Advertisement

Imaging of the Knee

  • David A. Rubin
  • Arthur A. De Smet

Abstract

Conventional radiographs are the initial radiologic study in most suspected knee disorders. Radiographs demonstrate the joint spaces as well as bones, but are relatively insensitive to soft-tissue (except those composed largely of calcium or fat), destruction of medullary bone, and early loss of cartilage. A minimum radiographic examination consists of AP and lateral projections. In patients with acute trauma, performing the lateral examination cross-table allows identification of a lipohemarthrosis, an important clue to the presence of an intraarticular fracture [1]. The addition of oblique projections increases the sensitivity of the examination for nondisplaced fractures, especially those of the tibial plateau [2]. For the early detection of articulai cartilage loss, a PA radiograph of both knees with the patient standing and knees mildly flexed is a useful adjunct projection. A joint space difference of 2 mm side-to-side correlates with grade III and higher chondrosis [3]. The tunnel projection is useful to demonstrate intercondylar osteophytes. In patients with anterior knee symptoms, an axial projection of the patellofemoral joint, such as a Merchant view, can evaluate the patellofemoral joint space and alignment [4].

Keywords

Anterior Cruciate Ligament Articular Cartilage Magn Reson Image Meniscal Tear Magnetic Resonance Arthrography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lee JH, Weissman BN, Nikpoor N et al (1989) Lipohemarthrosis of the knee: a review of recent experiences. Radiology 173:189–191PubMedGoogle Scholar
  2. 2.
    Gray SD, Kaplan PA, Dussault RG et al (1997) Acute knee trauma: how many plain film views are necessary for the initial examination? Skeletal Radiol 26:298–302CrossRefPubMedGoogle Scholar
  3. 3.
    Rosenberg TD, Paulos LE, Parker RD et al (1988) The fortyfive-degree posteroanterior flexion weight-bearing radiograph of the knee. J Bone Joint Surg [Am] 70:1479–1483Google Scholar
  4. 4.
    Jones AC, Ledingham J, McAlindon T et al (1993) Radiographic assessment of patellofemoral osteoarthritis. Ann Rheum Dis 52:655–658CrossRefPubMedGoogle Scholar
  5. 5.
    Smith SL, Wastie ML, Forster I (2001) Radionuclide bone scintigraphy in the detection of significant complications after total knee joint replacement. Clin Radiol 56:221–224CrossRefPubMedGoogle Scholar
  6. 6.
    Pelosi E, Baiocco C, Pennone M et al (2004) 99mTc-HMPAO-leukocyte scintigraphy in patients with symptomatic total hip or knee arthroplasty: improved diagnostic accuracy by means of semiquantitative evaluation. J Nucl Med 45:438–444PubMedGoogle Scholar
  7. 7.
    Bouffard JA, Dhanju J (1998) Ultrasonography of the knee. Semin Musculoskelet Radiol 2:245–270CrossRefPubMedGoogle Scholar
  8. 8.
    Khan KM, Bonar F, Desmond PM et al (1996) Patellar tendinosis (jumper’s knee): findings at histopathologic examination, US, and MR imaging. Victorian Institute of Sport Tendon Study Group. Radiology 200:821–827PubMedGoogle Scholar
  9. 9.
    Ward EE, Jacobson JA, Fessell DP et al (2001) Sonographic detection of Baker’s cysts: comparison with MR imaging. AJR Am J Roentgenol 176:373–380PubMedGoogle Scholar
  10. 10.
    Wicky S, Blaser PF, Blanc CH et al (2000) Comparison between standard radiography and spiral CT with 3D reconstruction in the evaluation, classification and management of tibial plateau fractures. Eur Radiol 10:1227–1232CrossRefPubMedGoogle Scholar
  11. 11.
    Buckwalter KA, Farber JM (2004) Application of multidetector CT in skeletal trauma. Semin Musculoskelet Radiol 8:147–156CrossRefPubMedGoogle Scholar
  12. 12.
    Mutschier C, Vande Berg BC, Lecouvet FE et al (2003) Postoperative meniscus: assessment at dual-detector row spiral CT arthrography of the knee. Radiology 228:635–641CrossRefGoogle Scholar
  13. 13.
