Radionuclide Evaluation of Primary Bone and Soft-Tissue Tumors

  • Chistiane Franzius


This presentation reviews the applications of nuclear medicine imaging techniques in the evaluation of primary bone and soft-tissue malignomas in children, adolescents, and adults. The focus is on three-phase bone scintigraphy, positron emission tomography using 18F-fluoro-deoxyglucose FDG-PET), and the combination of PET and computed tomography (PET-CT). These imaging techniques are used for the grading, staging, and response control of tumors as well as for the diagnosis of tumor recurrence.


Positron Emission Tomography Bone Scintigraphy Ewing Sarcoma Musculoskeletal Tumor Primary Bone Tumor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Reiser M, Semmler W (2002) Magnetresonanztomographie, 3rd edn. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  2. 2.
    Erlemann R, Sciuk J, Bosse A et al (1990) Response of osteosarcoma and Ewing sarcoma to preoperative chemotherapy: assessment with dynamic and static MR imaging and skeletal scintigraphy. Radiology 175:791–796PubMedGoogle Scholar
  3. 3.
    Knop J, Delling G, Heise U, Winkler K (1990) Scintigraphic evaluation of tumor regression during preoperative chemotherapy of osteosarcoma. Skeletal Radiol 19:165–172CrossRefPubMedGoogle Scholar
  4. 4.
    Bares R (1999) Leitlinien für die Skelettszintigraphie. Nuklearmedizin 38:251–253PubMedGoogle Scholar
  5. 15.
    O’Mara RE (1988) Bone scanning in osseous metastatic disease. JAMA 229:1915–1917CrossRefGoogle Scholar
  6. 6.
    Algra PR, Bloem JL, Tissing H et al (1991) Detection of vertebral metastases: comparison between MR imaging and bone scintigraphy. Radiographics 11:219–232PubMedGoogle Scholar
  7. 7.
    Link M, Sciuk J, Fründt H et al (1995) Wirbelsäu-lenmetastasen — Wertigkeit diagnostischer Verfahren bei der Erstdiagnose und im Verlauf. Radiologe 35:21–27PubMedGoogle Scholar
  8. 8.
    Grant F, Fahey F, Packard A et al (2008) Skeletal PET with F-18-fluoride: applying new technology to an old tracer. J Nucl Med 49:68–78CrossRefPubMedGoogle Scholar
  9. 9.
    Petersen M (1990) Radionuclide detection of primary pulmonary osteogenic sarcoma: a case report and review of the literature. J Nucl Med 31:1110–1114PubMedGoogle Scholar
  10. 10.
    Othman S, El-Desouki M (2003) Bone scan appearance in aggressive osteogenic sarcoma with pleural, lung, bone, and softtissue metastases. Clin Nucl Med 28:926CrossRefPubMedGoogle Scholar
  11. 11.
    Franzius C, Bielack S, Sciuk J et al (1999) High-activity Samarium-153-EDTMP therapy in unresectable osteosarcoma. Nuklearmedizin 38:337–340PubMedGoogle Scholar
  12. 12.
    Anderson PM (1998) Sm-153-EDTMP therapy with stem cell support in patients. In: Bruland OS (ed) Towards the eradication of osteosarcoma metastases. The Norwegian Radium Hospital, Oslo, pp 87–88Google Scholar
  13. 13.
    Pneumaticos SG, Chatziioannou SN, Moore WH, Johnson M (2001) The role of radionuclides in primary musculoskeletal tumors beyond the “bone scan”. Crit Rev Oncol Hematol 37:217–226CrossRefPubMedGoogle Scholar
  14. 14.
    Kern KA, Brunetti A, Norton JA et al (1988) Metabolic imaging of human extremity musculoskeletal tumors by PET. J Nucl Med 29:181–186PubMedGoogle Scholar
  15. 15.
    Tateishi U, Yamaguchi U, Seki K et al (2006) Glut-1 expression and enhanced glucose metabolism are associated with tumor grade in bone and soft tissue sarcomas: a prospective evaluation by [F-l 8]fluorodeoxyglucose positron emission tomography. Eur J Nucl Med Mol Imaging 33:683–691CrossRefPubMedGoogle Scholar
  16. 16.
