Neonatology pp 784-798 | Cite as

Anemia in the Neonatal Period

  • Robert D. Christensen
  • Robin K. Ohls


The term anemia refers to a pathological reduction in the hematocrit, blood hemoglobin concentration, and circulating erythrocyte count [1, 2]. These three laboratory measures are somewhat similar to one another, in that each quantifies the same biological variable involving the capacity of blood to deliver oxygen to tissues. However, none of the three measurements actually assesses whether oxygen demands of tissues are being adequately met. In fact, limitations in delivery of oxygen to a neonate’s tissues are frequently not the result of anemia at all, but instead are due to abnormalities in oxygen intake from pulmonary pathology. This chapter reviews the various pathologies that give rise to anemia during the neonatal period, and provides practical approaches for dealing with these clinical issues.


Hereditary Spherocytosis Adrenal Hemorrhage Placental Abruption Nuchal Cord Congenital Malaria 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Jopling J, Henry E, Wiedmeier SE, Christensen RD (2009) Reference ranges for hematocrit and blood hemoglobin concentration during the neonatal period: data from a multihospital health care system. Pediatrics 123: e333–e337PubMedGoogle Scholar
  2. 2.
    Christensen RD, Henry E, Jopling J, Wiedmeier SE (2009) The CBC: reference ranges for neonates. Semin Perinatol 33: 3–11PubMedCrossRefGoogle Scholar
  3. 3.
    Juul SE (2000) Nonerythropoietic roles of erythropoietin in the fetus and neonate. Clin Perinatol 27: 527–541PubMedCrossRefGoogle Scholar
  4. 4.
    Juul SE, Ledbetter DJ, Joyce AE et al (2001) Erythropoietin acts as a trophic factor in neonatal rat intestine. GUT 49: 182–189PubMedCrossRefGoogle Scholar
  5. 5.
    Juul SE, Zhao Y, Dame JB et al (2000) Origin and fate of erythropoietin in human milk. Pediatr Res 48: 600–607CrossRefGoogle Scholar
  6. 6.
    Kling PJ (2002) Roles of erythropoietin in human milk. Acta Paediatr Suppl 91: 31–35PubMedCrossRefGoogle Scholar
  7. 7.
    Gassmann M, Keinicke K, Soliz J, Ogunshola OO (2003) Non-erythroid functions of erythropoietin. Adv Exp Med Biol 543: 323–330PubMedCrossRefGoogle Scholar
  8. 8.
    McPherson RJ, Juul SE (2008) Recent trends in erythropoietin-mediated neuroprotection. Int J Dev Neurosci 26: 103–111PubMedCrossRefGoogle Scholar
  9. 9.
    Dame C, Juul SE, Christensen RD (2001) The biology of erythropoietin in the central nervous system and its neurotrophic and neuroprotective potential. Biol Neonate 79: 228–235PubMedCrossRefGoogle Scholar
  10. 10.
    Fauchère JC, Dame C, Vonthein R et al (2008) An approach to using recombinant erythropoietin for neuroprotection in very preterm infants. Pediatrics 122: 375–382PubMedCrossRefGoogle Scholar
  11. 11.
    Juul SJ, Li Y, Christensen RD (1997) Erythropoietin is present in the cerebrospinal fluid of neonates. J Pediatr 130: 428–433PubMedCrossRefGoogle Scholar
  12. 12.
    Juul SE, Stallings SA, Christensen RD (1999) Erythropoietin in the cerebrospinal fluid of neonates who sustained CNS injury. Pediatr Res 46: 543–548PubMedCrossRefGoogle Scholar
  13. 13.
    Li Y, Juul SE, Morris-Winman JA et al (1996) Erythropoietin receptors are expressed in the central nervous system of mid-trimester human fetuses. Pediatr Res 40: 376–381PubMedCrossRefGoogle Scholar
  14. 14.
    Juul SJ, Li Y, Anderson DK, Christensen RD (1998) Erythropoietin and erythropoietin receptor in the developing human central nervous system. Pediatr Res 43: 40–47PubMedCrossRefGoogle Scholar
  15. 15.