    Vande Berg BC, Lecouvet FE, Poilvache P et al (2002) Assessment of knee cartilage in cadavers with dual-detector spiral CT arthrography and MR imaging. Radiology 22:430–436CrossRefGoogle Scholar
  14. 14.
    Brossmann J, Preidler KW, Daenen B et al (1996) Imaging of osseous and cartilaginous intraarticular bodies in the knee: comparison of MR imaging and MR arthrography with CT and CT arthrography in cadavers. Radiology 200:509–517PubMedGoogle Scholar
  15. 15.
    Sciulli RL, Boutin RD, Brown RR et al (1999) Evaluation of the postoperative meniscus of the knee: a study comparing conventional arthrography, conventional MR imaging, MR arthrography with iodinated contrast material, and MR arthrography with gadolinium-based contrast material. Skeletal Radiol 28:508–514CrossRefPubMedGoogle Scholar
  16. 16.
    Magee T, Shapiro M, Rodriguez J, Williams D (2003) MR arthrography of postoperative knee: for which patients is it useful? Radiology 229:159–163CrossRefPubMedGoogle Scholar
  17. 17.
    Barnett MJ (1993) MR diagnosis of internal derangements of the knee: effect of field strength on efficacy. AJR Am J Roentgenol 161:115–118PubMedGoogle Scholar
  18. 18.
    Franklin PD, Lemon RA, Barden HS (1997) Accuracy of imaging the menisci on an in-office, dedicated, magnetic resonance imaging extremity system. Am J Sports Med 25:382–388CrossRefPubMedGoogle Scholar
  19. 19.
    Rubin DA, Kneeland JB (1994) MR imaging of the musculoskeletal system: technical considerations for enhancing image quality and diagnostic yield. AJR Am J Roentgenol 163:1155–1163PubMedGoogle Scholar
  20. 20.
    Buckwalter KA, Pennes DR (1990) Anterior cruciate ligament: oblique sagittal MR imaging. Radiology 175:276–277PubMedGoogle Scholar
  21. 21.
    Yu JS, Salonen DC, Hodler J et al (1996) Posterolateral aspect of the knee: improved MR imaging with a coronal oblique technique. Radiology 198:199–204PubMedGoogle Scholar
  22. 22.
    Vande Berg BC, Malghem J, Lecouvet FE et al (1998) 2 Classification and detection of bone marrow lesions with magnetic resonance imaging. Skeletal Radiol 7:529–545CrossRefGoogle Scholar
  23. 23.
    Bush CH (2000) The magnetic resonance imaging of musculoskeletal hemorrhage. Skeletal Radiol 29:1–9CrossRefPubMedGoogle Scholar
  24. 24.
    Rubin DA, Paletta GA Jr (2000) Current concepts and controversies in meniscal imaging. Magn Reson Imaging Clin N Am 8:243–270PubMedGoogle Scholar
  25. 25.
    Ha TPT, Li KC, Beaulieu CF et al (1998) Anterior cruciate ligament injury: fast spin-echo MR imaging with arthroscopic correlation in 217 examinations. AJR Am J Roentgenol 170:1215–1219PubMedGoogle Scholar
  26. 26.
    Sonin AH, Pensy RA, Mulligan ME et al (2002) Grading articular cartilage of the knee using fast spin-echo proton density-weighted MR imaging without fat suppression. AJR Am J Roentgenol 179:1159–1166PubMedGoogle Scholar
  27. 27.
    Kapelov SR, Teresi LM, Bradley WG et al (1993) Bone contusions of the knee: increased lesion detection with fast spineecho MR imaging with spectroscopic fat saturation. Radiology 189:901–904PubMedGoogle Scholar
  28. 28.
    Weinberger E, Shaw DW, White KS et al (1995) Nontraumatic pediatric musculoskeletal MR imaging: comparison of conventional and fast-spin-echo short inversion time inversion-recovery technique Radiology 194:721–726PubMedGoogle Scholar
  29. 29.
    Recht MP, Piraino DW, Paletta GA et al (1996) Accuracy of fat-suppressed three-dimensional spoiled gradient-echo FLASH MR imaging in the detection of patellofemoral articular cartilage abnormalities. Radiology 198:209–212PubMedGoogle Scholar
  30. 30.
