiol 17: 220–225PubMedCrossRefGoogle Scholar
  54. 54.
    Stopfkuchen H, Queisser-Luft A, Vogel K (1990) Cardiovascular responses to dobutamine determined by systolic time intervals in preterm infants. Crit Care Med 18: 722–724PubMedCrossRefGoogle Scholar
  55. 55.
    Martinez AM, Padbury JF, Thio S (1992) Dobutamine pharmacokinetics and cardiovascular responses in critically ill neonates. Pediatrics 89: 47–51PubMedGoogle Scholar
  56. 56.
    Lopez SL, Leighton JO, Walther FJ (1997) Supranormal cardiac output in the dopamine- and dobutamine-dependent preterm infant. Pediatr Cardiol 18: 292–296PubMedCrossRefGoogle Scholar
  57. 57.
    Chang AC, Atz AM, Wernovsky G et al (1995) Milrinone: systemic and pulmonary hemodynamic effects in neonates after cardiac surgery. Crit Care Med 23: 1907–1914PubMedCrossRefGoogle Scholar
  58. 58.
    Wong AF, McCulloch LM, Sola A (1992) Treatment of peripheral tissue ischemia with topical nitroglycerin ointment in neonates. J Pediatr 121: 980–983PubMedCrossRefGoogle Scholar
  59. 59.
    Benitz WE, Rhine WD, Van Meurs KP, Stevenson DK (1996) Nitrovasodilator therapy for severe respiratory distress syndrome. J Perinatol 16: 443–448PubMedGoogle Scholar
  60. 60.
    Lauterbach R, Zembala M (1996) Pentoxifylline reduces plasma tumour necrosis factor-alpha concentration in premature infants with sepsis. Eur J Pediatr 155: 404–409PubMedCrossRefGoogle Scholar
  61. 61.
    Kawczynski P, Piotrowski A (1996) Circulatory and diuretic effects of dopexamine infusion in low-birth-weight infants with respiratory failure. Intensive Care Med 22: 65–70PubMedCrossRefGoogle Scholar
  62. 62.
    Roberts JD Jr, Fineman JR, Morin FC 3rd et al (1997) Inhaled nitric oxide and persistent pulmonary hypertension of the newborn. The Inhaled Nitric Oxide Study Group. N Engl J Med 336: 605–610Google Scholar
  63. 63.
    The Neonatal Inhaled Nitric Oxide Study Group (1997) Inhaled nitric oxide in full-term and nearly full-term infants with hypoxic respiratory failure. The Neonatal Inhaled Nitric Oxide Study Group. N Engl J Med 336: 597–604CrossRefGoogle Scholar
  64. 64.
    Wung JT, James LS, Kilchevsky E, James E (1985) Management of infants with severe respiratory failure and persistence of the fetal circulation, without hyperventilation. Pediatrics 76: 488–494PubMedGoogle Scholar
  65. 65.
    Drummond WH, Gregory GA, Heymann MA, Phibbs RA (1981) The independent effects of hyperventilation, tolazoline, and dopamine on infants with persistent pulmonary hypertension. J Pediatr 98: 603–611PubMedCrossRefGoogle Scholar
  66. 66.
    Drummond WH (1984) Use of cardiotonic therapy in the management of infants with PPHN. Clin Perinatol 11: 715–728PubMedGoogle Scholar
  67. 67.
    Gouyon JB, Francoise M (1992) Vasodilators in persistent pulmonary hypertension of the newborn: a need for optimal appraisal of efficacy. Dev Pharmacol Ther 19: 62–68PubMedGoogle Scholar
  68. 68.
    Meadow WL, Meus PJ (1984) Hemodynamic consequences of tolazoline in neonatal group B streptococcal bacteremia: an animal model. Pediatr Res 18: 960–965PubMedGoogle Scholar
  69. 69.
    Bernbaum J, Schwartz IP, Gerdes M et al (1995) Survivors of extracorporeal membrane oxygenation at 1 year of age: the relationship of primary diagnosis with health and neurodevelopmental sequelae. Pediatrics 96: 907–913PubMedGoogle Scholar
  70. 70.
    Sandor GG, Macnab AJ, Akesode FA et al (1984) Clinical and echocardiographic evidence suggesting afterload reduction as a mechanism of action of tolazoline in neonatal hypoxemia. Pediatr Cardiol 5: 93–99PubMedCrossRefGoogle Scholar
  71. 71.
    Benitz WE, Malachowski N, Cohen RS et al (1985) Use of sodium nitroprusside in neonates: efficacy and safety. J Pediatr 106: 102–110PubMedCrossRefGoogle Scholar
  72. 72.