    Juul SE, Yachnis AT, Christensen RD (1998) Tissue distribution of erythropoietin and erythropoietin receptor in the developing human fetus. Early Hum Dev 52: 235–239PubMedCrossRefGoogle Scholar
  16. 16.
    Juul SE, McPherson RJ, Farrell F et al (2004) Erytropoietin concentrations in cerebrospinal fluid of nonhuman primates and fetal sheep following high-dose recombinant erythropoietin. Biol Neonate 85: 138–144PubMedCrossRefGoogle Scholar
  17. 17.
    Beirer R, Peceny MC, Hartenberger CH, Ohls RK (2006) Erythropoietin concentrations and neurodevelopmental outcome in preterm infants. Pediatrics 118: 635–640CrossRefGoogle Scholar
  18. 18.
    Ohls RK (2002) Erythropoietin and hypoxia inducible factor-1 expression in the mid-trimester human fetus. Acta Pediatr Suppl 91: 27–30CrossRefGoogle Scholar
  19. 19.
    Ohls RK (2000) The use of erythropoietin in neonates. Clin Perinatol 3: 681–696CrossRefGoogle Scholar
  20. 20.
    Gairdner D (1952) Blood formation in infancy. Part I. The normal bone marrow. Arch Dis Child 27: 128–133PubMedCrossRefGoogle Scholar
  21. 21.
    Gairdner D, Marks J, Roscoe JD (1955) Blood formation in infancy. IV. The early anaemias of prematurity. Arch Dis Child 30: 203–211Google Scholar
  22. 22.
    Christensen RD (2000) Expected hematologic values for term and preterm neoantes. In: Hematologic problems of the neonate, 1st edn. WB Saunders, Philadelphia, pp 131–136Google Scholar
  23. 23.
    Oettinger L, Mills WB (1949) Simultaneous capillary and venous hemoglobin determinations in newborn infant. J Pediatr 35: 362–369PubMedCrossRefGoogle Scholar
  24. 24.
    Linderkamp O (1977) Capillary-venous hematocrit differences in newborn infants. Eur J Pediatr 127: 9–15PubMedCrossRefGoogle Scholar
  25. 25.
    Bierer R, Roohi M, Peceny C, Ohls RK (2009) Erythropoietin increases reticulocyte counts and maintains hematocrit in neonates requiring surgery. J Pediatr Surg 44: 1540–1545PubMedCrossRefGoogle Scholar
  26. 26.
    Perrone S, Vezzosi P, Longini M et al (2005) Nucleated red blood cell count in term and preterm newborns: reference values at birth. Arch Dis Child Fetal Neon Ed 90: F174–F175CrossRefGoogle Scholar
  27. 27.
    Buonocore G, Perrone S, Gioia D et al (1999) Nucleated red blood cell count at birth as an index of perinatal brain damage. Am J Obstet Gynecol 181: 1500–1505PubMedCrossRefGoogle Scholar
  28. 28.
    Mäkelä E, Takala TI, Suominen P et al (2008) Hematological parameters in preterm infants from birth to 16 weeks of age with reference to iron balance. Clin Chem Lab Med 46: 551–557PubMedCrossRefGoogle Scholar
  29. 29.
    Zipursky A (1983) The erythrocyte differential count in newborn infants. Am J Pediatr Hematol Oncol 5: 45–52PubMedGoogle Scholar
  30. 30.
    Mock DM, Bell EF, Lankford GL, Widness JA (2001) Hematocrit correlates well with circulating red blood cell volume in very low birth weight infants. Pediatr Res 50: 525–531PubMedCrossRefGoogle Scholar
  31. 31.
    Strauss RG, Mock DM, Johnson K et al (2003) Circulating RBC volume, measured with biotinylated RBCs, is superior to the Hct to document the hematologic effects of delayed versus immediate umbilical cord clamping in preterm neonates. Transfusion 43: 1168–1172PubMedCrossRefGoogle Scholar
  32. 32.
    Pearson HA, Vertrees KM (1961) Site of binding to chromium-51 by hemoglobin. Nature 189: 1019–1021PubMedCrossRefGoogle Scholar
  33. 33.
    Pearson HA (1967). Life-span of the fetal red blood cell. J Pediatr 70: 166–171PubMedCrossRefGoogle Scholar
  34. 34.