    Disler DG, McCauley TR, Kelman CG et al (1996) Fat-suppressed three-dimensional spoiled gradient-echo MR imaging of hyaline cartilage defects in the knee: comparison with standard MR imaging and arthroscopy. AJR Am J Roentgenol 167:127–132PubMedGoogle Scholar
  31. 31.
    Woertler K, Strothmann M, Tombach B et al (2000) Detection of articular cartilage lesions: experimental evaluation of lowand high-field-strength MR imaging at 0.18 and 1.0 T. J Magn Reson Imaging 11:678–685CrossRefPubMedGoogle Scholar
  32. 32.
    Kladny B, Gluckert K, Swoboda B et al (1995) Comparison of low-field (0.2 Tesla) and high-field (1.5 Tesla) magnetic resonance imaging of the knee joint. Arch Orthop Trauma Surg 114:281–286CrossRefPubMedGoogle Scholar
  33. 33.
    Lee JH, Weissman BN, Nikpoor N et al (1989) Lipohemarthrosis of the knee: a review of recent experiences. Radiology 173:189–191PubMedGoogle Scholar
  34. 34.
    Wicky S, Blaser PF, Blanc CH et al (2000) Comparison between standard radiography and spiral CT with 3D reconstruction in the evaluation, classification and management of tibial plateau fractures. Eur Radiol 10:1227–1232CrossRefPubMedGoogle Scholar
  35. 35.
    Kode L, Lieberman JM, Motta AO et al (1994) Evaluation of tibial plateau fractures: efficacy of MR imaging compared with CT. AJR Am J Roentgenol 163:141–147PubMedGoogle Scholar
  36. 36.
    Mui LW, Engelsohn E, Umans H (2007) Comparison of CT and MRI in patients with tibial plateau fracture: can CT findings predict ligament tear or meniscal injury? Skeletal Radiol 36:145–151CrossRefPubMedGoogle Scholar
  37. 37.
    Yacoubian SV, Nevins RT, Sallis JG et al (2002) Impact of MRI on treatment plan and fracture classification of tibial plateau fractures. J Orthop Trauma 16(9):632–637CrossRefPubMedGoogle Scholar
  38. 38.
    Campos JC, Chung CB, Lektrakul N et al (2001) Pathogenesis of the Segond fracture: anatomic and MR imaging evidence of an iliotibial trad or anterior oblique band avulsion. Radiology 219:381–386PubMedGoogle Scholar
  39. 39.
    Huang GS, Yu JS, Munshi M et al (2003) Avulsion fracture of the head of the fibula (the “arcuate” sign): MR imaging findings predictive of injuries to the posterolateral ligaments and posterior cruciate ligament. AJR Am J Roentgenol 180:381–387PubMedGoogle Scholar
  40. 40.
    De Smet AA, Ilahi OA, Graf BK (1996) Reassessment of the MR criteria for stability of osteochondritis dissecans in the knee and ankle. Skeletal Radiol 25:159–163CrossRefPubMedGoogle Scholar
  41. 41.
    Kramer J, Stiglbauer R, Engel A et al (1992) MR contrast arthrography (MRA) in osteochondrosis dissecans. J Comput Assist Tomogr 16:254–260CrossRefPubMedGoogle Scholar
  42. 42.
    Speer KP, Spritzer CE, Goldner JL et al (1991) Magnetic resonance imaging of traumatic knee articular cartilage injuries. Am J Sports Med 19:396–402CrossRefPubMedGoogle Scholar
  43. 43.
    Rubin DA, Harner CD, Costello JM (2000) Treatable chondral injuries in the knee: frequency of associated focal subchondral edema. AJR Am J Roentgenol 174:1099–1106PubMedGoogle Scholar
  44. 44.
    Spitz DJ, Newberg AH (2002) Imaging of stress fractures in the athlete. Radiol Clin North Am 40:313–331CrossRefPubMedGoogle Scholar
  45. 45.
    Kapelov SR, Teresi LM, Bradley WG et al (1993) Bone contusions of the knee: increased lesion detection with fast spinecho MR imaging with spectroscopic fat saturation. Radiology 189:901–904PubMedGoogle Scholar
  46. 46.