    Franzius C, Schulte M, Hillmann A et al (2001) Klinische Wertigkeit der Positronen-Emissions-Tomographie (PET) in der Diagnostik der Knochen-und Weichteiltumore. 3. Konsensuskonferenz ‘PET in der Onkologie’, Ergebnisse der Arbeitsgruppe Knochen und Weichteiltumore. Chirurg 72:1071–1077CrossRefPubMedGoogle Scholar
  17. 17.
    Bastiaannet E, Groen H, Jager PL et al (2004) The value of FDG-PET in the detection, grading and response to the thérapie of soft tissue and bone sarcomas) a systematic review and meta-analysis. Cancer Treat Rev 30:83–101CrossRefPubMedGoogle Scholar
  18. 18.
    Kole AC, Nieweg OE, Hoekstra HJ et al (1998) Fluorine-18-fluorodeoxyglucose assessment of glucose metabolism in bone tumors. J Nucl Med 39:810–815PubMedGoogle Scholar
  19. 19.
    Hamada K, Tomita Y, Qiu Y et al (2008) F-18-FDG-PET of musculoskeletal tumors: a correlation with the expression of glucose transporter 1 and hexokinase II. Ann Nucl Med 22:699–705CrossRefPubMedGoogle Scholar
  20. 20.
    Schulte M, Brecht-Krauss D, Heymer B et al (1999) Fluorodeoxyglucose positron emission tomography of soft tissue tumors: is a non-invasive determination of biological activity possible? Eur J Nucl Med 26:599–605CrossRefPubMedGoogle Scholar
  21. 21.
    Schulte M, Brecht-Krauss D, Heymer B et al (2000) Grading of tumors and tumorlike lesions of bone: evaluation by 2-(fluorine-18)-fluoro-2deoxy-D-glucose positron emission tomography. J Nucl Med 41:1695–1701PubMedGoogle Scholar
  22. 22.
    Eary JF, Conrad EU, Bruckner JD et al (1998) Quantitative (F-18) fluorodeoxy glucose positron emission tomography in pretreatment and grading of sarcoma. Clin Cancer Res 4:1215–1220PubMedGoogle Scholar
  23. 23.
    Brenner W, Conrad EU, Eary JF (2004) FDG PET imaging for grading and prediction of outcome in chondrosarkoma patients. Eur J Nucl Med Mol Imaging 31:189–195CrossRefPubMedGoogle Scholar
  24. 24.
    Hain S, O’Doherty M, Bingham J et al (2003) Can FDG-PET be used to successfully direct preoperative biopsy of soft tissue tumours? Nucl Med Commun 24:1139–1143CrossRefPubMedGoogle Scholar
  25. 25.
    Eary JF, O’Sullivan F, Powitan Y et al (2002) Sarcoma tumor FDG uptake measurement by PET and patient outcome: a retrospective analysis. Eur J Nucl Med Mol Imaging 29:1149–1154CrossRefPubMedGoogle Scholar
  26. 26.
    Franzius C, Bielack S, Flege S et al (2002) Prognostic significance of F-18-FDG and Tc-99m-methylene diphosphonate uptake in primary osteosarcoma. J Nucl Med 43:1012–1017PubMedGoogle Scholar
  27. 27.
    Brenner W, Eary J, Hwang W et al (2006) Risk assessment in liposarcoma patients based on FDG PET imaging. Eur J Nucl Med Mol ImagingGoogle Scholar
  28. 28.
    Hawkins DS, Schuetze SM, Butrynski JE et al (2005) [F-18] Fluorodeoxyglucose positron emission tomography predicts outcome for Ewing sarcoma family of tumors. J Clin Oncol 23:8828–8834CrossRefPubMedGoogle Scholar
  29. 29.
    Schuetze S, Rubin B, Vernon C et al (2005) Use of positron emission tomography in localized extremity soft tissue sarcoma treated with neoadjuvant chemotherapy. Cancer 103:339–348CrossRefPubMedGoogle Scholar
  30. 30.