    Brace RA, Langendorfer C, Song TB, Mock DM (2000) Red blood cell life span in the ovine fetus. Am J Physiol Regul Integr Comp Physiol 279: R1196–R1204PubMedGoogle Scholar
  35. 35.
    Ruth V, Widness JA, Clemons G, Raivio JO (1990) Postnatal changes in serum immunoreactive erythropoietin in relation to hypoxia before and after birth. J Pediatr 116: 950–954PubMedCrossRefGoogle Scholar
  36. 36.
    Kling PJ, Schmidt RL, Roberts RA et al (1996) Serum erythropoietin levels during infancy: associations with erythropoiesis. J Pediatr 128: 791–796PubMedCrossRefGoogle Scholar
  37. 37.
    Linderkamp O, Nelle M, Kraus M, Zilow EP (1992) The effect of early and late cord-clamping on blood viscosity and other hemorheological parameters in full-term neonates. Acta Paediatr 81: 745–750PubMedCrossRefGoogle Scholar
  38. 38.
    Linderkamp O (1978) The effect of intra-partum and intra-uterine asphyxia on placental transfusions in premature and full-term infants. Eur J Pediatr 127: 91–99PubMedCrossRefGoogle Scholar
  39. 39.
    Aladangady N, McHugh S, Aitchison TC et al (2006) Infant’s blood volume in a controlled trial of placental transfusion at preterm delivery. Pediatrics 117: 93–98PubMedCrossRefGoogle Scholar
  40. 40.
    Mercer JS, Vohr BR, McGrath MM et al (2006) Delayed cord clamping in very preterm infants reduces the incidence of intraventricular hemorrhage and late-onset sepsis: a randomized, controlled trial. Pediatrics 117: 1235–1242PubMedCrossRefGoogle Scholar
  41. 41.
    Strauss RG, Mock DM, Johnson KJ et al (2008) A randomized clinical trial comparing immediate versus delayed clamping of the umbilical cord in preterm infants: short-term clinical and laboratory endpoints. Transfusion 48: 658–665PubMedCrossRefGoogle Scholar
  42. 42.
    Ruef P, Linderkamp O (1999) Deformability and geometry of neonatal erythrocytes with irregular shapes. Pediatr Res 45: 114–119PubMedCrossRefGoogle Scholar
  43. 43.
    Matovcik LM (1986) Myosin in adult and neonatal human erythrocyte membranes. Blood 67: 1668–1674PubMedGoogle Scholar
  44. 44.
    Gallagher PG (2000) Disorders of erythrocyte metabolism and shape. In: Christensen RD (ed) Hematologic problems of the neonate. WB Saunders, Philadelphia, pp 224–225Google Scholar
  45. 45.
    Linderkamp O (1986). Deformability and intrinsic material properties of neonatal red blood cells. Blood 67: 1244–1250PubMedGoogle Scholar
  46. 46.
    Bautista ML, Altaf W, Lall R, Wapnir RA (2003) Cord blood red cell osmotic fragility: a comparison between preterm and full-term newborn infants. Early Hum Dev 72: 37–46PubMedCrossRefGoogle Scholar
  47. 47.
    Oski FA, Komazawa M (1975) Metabolism of the erythrocytes of the newborn infant. Semin Hematol 12: 209–221PubMedGoogle Scholar
  48. 48.
    Oski FA, Smith C (1968) Red cell metabolism in the premature infant. 3. Apparent inappropriate glucose consumption for cell age. Pediatrics 41: 473–482Google Scholar
  49. 49.
    Barretto OC, Nonoyama K, Deutsch AD, Ramos J (1995) Physiological red cell, 2,3-diphosphoglycerate increase by the sixth hour after birth. J Perinat Med 23: 365–369PubMedCrossRefGoogle Scholar
  50. 50.
    Soubasi V, Kremenopoulos G, Tsantali C et al (2000) Use of erythropoietin and its effects on blood lactate and 2, 3-diphosphoglycerate in premature neonates. Biol Neonate 78: 281–287Google Scholar
  51. 51.
    van Zoeren-Grobben D, Lindeman JH, Houdkamp E et al (1997) Markers of oxidative stress and antioxidant activity in plasma and erythrocytes in neonatal respiratory distress syndrome. Acta Paediatr 86: 1356–1362PubMedCrossRefGoogle Scholar
  52. 52.