    Arndt WF 3rd, Truax AL, Barnett FM et al (1996) MR diagnosis of bone contusions of the knee: comparison of coronal T2-weighted fast spin-echo with fat saturation and fast spinecho STIR images with conventional STIR images. AJR Am J Roentgenol 166:119–124PubMedGoogle Scholar
  47. 47.
    Zanetti M, Bruder E, Romero J, Hodler J (2000) Bone marrow edema pattern in osteoarthritic knees: correlation between MR imaging and histologic findings. Radiology 215:835–840PubMedGoogle Scholar
  48. 48.
    Sanders TG, Medynski MA, Feller JF, Lawhorn KW (2000) Bone contusion patterns of the knee at MR imaging: footprint of the mechanism of injury. Radiographics 20(Spec No):S135–S151PubMedGoogle Scholar
  49. 49.
    Wright RW, Phaneuf MA, Limbird TJ, Spindler KP (2000) Clinical outcome of isolated subcortical trabecular fractures (bone bruise) detected on magnetic resonance imaging in knees. Am J Sports Med 28:663–667PubMedGoogle Scholar
  50. 50.
    Costa-Paz M, Muscolo DL, Ayerza M et al (2001) Magnetic resonance imaging follow-up study of bone bruises associated with anterior cruciate ligament ruptures. Arthroscopy 17:445–449CrossRefPubMedGoogle Scholar
  51. 51.
    Björkengren AG, AlRowaih A, Lindstrand A et al (1990) Spontaneous osteonecrosis of the knee: value of MR imaging in determining prognosis. AJR Am J Roentgenol 154:331–336PubMedGoogle Scholar
  52. 52.
    Mitchell DG, Rao VM, Dalinka MK et al (1987) Femoral head avascular necrosis: correlation of MR imaging, radiographic staging, radionuclide imaging, and clinical findings. Radiology 162:709–715PubMedGoogle Scholar
  53. 53.
    Deutsch AL, Mink JH, Rosenfelt FP et al (1989) Incidental detection of hematopoietic hyperplasia on routine knee MR imaging. AJR Am J Roentgenol 152:333–336PubMedGoogle Scholar
  54. 54.
    Shellock FG, Morris E, Deutsch AL et al (1992) Hematopoietic bone marrow hyperplasia: high prevalence on MR images of the knee in asymptomatic marathon runners. AJR Am J Roentgenol 158:335–338PubMedGoogle Scholar
  55. 55.
    Rao VM, Mitchell DG, Rifkin MD et al (1989) Marrow infarction in sickle cell anemia: correlation with marrow type and distribution by MRI. Magn Reson Imaging 7:39–44CrossRefPubMedGoogle Scholar
  56. 56.
    Remedios PA, Colletti PM, Raval JK et al (1988) Magnetic resonance imaging of bone after radiation. Magn Reson Imaging 6:301–304CrossRefPubMedGoogle Scholar
  57. 57.
    Lanir A, Aghai E, Simon JS et al (1986) MR imaging in myelofibrosis. J Comput Assist Tomogr 10:634–636CrossRefPubMedGoogle Scholar
  58. 58.
    Hernandez RJ (1985) Visualization of small sequestra by computerized tomography. Report of 6 cases. Pediatr Radiol 15:238–241CrossRefPubMedGoogle Scholar
  59. 59.
    Mason MD, Zlatkin MB, Esterhai JL et al (1989) Chronic complicated osteomyelitis of the lower extremity: evaluation with MR imaging. Radiology 173:355–359PubMedGoogle Scholar
  60. 60.
    Capitano MA, Kirkpatrick JA (1970) Early roentgen observations in acute osteomyelitis. AJR Am J Roentgenol 108:488–490Google Scholar
  61. 61.
    Erdman WA, Tamburro F, Jayson HT et al (1991) Osteomyelitis: characteristics and pitfalls of diagnosis with MR imaging. Radiology 180:533–539PubMedGoogle Scholar
  62. 62.
    Panicek DM, Gatsonis C, Rosenthal DI et al (1997) CT and MR imaging in the local staging of primary malignant musculoskeletal neoplasms: Report of the Radiology Diagnostic Oncology Group. Radiology 202:237–246PubMedGoogle Scholar
  63. 63.
    Daffner RH, Lupetin AR, Dash N et al (1986) MRI in the detection of malignant infiltration of bone marrow. AJR Am J Roentgenol 146:353–358PubMedGoogle Scholar
  64. 64.
