Radionuclide Imaging of Bone Metastases

  • Einat Even-Sapir Weizer


Skeletal imaging of oncologic patients is aimed at identifying early bone involvement, to determine the extent of the disease, and to monitor the response to therapy [1]. Detection of malignant bone involvement is either direct, by visualization of tumoral infiltration, or indirect, by detecting the reaction of bone to the presence of malignant cells. The vast majority of bone metastases initiate as bone marrow micrometastases. As the lesion enlarges within the marrow, the surrounding bone undergoes osteoclastic (resorptive) and osteoblastic (depositional) activity. Based on the balance between these two processes, metastasis can be lytic, sclerotic (blastic), or mixed [2, 3]. In nuclear medicine, 18F-fluordeoxyglucose (18F-FDG), a PET tracer, directly accumulates in tumor cells and may therefore identify malignant bone involvement even at early stages, when confined to the marrow, before cortical bone reaction has occurred, while increased accumulation of 99mTc-MDP-methylene diphosphonate (the tracer used for bone scintigraphy) or 18F-fluoride, a bone-seeking PET tracer, depends on the presence of secondary reactive osteoblastic changes [3, 4].


Bone Metastasis High Bone Turnover Bone Marrow Micrometastases Benign Bone Lesion Planar Bone Scintigraphy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hamaoka T, Madewell JE, Podoloff DA et al (2004) Bone imaging in metastatic breast cancer. J Clin Oncol 22:2942–2953CrossRefPubMedGoogle Scholar
  2. 2.
    Roodman GD (2004) Mechanisms of bone metastasis. N Engl J Med 350:1655–1664CrossRefPubMedGoogle Scholar
  3. 3.
    Blake GM, Park-Holohan SJ, Cook GJ, Fogelman I (2001) Quantitative studies of bone with the use of 18F-fluoride and 99mTc-methylene diphosphonate. Semin Nucl Med 31:28–49CrossRefPubMedGoogle Scholar
  4. 4.
    Even-Sapir E (2005) Imaging of malignant bone involvement by morphologic, scintigraphic, and hybrid modalities. J Nucl Med 46:1356–1367PubMedGoogle Scholar
  5. 5.
    Smith TJ, Davidson NE, Schapira DV et al (1998) American Society of Clinical Oncology 1998. Update of recommended breast cancer surveillance guidelines. J Clin Oncol 17:1080–1082Google Scholar
  6. 6.
    Schoder H, Larson SM (2004) Positron emission tomography for prostate, bladder, and renal cancer. Semin Nucl Med 34:274–292CrossRefPubMedGoogle Scholar
  7. 7.
    Gates GF (1998) SPECT bone scanning of the spine. Semin Nucl Med 28:78–94CrossRefPubMedGoogle Scholar
  8. 8.
    Even-Sapir E, Metser U, Mishani E et al (2006) The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single-and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med 47:287–297PubMedGoogle Scholar
  9. 9.
    Keidar Z, Israel O, Krausz Y (2003) SPECT/CT in tumor imaging: technical aspects and clinical applications. Semin Nucl Med 33:205–218CrossRefPubMedGoogle Scholar
  10. 10.
    Cook GJ, Houston S, Rubens R et al (1998) Detection of bone metastases in breast cancer by 18FDG PET: differing metabolic activity in osteoblastic and osteolytic lesions. J Clin Oncol 16:3375–3379PubMedGoogle Scholar
  11. 11.
    Abe K, Sasaki M, Kuwabara Y et al (2005) Comparison of 18FDG-PET with 99mTc-HMDP scintigraphy for the detection of bone metastases in patients with breast cancer. Ann Nucl Med 19:573–579CrossRefPubMedGoogle Scholar
  12. 12.
    Port ER, Yeung H, Gonen M et al (2006) (18)F-2-fluoro-2-deoxy-d:-glucose positron emission tomography scanning affects surgical management in selected patients with high-risk, oper-able breast carcinoma. Ann Surg Oncol 13:677–684CrossRefPubMedGoogle Scholar
  13. 13.
    Cheran SK, Herndon JE, Patz EF (2004) Comparison of whole-body FDG-PET to bone scan for detection of bone metastases in patients with a new diagnosis of lung cancer. Lung Cancer 44:317–325CrossRefPubMedGoogle Scholar