    Gross RT, Bracci R, Rudolph N et al (1967) Hydrogen peroxide toxicity and detoxification in the erythrocytes of newborn infants. Blood 29: 481–493PubMedGoogle Scholar
  53. 53.
    Buonocore G, Zani S, Sargentini I et al (1998) Hypoxia-induced free iron release in the red cells of newborn infants. Acta Paediatr 87: 77–81PubMedCrossRefGoogle Scholar
  54. 54.
    Ciccoli L, Rossi V, Leoncini S et al (2004) Iron release, superoxide production and binding of autologous IgG to band 3 dimers in newborn and adult erythrocytes exposed to hypoxia and hypoxia-reoxygenation. Biochim Biophys Acta 1672: 203–213PubMedCrossRefGoogle Scholar
  55. 55.
    Bard H (2000) Fetal and neonatal hemoglobin structure and function. In: Christensen RD (ed) Hematologic problems of the neonate. WB Saunders, PhiladelphiaGoogle Scholar
  56. 56.
    Bard H, Peri KG, Gagnon C (2001) Changes in the G gamma and A gamma-globin mRNA components of fetal hemoglobin during human development. Biol Neonate 80: 26–29PubMedCrossRefGoogle Scholar
  57. 57.
    Eyssette-Guerreau S, Bader-Meunier B, Garcon L (2006) Infantile pyknocytosis: a cause of haemolytic anaemia of the newborn. Br J Haematol 133: 439–442PubMedCrossRefGoogle Scholar
  58. 58.
    Christensen RD, Henry E (2010). Hereditary spherocytosis in neonates with hyperbilirubinemia. Pediatrics 125: 120–125PubMedCrossRefGoogle Scholar
  59. 59.
    Sanchez M, Palacio M, Borrell A (2005) Prenatal diagnosis and management of fetal xerocytosis associated with ascites. Fetal Diagn Ther 20: 402–405PubMedCrossRefGoogle Scholar
  60. 60.
    Vincente-Gutierrez MP, Gastello-Almazan I, Salvia-Roiges MD (2005) Nonimmune hydrops fetalis due to congenital xerocytosis. J Perinatol 25: 63–65CrossRefGoogle Scholar
  61. 61.
    Saada V, Cynober T, Brossard Y (2006) Incidence of hereditary spherocytosis in a population of jaundiced neonates. Pediatr Hematol Oncol 23: 387–397PubMedCrossRefGoogle Scholar
  62. 62.
    Gulbis B, Ferster A, Cotton F (2006) Neonatal haemoglobinopathy screening: review of a 10-year programme in Brussels. J Med Screen 13: 76–78PubMedCrossRefGoogle Scholar
  63. 63.
    Stevenson DK, Wong RJ, DeSandre GH, Vreman HJ (2004) A primer on neonatal jaundice. Adv Pediatr 51: 263–288PubMedGoogle Scholar
  64. 64.
    Bhutani VK, Donn SM, Johnson LH (2005) Risk management of severe neonatal hyperbilirubinemia to prevent kernicterus. Clin Perinatol 32: 125–139PubMedCrossRefGoogle Scholar
  65. 65.
    Geifman-Holtzman O, Wojtowycz M, Kosmos E et al (1997) Female alloimmunization with antibodies known to cause hemolytic disease. Obstet Gynecol 89: 272–275PubMedCrossRefGoogle Scholar
  66. 66.
    Lipitz S, Many A, Mitrani-Rosenbaum S et al (1998) Obstetric outcome after RhD and Kell testing. Hum Reprod 13: 1472–1475PubMedCrossRefGoogle Scholar
  67. 67.
    Weiner CP, Widness JA (1996) Decreased fetal erythropoiesis and hemolysis in Kell hemolytic anemia. Am J Obstet Gynecol 174: 547–551PubMedCrossRefGoogle Scholar
  68. 68.
    Vaughan JI, Manning M, Warwick RM et al (1998) Inhibition of erythroid progenitor cells by anti-Kell antibodies in fetal alloimmune anemia. N Engl J Med 338: 798–803PubMedCrossRefGoogle Scholar
  69. 69.