    Vande Berg BC, Lecouvet FE, Poilvache P et al (2002) Assessment of knee cartilage in cadavers with dual-detector spiral CT arthrography and MR imaging. Radiology 222:430–436CrossRefGoogle Scholar
  65. 65.
    Brown TR, Quinn SF (1993) Evaluation of chondromalacia of the patellofemoral compartment with axial magnetic resonance imaging. Skeletal Radiol 22: 325–328CrossRefPubMedGoogle Scholar
  66. 66.
    Disler DG, McCauley TR, Wirth CR et al (1995) Detection of knee hyaline cartilage defects using fat-suppressed three-dimensional spoiled gradient-echo MR imaging: comparison with standard MR imaging and correlation with arthroscopy. AJR Am J Roentgenol 165:377–382PubMedGoogle Scholar
  67. 67.
    Gagliardi JA, Chung EM, Chandnani VP et al (1994) Detection and staging of chondromalacia patellae: relative efficacies of conventional MR imaging, MR arthrography, and CT arthrography. AJR Am J Roentgenol 163:629–636PubMedGoogle Scholar
  68. 68.
    Recht MP, Kramer J, Marcelis S et al (1993) Abnormalities of articular cartilage in the knee: analysis of available MR techniques. Radiology 187:473–478PubMedGoogle Scholar
  69. 69.
    Sonin AH, Pensy RA, Mulligan ME et al (2002) Grading articular cartilage of the knee using fast spin-echo proton density-weighted MR imaging without fat suppression. AJR Am J Roentgenol 179:1159–1166PubMedGoogle Scholar
  70. 70.
    Kramer J, Recht MP, Imhof H et al (1994) Postcontrast MR arthrography in assessment of cartilage lesions. J Comput Assist Tomogr 18:218–224CrossRefPubMedGoogle Scholar
  71. 71.
    Turner DA (2000) Subchondral bone marrow edema in degenerative chondrosis [Letter]. AJR Am J Roentgenol 175:1749–1750PubMedGoogle Scholar
  72. 72.
    Kijowski R, Stanton P, Fine J et al (2006) Subchondral bone marrow edema in patients with degeneration of the articular cartilage of the knee joint. Radiology 238(3):943–949CrossRefPubMedGoogle Scholar
  73. 73.
    De Smet AA, Tuite MJ (2006) Use of the “two-slice-touch” rule for the MRI diagnosis of meniscal tears. AJR Am J Roentgenol 187:911–914CrossRefPubMedGoogle Scholar
  74. 74.
    De Smet AA, Norris MA, Yandow DR et al (1993) MR diagnosis of meniscal tears of the knee: importance of high signal in the meniscus that extends to the surface. AJR Am J Roentgenol 161:101–107PubMedGoogle Scholar
  75. 75.
    Kaplan PA, Nelson NL, Garvin KL et al (1991) MR of the knee: the significance of high signal in the meniscus that does not clearly extend to the surface. AJR Am J Roentgenol 156:333–336PubMedGoogle Scholar
  76. 76.
    Oei EH, Nikken JJ, Verstjnen ACM et al (2003) MR imaging of the menisci and cruciate ligaments: A systematic review. Radiology 226:837–848CrossRefPubMedGoogle Scholar
  77. 77.
    De Smet AA, Nathan DH, Graf BK et al (2008) Clinical and MRI findings associated with false-positive knee MR diagnoses of medial meniscal tears. AJR Am J Roentgenol 191:93–99CrossRefPubMedGoogle Scholar
  78. 78.
    De Smet AA, Mukherjee R (2008) Clinical, MRI, and arthroscopic findings associated with failure to diagnose a lateral meniscal tear on knee MRI. AJR Am J Roentgenol 190:22–26CrossRefPubMedGoogle Scholar
  79. 79.
    Lim PS, Schweitzer ME, Bhatia M et al (1999) Repeat tear of postoperative meniscus: potential MR imaging signs. Radiology 210:183–188PubMedGoogle Scholar
  80. 80.
    Farley TE, Howell SM, Love KF et al (1991) Meniscal tears: MR and arthrographic findings after arthroscopic repair. Radiology 180:517–522PubMedGoogle Scholar
  81. 81.