    Bartlett RH, Roloff DW, Custer JR et al (2000) Extracorporeal life support: the University of Michigan experience. JAMA 283: 904–908PubMedCrossRefGoogle Scholar
  73. 73.
    Meyer DM, Jessen ME (1995) Results of extracorporeal membrane oxygenation in neonates with sepsis. The Extracorporeal Life Support Organization experience. J Thorac Cardiovasc Surg 109: 419–425Google Scholar
  74. 74.
    Ng PC, Lam CW, Fok TF et al (2001) Refractory hypotension in preterm infants with adrenocortical insufficiency. Arch Dis Child Fetal Neonatal Ed 84: F122–F124PubMedCrossRefGoogle Scholar
  75. 75.
    Goldstein B, Nadel S, Peters M et al (2006) ENHANCE: results of a global open-label trial of drotrecogin alfa (activated) in children with severe sepsis. Pediatr Crit Care Med 7: 200–211PubMedCrossRefGoogle Scholar
  76. 76.
    Sadana S, Mathur NB, Thakur A (1997) Exchange transfusion in septic neonates with sclerema: effect on immunoglobulin and complement levels. Indian Pediatr 34: 20–25PubMedGoogle Scholar
  77. 77.
    Togari H, Mikawa M, Iwanaga T et al (1983) Endotoxin clearance by exchange blood transfusion in septic shock neonates. Acta Paediatr Scand 72: 87–91PubMedCrossRefGoogle Scholar
  78. 78.
    Kreymann KG, de Heer G, Nierhaus A, Kluge S (2007) Use of polyclonal immunoglobulins as adjunctive therapy for sepsis or septic shock. Crit Care Med 35: 2677–2685PubMedGoogle Scholar
  79. 79.
    Stiehm ER (1997) Human intravenous immunoglobulin in primary and secondary antibody deficiencies. Pediatr Infect Dis J 16: 696–707PubMedCrossRefGoogle Scholar
  80. 80.
    Jenson HB, Pollock BH (1998) The role of intravenous immunoglobulin for the prevention and treatment of neonatal sepsis. Semin Perinatol 22: 50–63PubMedCrossRefGoogle Scholar
  81. 81.
    Cawley MJ, Briggs M, Haith LR Jr et al (1999) Intravenous immunoglobulin as adjunctive treatment for streptococcal toxic shock syndrome associated with necrotizing fasciitis: case report and review. Pharmacotherapy 19: 1094–1098PubMedCrossRefGoogle Scholar
  82. 82.
    Despond O, Proulx F, Carcillo JA, Lacroix J (2001) Pediatric sepsis and multiple organ dysfunction syndrome. Curr Opin Pediatr 13: 247–253PubMedCrossRefGoogle Scholar
  83. 83.
    Bilgin K, Yaramiş A, Haspolat K et al (2001) A randomized trial of granulocyte-macrophage colony-stimulating factor in neonates with sepsis and neutropenia. Pediatrics 107: 36–41PubMedCrossRefGoogle Scholar
  84. 84.
    Kucukoduk S, Sezer T, Yildiran A, Albayrak D (2002) Randomized, double-blinded, placebo-controlled trial of early administration of recombinant human granulocyte colony-stimulating factor to non-neutropenic preterm newborns between 33 and 36 weeks with presumed sepsis. Scand J Infect Dis 34: 893–897PubMedCrossRefGoogle Scholar
  85. 85.
    Carr R, Brocklehurst P, Dore CJ, Modi N (2009) Granulocytemacrophage colony stimulating factor administered as prophylaxis for reduction of sepsis in extremely preterm, small for gestational age neonates (the PROGRAMS trial): a single-blind, multicentre, randomised controlled trial. Lancet 373: 226–233PubMedCrossRefGoogle Scholar
  86. 86.
    Parravicini E, van de Ven C, Anderson L, Cairo MS (2002) Myeloid hematopoietic growth factors and their role in prevention and/or treatment of neonatal sepsis. Transfus Med Rev 16: 11–24PubMedGoogle Scholar
  87. 87.
    Bedford Russell AR, Emmerson AJ, Wilkinson N et al (2001) A trial of recombinant human granulocyte colony stimulating factor for the treatment of very low birthweight infants with presumed sepsis and neutropenia. Arch Dis Child Fetal Neonatal Ed 84: F172–F176PubMedCrossRefGoogle Scholar
  88. 88.
    La Gamma EF, De Castro MH (2002) What is the rationale for the use of granulocyte and granulocyte-macrophage colony-stimulating factors in the neonatal intensive care unit? Acta Paediatr Suppl 91: 109–116PubMedCrossRefGoogle Scholar
  89. 89.