    Kozlowski CL, Lee D, Shwe KH et al (1995) Quantification of antic in haemolytic disease of the newborn. Transfus Med 5: 37–42PubMedCrossRefGoogle Scholar
  70. 70.
    van Dijk BA, Dooren MC, Overbeeke MA (1995) Red cell antibodies in pregnancy: there is no “critical titre.” Transfus Med 5: 199–202Google Scholar
  71. 71.
    May-Wewers J, Kaiser JR, Moore EK et al (2006) Severe neonatal hemolysis due to a maternal antibody to the low-frequency Rh antigen C(w). Am J Perinatol 23: 213–217PubMedCrossRefGoogle Scholar
  72. 72.
    Kosasa TS, Ebesugawa I, Nakayama RT et al (1993) Massive fetomaternal hemorrhage preceded by decreased fetal movement and a nonreactive fetal heart rate pattern. Obstet Gynecol 82: 711–714PubMedCrossRefGoogle Scholar
  73. 73.
    Giacoia GP (1997) Severe fetomaternal hemorrhage: a review. Obstet Gynecol Surv 52: 372–380PubMedCrossRefGoogle Scholar
  74. 74.
    Huissoud C, Divry V, Dupont C et al (2009) Large fetomaternal hemorrhage: prenatal predictive factors for perinatal outcome. Am J Perinatol 26: 227–233PubMedCrossRefGoogle Scholar
  75. 75.
    Lopriore E, Vandenbussche FP, Tiersma ES et al (1995) Twin-totwin transfusion syndrome: new perspectives. J Pediatr 127: 675–680PubMedCrossRefGoogle Scholar
  76. 76.
    Dennis LG, Winkler CL (1997) Twin-to-twin transfusion syndrome: aggressive therapeutic amniocentesis. Am J Obstet Gynecol 177: 342–347PubMedCrossRefGoogle Scholar
  77. 77.
    Dommergues M, Mandelbrot L, Delezoide AL et al (1995) Twinto- twin transfusion syndrome: selective feticide by embolization of the hydropic fetus. Fetal Diagn Ther 10: 26–31PubMedCrossRefGoogle Scholar
  78. 78.
    De Lia JE, Kuhlmann RS, Harstad TW et al (1995) Fetoscopic laser ablation of placental vessels in severe previable twin-twin transfusion syndrome. Am J Obstet Gynecol 172 (4 Part 1): 1202–1208PubMedCrossRefGoogle Scholar
  79. 79.
    Ville Y, Hyett J, Hecher K et al (1995) Preliminary experience with endoscopic laser surgery for severe twin-twin transfusion syndrome. N Engl J Med 332: 224–227PubMedCrossRefGoogle Scholar
  80. 80.
    van Heteren CF, Nijhuis JG, Semmekrot BA et al (1998) Risk for surviving twin after fetal death of co-twin in twin-twin transfusion syndrome. Obstet Gynecol 92: 215–219PubMedCrossRefGoogle Scholar
  81. 81.
    Supski DW, Gurushanthaiah K, Chasen S (2002) The effect of treatment of twin-twin transfusion syndrome on the diagnosis-todelivery interval. Twin Res 5: 1–4CrossRefGoogle Scholar
  82. 82.
    Kramer MS, Usher RH, Pollack R et al (1997) Etiologic determinants of abruptio placentae. Obstet Gynecol 89: 221–226PubMedCrossRefGoogle Scholar
  83. 83.
    Rasmussen S, Irgens LM, Bergsjo P et al (1997) Perinatal mortality and case fatality after placental abruption in, Norway 1967–1991. Acta Obstet Gynecol Scand 75: 229–234CrossRefGoogle Scholar
  84. 84.
    McMahon MJ, Li R, Schenck AP et al (1997) Previous cesarean birth. A risk factor for placenta previa? J Reprod Med 42: 409–412PubMedGoogle Scholar
  85. 85.
    Chelmow D, Andrew DE, Baker ER (1996) Maternal cigarette smoking and placenta previa. Obstet Gynecol 87 (5 Part 1): 703–706PubMedCrossRefGoogle Scholar
  86. 86.