  14. 14.
    Pakos EE, Fotopoulos AD, Ioannidis JP (2005) 18F-FDG PET for evaluation of bone marrow infiltration in staging of lym-phoma: a meta-analysis. J Nucl Med 6:958–963Google Scholar
  15. 15.
    Carr R, Barrington SF, Madan B et al (1998) Detecion of lym-phoma in bone marrow by whole-body positron emission tomography. Blood 91:3340–3346PubMedGoogle Scholar
  16. 16.
    Even-Sapir E, Lievshitz G, Perry C et al (2006) Fluorine-18 Fluorodeoxyglucose PET/CT patterns of extranodal involvement in patients with non-Hodgkin Lymphoma and Hodgkin’s disease. PET Clinics 1:251–263CrossRefGoogle Scholar
  17. 17.
    Durie BGM, Waxman AD, D’Agnolo A, Williams CM (2002) Whole-body 18F-FDG PET identifies high-risk myeloma. J Nucl Med 43:1457–1463PubMedGoogle Scholar
  18. 18.
    Schirrmeister H, Bommer M, Buck A et al (2002) Initial results in the assessment of multiple myeloma using F-18 FDG PET. Eur J Nucl Med Mol Imag 29:361–366CrossRefGoogle Scholar
  19. 19.
    Israel O, Goldberg A, Nachtigal A et al (2006) FDG-PET and CT patterns of bone metastases and their relationship to previously administered anti-cancer therapy. Eur J Nucl Med Mol Imaging 33:1280–1284CrossRefPubMedGoogle Scholar
  20. 20.
    Clamp A, Danson S, Nguyen H et al (2004) Assessment of therapeutic response in patients with metastatic bone disease. Lancet Oncol 5:607–616CrossRefPubMedGoogle Scholar
  21. 21.
    Kazama T, Faria SC, Varavithya V et al (2005) FDG PET in the evaluation of treatment for lymphoma: clinical usefulness and pitfalls. Radiographics 25:191–207CrossRefPubMedGoogle Scholar
  22. 22.
    Cook GJ, Fogelman I (2001) The role of positron emission tomography in skeletal disease. Semin Nucl Med 31:50–61CrossRefPubMedGoogle Scholar
  23. 23.
    Schirrmeister H, Kuhn T, Guhlmann A et al (2001) Fluorine-18 2-deoxy-2-fluoro-D-glucose PET in the preoperative staging of breast cancer: comparison with the standard staging procedures. Eur J Nucl Med 28:351–358CrossRefPubMedGoogle Scholar
  24. 24.
    Even-Sapir E, Mishani E, Flusser G, Metser U (2007) 18F-Fluoride positron emission tomography and positron emission tomography/computed tomography. Semin Nucl Med 37:462–469CrossRefPubMedGoogle Scholar
  25. 25.
    Even-Sapir E, Metser U, Flusser G et al (2004) Assessment of malignant skeletal disease: initial experience with 18F-fluoride PET/CT and comparison between 18F-fluoride PET and 18F-fluoride PET/CT. J Nucl Med 45:272–278PubMedGoogle Scholar
  26. 26.
    Beheshti M, Vali R, Waldenberger P et al (2008) Detection of bone metastases in patients with prostate cancer by F-18 fluo-rocholine and F-18 fluoride PET-CT: a comparative study. Eur J Nucl Med Mol Imaging 35:1766–1774CrossRefPubMedGoogle Scholar
  27. 27.
    Antoch G, Vogt FM, Freudenberg LS et al (2003) Whole-body dual-modality PET/CT and whole-body MRI for tumor stag-ing in oncology. JAMA 290:3199–3206CrossRefPubMedGoogle Scholar
  28. 28.
    Strobel K, Exner UE, Stumpe KD et al (2008) The additional value of CT images interpretation in the differential diagnosis of benign vs. malignant primary bone lesions with 18F-FDG-PET/CT. Eur J Nucl Med Mol Imag 35:2000–2008CrossRefGoogle Scholar
  29. 29.
    Metser U, Lerman H, Blank A et al (2004) Malignant involvment of the spine: assessment by 18F-fluorodeoxyglucose PET/CT. J Nucl Med 45:279–284PubMedGoogle Scholar
  30. 30.
    Ell PJ (2006) The contribution of PET/CT to improved patient management. Br J Radiol 79:32–36CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2009

Authors and Affiliations

  • Einat Even-Sapir Weizer
    • 1
  1. 1.Department of Nuclear Medicine, Tel Aviv Sourasky Medical Center, Sackler School of MedicineTel Aviv UniversityTel AvivIsrael

Personalised recommendations