    Eary J, O’Sullivan F, O’Sullivan J, Conrad E (2008) Spatial heterogeneity in sarcoma F-18-FDG uptake as a predictor of patient outcome. J Nucl Med 49:1973–1979CrossRefPubMedGoogle Scholar
  31. 31.
    Franzius C, Daldrup-Link HE, Sciuk J et al (2001) FDG-PET for detection of pulmonary metastases from malignant primary bone tumors: comparison with spiral CT. Ann Oncol 12:479–486CrossRefPubMedGoogle Scholar
  32. 32.
    Lucas JD, O’Doherty MJ, Wong JCH et al (1998) Evaluation of fluorodeoxyglucose positron emission tomography in the management of soft-tissue sarcoma. J Bone Joint Surg (Br) 80-B:441–447CrossRefGoogle Scholar
  33. 33.
    Gyoerke T, Zajic T, Lange A et al (2006) Impact of FDG PET for staging of Ewing sarcomas and primitive neuroectodermal tumours. Nucl Med Commun 27:17–24CrossRefGoogle Scholar
  34. 34.
    Iagaru A, Chawia S, Menendez L, Conti P (2006) F-18-FDG PET and PET/CT for detection of pulmonary metastases from musculoskeletal sarcomas. Nucl Med Commun 27:795–802CrossRefPubMedGoogle Scholar
  35. 35.
    Franzius C, Sciuk J, Daldrup-Link HE et al (2000) FDG-PET for detection of osseous metastases from malignant primary bone tumors: comparison with bone scintigraphy. Eur J Nucl Med 27:1305–1311CrossRefPubMedGoogle Scholar
  36. 36.
    Voelker T, Denecke T, Steffen I et al (2007) Positron emission tomography for staging of pediatric sarcoma patients: results of a prospective multicenter trial. J Clin Oncol 25:5435–5441CrossRefGoogle Scholar
  37. 37.
    Zamagni E, Nanni C, Patriarca F et al (2007) A prospective comparison of F-18-fluorodeoxyglucose positron emission tomography-computed tompgraphy, magnetic resonance imaging and whole-body planar radiographs in the assessment of bone disease in newly diagnosed multiple myeloma. Haematologica 92:50–55CrossRefPubMedGoogle Scholar
  38. 38.
    Fonti R, Salvatore B, Quarantelli M et al (2008) F-18-FDG PET/CT, Tc-99m-MIBI, and MRI in evaluation of patients with multiple myeloma. J Nucl Med 49:195–200CrossRefPubMedGoogle Scholar
  39. 39.
    Hur J, Yoon C, Ryu Y et al (2008) Comparative study of fluorodeoxyglucose positron emission tomography and magnetic resonance imaging for the detection of spinal bone marrow infiltration in untreated patients with multiple myeloma. Acta Radiol 49:427–435CrossRefPubMedGoogle Scholar
  40. 40.
    Nanni C, Rubello D, Zamagni E et al (2008) F-18-FDG PET/CT in myeloma with presumed solitary plasmocytoma of bone. In Vivo 22:513–517PubMedGoogle Scholar
  41. 41.
    Hawkins DS, Rajendran JG, Conrad EU et al (2002) Evaluation of chemotherapy response in pediatric bone sarcomas by [F-18]-fluorodeoxy-d-glucose positron emission tomography. Cancer 94:3277–3284CrossRefPubMedGoogle Scholar
  42. 42.
    Nair N, Ali G, Green AA et al (2000) Response of osteosarcoma to chemotherapy. Evaluation with F-18 FDG-PET scans. Clin Positron Imaging 3:79–83CrossRefPubMedGoogle Scholar
  43. 43.
    Schulte M, Brecht-Krauss D, Werner M et al (1999) Evaluation of neoadjuvant therapy response of osteogenic sarcoma using FDG-PET. J Nucl Med 40:1637–1643PubMedGoogle Scholar
  44. 44.