    Chen KH, Konchak P (1998) Use of transvaginal color Doppler ultrasound to diagnose vasa previa. J Am Osteopath Assoc 98: 116–117PubMedGoogle Scholar
  87. 87.
    Deans A, Jauniaux E (1998) Prenatal diagnosis and outcome of subamniotic hematomas. Ultrasound Obstet Gynecol 11: 319–323PubMedCrossRefGoogle Scholar
  88. 88.
    Benirschke K (1994) Obstetrically important lesions of the umbilical cord. J Reprod Med 39: 262–272PubMedGoogle Scholar
  89. 89.
    Eddleman KA, Lockwood CJ, Berkowitz GS et al (1992) Clinical significance and sonographic diagnosis of velamentous umbilical cord insertion. Am J Perinatol 9: 123–126PubMedCrossRefGoogle Scholar
  90. 90.
    Kilani RA, Wetmore J (2006) Neonatal subgaleal hematoma: presentation and outcome–radiological findings and factors associated with mortality. Am J Perinatol 23: 41–48PubMedCrossRefGoogle Scholar
  91. 91.
    Uchil D, Arulkumaran S (2003) Neonatal subgaleal hemorrhage and its relationship to delivery by vacuum extraction. Obstet Gynecol Surv 58: 687–693PubMedCrossRefGoogle Scholar
  92. 92.
    Teng FY, Sayre JW (1997) Vacuum extraction: does duration predict scalp injury? Obstet Gynecol 89: 281–285PubMedCrossRefGoogle Scholar
  93. 93.
    Chadwick LM, Pemberton PJ, Kurinczuk JJ (1996) Neonatal subgaleal haematoma: associated risk factors, complications and outcome. J Paediatr Child Health 32: 228–232PubMedCrossRefGoogle Scholar
  94. 94.
    Felc Z (1995) Ultrasound in screening for neonatal adrenal hemorrhage. Am J Perinatol 12: 363–366PubMedCrossRefGoogle Scholar
  95. 95.
    Pinto E, Guignard JP (1995) Renal masses in the neonate. Biol Neonate 68: 175–184PubMedCrossRefGoogle Scholar
  96. 96.
    Davies MR (1997) Iatrogenic hepatic rupture in the newborn and its management by pack tamponade. J Pediatr Surg 32: 1414–1419PubMedCrossRefGoogle Scholar
  97. 97.
    Emma F, Smith J, Moerman PH (1992) Subcapsular hemorrhage of the liver and hemoperitoneum in premature infants: report of 4 cases. Eur J Obstet Gynecol Reprod Biol 44: 161–164PubMedCrossRefGoogle Scholar
  98. 98.
    Miele V, Galluzzo M, Patti G et al (1997) Scrotal hematoma due to neonatal adrenal hemorrhage: the value of ultrasonography in avoiding unnecessary surgery. Pediatr Radiol 27: 672–674PubMedCrossRefGoogle Scholar
  99. 99.
    Nagaya M, Kato J, Niimi N et al (1998) Isolated cavernous hemangioma of the stomach in a neonate. J Pediatr Surg 33: 653–654PubMedCrossRefGoogle Scholar
  100. 100.
    Abolmakarem H, Tharmaratnum S, Thilaganathan B (2001) Fetal Anemia as a consequence of hemorrhage into an ovarian cyst. Ultrasound Obstet Gynecol 17: 527–528PubMedCrossRefGoogle Scholar
  101. 101.
    Berkowitz K, Baxi L, Fox HE (1990) False-negative syphilis screening: the prozone phenomenon, nonimmune hydrops, and diagnosis of syphilis during pregnancy. Am J Obstet Gynecol 163: 975–977PubMedGoogle Scholar
  102. 102.
    de Jong EP, de Haan TR, Kroes AC (2006) Parvovirus B19 infection in pregnancy. J Clin Virol 36: 1–7Google Scholar
  103. 103.
    Matsuda H, Sakaguchi K, Shibasaki T et al (2005) Intrauterine therapy for parvovirus B19 infected symptomatic fetus using B19 IgGrich high titer gammaglobulin. J Perinat Med 33: 561–563PubMedCrossRefGoogle Scholar
  104. 104.