    Sciulli RL, Boutin RD, Brown RR et al (1999) Evaluation of the postoperative meniscus of the knee: a study comparing conventional arthrography, conventional MR imaging, MR arthrography with iodinated contrast material, and MR arthrography with gadolinium-based contrast material. Skeletal Radiol 28:508–514CrossRefPubMedGoogle Scholar
  82. 82.
    Applegate GR, Flannigan BD, Tolin BS et al (1993) MR diagnosis of recurrent tears in the knee: value of intraarticular contrast material. AJR Am J Roentgenol 161:821–825PubMedGoogle Scholar
  83. 83.
    Tung GA, Davis LM, Wiggins ME et al (1993) Tears of the anterior cruciate ligament: primary and secondary signs at MR imaging. Radiology 188:661–667PubMedGoogle Scholar
  84. 84.
    Schweitzer ME, Tran D, Deely DM, Hume EL (1995) Medial collateral ligament injuries: evaluation of multiple signs, prevalence and location of associated bone bruises, and assessment with MR imaging. Radiology 194:825–829PubMedGoogle Scholar
  85. 85.
    Vahey TN, Broome DR, Kayes KJ et al (1991) Acute and chronic tears of the anterior cruciate ligament: differential features at MR imaging. Radiology 181:251–253PubMedGoogle Scholar
  86. 86.
    Brandser EA, Riley MA, Berbaum KS et al (1996) MR imaging of anterior cruciate ligament injury: independent value of primary and secondary signs. AJR Am J Roentgenol 167:121–126PubMedGoogle Scholar
  87. 87.
    Mclntyre J, Moelleken S, Tirman P (2001) Mucoid degeneration of the anterior cruciate ligament mistaken for ligamentous tears. Skeletal Radiol 30:312–315CrossRefGoogle Scholar
  88. 88.
    Bergin D, Morrison WB, Carrino JA et al (2004) Anterior cruciate ligament ganglia and mucoid degeneration: coexistence and clinical correlation. AJR Am J Roentgenol 182:1283–1287PubMedGoogle Scholar
  89. 89.
    Nguyen B, Brandser E, Rubin DA (2000) Pains, strains, and fasciculations: lower extremity muscle disorders. Magn Reson Imaging Clin N Am 8:391–408PubMedGoogle Scholar
  90. 90.
    Khan KM, Bonar F, Desmond PM et al (1996) Patellar tendinosis (jumper’s knee): findings at histopathologic examination, US, and MR imaging. Radiology 200:821–827PubMedGoogle Scholar
  91. 91.
    Shalaby M, Almekinders LC (1999) Patellar tendinitis: the significance of magnetic resonance imaging findings. Am J Sports Med 27:345–349PubMedGoogle Scholar
  92. 92.
    Zeiss J, Saddemi SR, Ebraheim NA (1992) MR imaging of the quadriceps tendon: normal layered configuration and its importance in cases of tendon rupture. AJR Am J Roentgenol 159:1031–1034PubMedGoogle Scholar
  93. 93.
    Carotti M, Salaffi F, Manganelli P et al (2002) Power Doppler sonography in the assessment of synovial tissue of the knee joint in rheumatoid arthritis: a preliminary experience. Ann Rheum Dis 61:877–882CrossRefPubMedGoogle Scholar
  94. 94.
    Adam G, Dammer M, Bohndorf K et al (1991) Rheumatoid arthritis of the knee: value of gadopentetate dimeglumine-enhanced MR imaging. AJR Am J Roentgenol 156:125–129PubMedGoogle Scholar
  95. 95.
    Crotty JM, Monu JU, Pope TL Jr (1996) Synovial osteochondromatosis. Radiol Clin North Am 34:327–342PubMedGoogle Scholar
  96. 96.
    Lin J, Jacobson JA, Jamadar DA et al (1999) Pigmented villonodular synovitis and related lesions: the spectrum of imaging findings. AJR Am J Roentgenol 172:191–197PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2009

Authors and Affiliations

  • David A. Rubin
    • 1
  • Arthur A. De Smet
    • 2
  1. 1.Musculoskeletal Section, Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisUSA
  2. 2.RadiologyUniversity of Wisconsin School of Medicine and Public HealthMadisonUSA

Personalised recommendations