    Franzius C, Sciuk J, Brinkschmidt C et al (2000) Evaluation of chemotherapy response in primary bone tumors with F-18-FDG-PET compared with histologically assessed tumor necrosis. Clin Nucl Med 25:874–881CrossRefPubMedGoogle Scholar
  45. 45.
    Evilevitch V, Weber W, Tap W et al (2008) Reduction of glucose metabolic activity is more accurate than change in size at predicting histopathologic response to neoadjuvant therapy in high-grade soft-tissue sarcomas. Clin Cancer Res 14:715–720CrossRefPubMedGoogle Scholar
  46. 46.
    Benz M, Alien-Auerbach M, Eilber F et al (2008) Combined assessment of metabolic and volumetric changes for assessment of tumor response in patients with soft-tissue sarcoma. J Nucl Med 49:1579–1584CrossRefPubMedGoogle Scholar
  47. 47.
    Benz M, Evilevitch V, Alien-Auerbach M et al (2008) Treatment monitoring by F-18-FDG PET/CT in patients with sarcomas: interobserver variability of quantitative parameters in treatment-induced changes in histopathologically responding and nonresponding tumors. J Nucl Med 49:1038–1049CrossRefPubMedGoogle Scholar
  48. 48.
    Ye Z, Zhu J, Tian M, Zhang H et al (2008) Response of osteogenic sarcoma to neoadjuvant therapy: evaluated ba F-18-FDG PET. Ann Nucl Med 22:475–480CrossRefPubMedGoogle Scholar
  49. 49.
    Huang T, Liu R, Chen T et al (2006) Comparison between F-18-FDG positron emission tomography and histology for the assessment of tumor necrosis rates in primary osteosarcoma. J Chin Med Assoc 69:372–376CrossRefPubMedGoogle Scholar
  50. 50.
    Iagaru A, Masamed R, Chawia S et al (2008) F-18 FDG PET and PET/CT evalation of response to chemotherapy in bone and soft-tissue sarcomas. Clin Nucl Med 33:8–13CrossRefPubMedGoogle Scholar
  51. 51.
    Franzius C, Daldrup-Link HE, Wagner-Bohn A et al (2002) FDG PET for detection of recurrences from malignant primary bone tumors: Comparison with conventional imaging. Ann Oncol 13:157–160CrossRefPubMedGoogle Scholar
  52. 52.
    Bredella MA, Caputo GR, Steinbach LS (2002) Value of FDG positron emission tomography in conjunction with MR imaging for evaluating therapy response in patients with musculosceletal sarcomas. Am J Roentgenol 179:1145–1150Google Scholar
  53. 53.
    Johnson GR, Zhuang H, Khan J et al (2003) Roles of positron emission tomography with fluorine-18 deoxyglucose in the detection of local recurrent and distant metastatic sarcoma. Clin Nucl Med 28:815–820CrossRefPubMedGoogle Scholar
  54. 54.
    Arush M, Israel O, Postovsky S et al (2007) Positron emission tomography/computed tomography with (18) fluoro-deoxyglucose in the detection of local recurrence and distant metastases in pediatric sarcoma. Pediatr Blood Cancer 24: epub ahead of printGoogle Scholar
  55. 55.
    Gerth H, Juergens K, Dirksen U et al (2007) Significant benefit of multimodal imaging: PET/CT compared with PET alone in staging and follow-up of patients with Ewing sarcoma. J Nucl Med 48:1932–1939CrossRefPubMedGoogle Scholar
  56. 56.
    Tang G, Wang M, Tang X et al (2003) Synthesis and evaluation of 0-(3-[18F]fluoropropyl)-L-tyrosine as an oncologic PET tracer. Nucl Med Biol 30:733–739CrossRefPubMedGoogle Scholar
  57. 57.
    Buck A, Herrmann K, Bueschenfelde C et al (2008) Imaging bone and soft tissue tumors with the proliferation marker [F18]fluorodesoxythymidine. Clin Cancer Res 14:2970–2977CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2009

Authors and Affiliations

  • Chistiane Franzius
    • 1
  1. 1.MR- and PET/CT-Center Bremen-MitteBremenGermany

Personalised recommendations