    Banerjea MC, Speer CP (2002) The current role of colony-stimulating factors in prevention and treatment of neonatal sepsis. Semin Neonatol 7: 335–349PubMedGoogle Scholar
  90. 90.
    Goldman S, Ellis R, Dhar V, Cairo MS (1998) Rationale and potential use of cytokines in the prevention and treatment of neonatal sepsis. Clin Perinatol 25: 699–710PubMedGoogle Scholar
  91. 91.
    Volk HD, Reinke P, Krausch D et al (1996) Monocyte deactivation– rationale for a new therapeutic strategy in sepsis. Intensive Care Med 22 (Suppl 4): S474–S481PubMedCrossRefGoogle Scholar
  92. 92.
    Hallwirth U, Pomberger G, Zaknun D et al (2002) Monocyte phagocytosis as a reliable parameter for predicting early-onset sepsis in very low birthweight infants. Early Hum Dev 67: 1–9PubMedCrossRefGoogle Scholar
  93. 93.
    Hotchkiss RS, Tinsley KW, Swanson PE et al (2001) Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans. J Immunol 166: 6952–6963PubMedGoogle Scholar
  94. 94.
    Gurevich P, Ben-Hur H, Czernobilsky B et al (1995) Pathology of lymphoid organs in low birth weight infants subjected to antigenrelated diseases: a morphological and morphometric study. Pathology 27: 121–126PubMedCrossRefGoogle Scholar
  95. 95.
    Möller JC, Nelskamp I, Jensen R et al (1997) Comparison of vancomycin and teicoplanin for prophylaxis of sepsis with coagulase negative staphylococci (CONS) in very low birth weight ( VLBW) infants. J Perinat Med 25: 361–367Google Scholar
  96. 96.
    Kaufman D (2004) Fungal infection in the very low birthweight infant. Curr Opin Infect Dis 17: 253–259PubMedCrossRefGoogle Scholar
  97. 97.
    Benjamin DK Jr, DeLong ER, Steinbach WJ et al (2003) Empirical therapy for neonatal candidemia in very low birth weight infants. Pediatrics 112: 543–547PubMedCrossRefGoogle Scholar
  98. 98.
    Brian Smith P, Steinbach WJ, Benjamin DK Jr (2005) Invasive Candida infections in the neonate. Drug Resist Updat 8: 147–162PubMedCrossRefGoogle Scholar
  99. 99.
    Chapman RL (2003) Candida infections in the neonate. Curr Opin Pediatr 15: 97–102PubMedCrossRefGoogle Scholar
  100. 100.
    The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342: 1301–1308CrossRefGoogle Scholar
  101. 101.
    Smith OP, White B, Vaughan D et al (1997) Use of protein-C concentrate, heparin, and haemodiafiltration in meningococcus-induced purpura fulminans. Lancet 350: 1590–1593PubMedCrossRefGoogle Scholar
  102. 102.
    Schiffl H, Lang SM, Fischer R (2002) Daily hemodialysis and the outcome of acute renal failure. N Engl J Med 346: 305–310PubMedCrossRefGoogle Scholar
  103. 103.
    Schroder CH, Severijnen RS, Potting CM (1992) Continuous arteriovenous hemofiltration ( CAVH) in a premature newborn as treatment of overhydration and hyperkalemia due to sepsis. Eur J Pediatr Surg 2: 368–369Google Scholar
  104. 104.
    van den Berghe G, Wouters P, Weekers F et al (2001) Intensive insulin therapy in the critically ill patients. N Engl J Med 345: 1359–1367PubMedCrossRefGoogle Scholar
  105. 105.
    Carcillo JA, Doughty L, Kofos D et al (2003) Cytochrome P450 mediated-drug metabolism is reduced in children with sepsis-induced multiple organ failure. Intensive Care Med 29: 980–984PubMedGoogle Scholar
  106. 106.
    Annane D, Sébille V, Charpentier C et al (2002) Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA 288: 862–871PubMedCrossRefGoogle Scholar
  107. 107.
    Baker CF, Barks JD, Engmann C et al (2008) Hydrocortisone administration for the treatment of refractory hypotension in critically ill newborns. J Perinatol 28: 412–419PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Rajesh K. Aneja
    • 1
  • Ruby V. Aneja
  • Robert Cicco
  • Joseph A. Carcillo
  1. 1.Departments of Critical Care Medicine and Pediatrics, University of Pittsburgh School of MedicineChildren’s Hospital of PittsburghPittsburghUSA

Personalised recommendations