    Runsewe-Abiodun IT, Ogunfowora OB, Fetuga BM (2006) Neonatal malaria in Nigeria–a 2 year review. BMC Pediatr 6: 19PubMedCrossRefGoogle Scholar
  105. 105.
    Shah M, Li Y, Christensen RD (1996) Effects of perinatal zidovudine on hematopoiesis: a comparison of effects on progenitors from human fetuses versus mothers. AIDS 10: 1239–1247PubMedCrossRefGoogle Scholar
  106. 106.
    Brown MS, Garcia JF, Phibbs RH et al (1984) Decreased response of plasma immunoreactive erythropoietin to “available oxygen” in anemia of prematurity. J Pediatr 105: 793–798PubMedCrossRefGoogle Scholar
  107. 107.
    Shannon KM, Naylor GS, Torkildson JC et al (1987) Circulating erythroid progenitors in the anemia of prematurity. N Engl J Med 31: 728–733CrossRefGoogle Scholar
  108. 108.
    Rhondeau SM, Christensen RD, Ross MP et al (1988) Responsiveness to recombinant human erythropoietin of marrow erythroid progenitors from infants with the “anemia of prematurity.” J Pediatr 112: 935–940Google Scholar
  109. 109.
    Ohls RK, Liechty KW, Turner MC et al (1990) Erythroid “burst promoting activity” in the serum of patients with the anemia of prematurity. J Pediatr 116: 786–789PubMedCrossRefGoogle Scholar
  110. 110.
    Donato H (2005) Erythropoietin: an update on the therapeutic use in newborn infants and children. Expert Opin Pharmacother 6: 723–734PubMedCrossRefGoogle Scholar
  111. 111.
    Ohls RK (2002) Erythropoietin treatment in extremely low birth weight infants: blood in versus blood out. J Pediatr 140: 3–6CrossRefGoogle Scholar
  112. 112.
    Aher S, Ohlsson A (2006) Late erythropoietin for preventing red blood cell transfusion in preterm and/or low birth weight infants. Cochrane Database Syst Rev 3:CD004868Google Scholar
  113. 113.
    Ohls RK (2002) Human recombinant erythropoietin in the prevention and treatment of anemia of prematurity. Paediatr Drugs 4: 111–121PubMedGoogle Scholar
  114. 114.
    Bierer R, Peceny MC, Hartenberger CH, Ohls RK (2006) Erythropoietin concentrations and neurodevelopmental outcome in preterm infants. Pediatrics 118: e635–e640PubMedCrossRefGoogle Scholar
  115. 115.
    Ohls RK, Ehrenkranz RA, Das A (2004) Neurodevelopmental outcome and growth at 18 to 22 months’ corrected age in extremely low birth weight infants treated with early erythropoietin and iron. Pediatrics 114: 1287–1291PubMedCrossRefGoogle Scholar
  116. 116.
    Juul SE (2004) Recombinant erythropoietin as a neuroprotective treatment: in vitro and in vivo models. Clin Perinatol 31: 129–142PubMedCrossRefGoogle Scholar
  117. 117.
    Warwood TL, Ohls RD, Wiedmeier SE et al (2005) Single-dose darbepoetin administration to anemic preterm neonates J Perinatol 25: 725–730Google Scholar
  118. 118.
    Warwood TL, Ohls RK, Lambert DK et al (2006) Intravenous administration of darbepoetin to NICU patients. J Perinatol 26: 296–300PubMedCrossRefGoogle Scholar
  119. 119.
    Warwood TL, Ohls RK, Lambert DK et al (2006) Urinary excretion of darbepoetin after intravenous vs. subcutaneous administration to preterm neonates. J Perinatol 26: 636–639PubMedCrossRefGoogle Scholar
  120. 120.
    Gazda HE, Sieff CA (2006) Recent insights into the pathogenesis of Diamond-Blackfan anaemia. Br J Haematol 135: 149–157PubMedCrossRefGoogle Scholar
  121. 121.
    Lipton JM, Ellis SR (2009) Diamond-Blackfan anemia: diagnosis, treatment, and molecular pathogenesis. Hematol Oncol Clin North Am 23: 261–282PubMedCrossRefGoogle Scholar
  122. 122.
    Aase JM, Smith DW (1969) Congenital anemia and triphalangeal thumbs: a new syndrome. J Pediatr 74: 471–474PubMedCrossRefGoogle Scholar
  123. 123.
    Landmann E, Bluetters-Sawatzki R, Schindler D, Gortner L (2004) Fanconi anemia in a neonate with pancytopenia. J Pediatr 145: 125–127PubMedCrossRefGoogle Scholar
  124. 124.
    Charles JM, Key LL (1998) Developmental spectrum of children with congenital osteopetrosis. J Pediatr 132: 371–374PubMedCrossRefGoogle Scholar
  125. 125.
    Fasth A (2009) Osteopetrosis–more than only a disease of the bone. Am J Hematol 84: 469–470PubMedCrossRefGoogle Scholar
  126. 126.
    Pearson HA, Lobel JS, Kocoshis SA et al (1979) A new syndrome of refractory sideroblastic anemia with vacuolization of marrow precursors and exocrine pancreatic dysfunction. J Pediatr 95: 976–984PubMedCrossRefGoogle Scholar
  127. 127.
    van den Ouweland JM, de Klerk JB, van de Corput MP et al (2000) Characterization of a novel mitochondrial DNA deletion in a patient with a variant of the Pearson marrow-pancreas syndrome. Eur J Hum Genet 8: 195–203PubMedCrossRefGoogle Scholar
  128. 128.
    Manea EM, Leverger G, Bellmann F et al (2009) Pearson syndrome in the neonatal period: two case reports and review of the literature. J Pediatr Hematol Oncol 31: 947–951PubMedCrossRefGoogle Scholar
  129. 129.
    Bell EF, Strauss RG, Widness JA et al (2005) Randomized trial of liberal versus restrictive guidelines for red blood cell transfusion in preterm infants. Pediatrics 115: 1685–1691PubMedCrossRefGoogle Scholar
  130. 130.
    Kirpalani H, Whyte RK, Andersen C et al (2006) The Premature Infants in Need of Transfusion (PINT) study: a randomized, controlled trial of a restrictive (low) versus liberal (high) transfusion threshold for extremely low birth weight infants. J Pediatr 149: 301–307PubMedCrossRefGoogle Scholar
  131. 131.
    Canadian Paediatric Society (2002) Red blood cell transfusions in newborn infants: Revised guidelines. Paediatr Child Health 7: 553–566Google Scholar
  132. 132.
    Haiden N, Klebermass K, Cardona F (2006) A randomized, controlled trial of the effects of adding vitamin B12 and folate to erythropoietin for the treatment of anemia of prematurity. Pediatrics 118: 180–188PubMedCrossRefGoogle Scholar
  133. 133.
    Chaparro CM, Neufeld LM, Tena Alavez G (2006). Effect of timing of umbilical cord clamping on iron status in Mexican infants: a randomized controlled trial. Lancet 367: 1997–2004PubMedCrossRefGoogle Scholar
  134. 134.
    Philip A (2006) Delayed cord clamping in preterm infants. Pediatrics 117: 1434–1435PubMedCrossRefGoogle Scholar
  135. 135.
    Rabe H, Alvarez JR, Lawn C (2009) A management guideline to reduce the frequency of blood transfusion in very-low-birth-weight infants. Am J Perinatol 26: 179–183PubMedCrossRefGoogle Scholar
  136. 136.
    Rabe H, Reynolds G, Diaz-Rossello J (2004) Early versus delayed umbilical cord clamping in preterm infants. Cochrane Database Syst Rev 4:CD003248Google Scholar
  137. 137.
    Widness JA, Madan A, Grindeanu LA (2005) Reduction in red blood cell transfusions among preterm infants: results of a randomized trial with an in-line blood gas and chemistry monitor. Pediatrics 115: 1299–1306PubMedCrossRefGoogle Scholar
  138. 138.
    Ohls RK (2009) Why, when and how should we provide red cell transfusions to neonates? In: Ohls RK, Yoder MC (eds) Hematology, immunology and infections disease. Saunders Elsevier, Philadelphia, pp 44–57Google Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Robert D. Christensen
    • 1
  • Robin K. Ohls
  1. 1.Women and Newborns ProgramIntermountain HealthcareOgdenUSA

Personalised recommendations