Skip to main content

Special Aspects of Musculoskeletal Imaging in Children

  • Chapter
Musculoskeletal Diseases 2009–2012

Abstract

In children, the skeleton undergoes multiple changes with age. These age-related transformations determine the distribution of disease, the patterns of injury, and their imaging characteristics. During development, cartilage is converted to bone and hematopoietic marrow to fatty marrow. Most epiphyses and apophyses are cartilaginous at birth and become increasingly ossified [1]. Epiphyseal cartilage has intermediate signal intensity on Tl-weighted images and low signal intensity on water-sensitive images. Epiphyseal cartilage is normally hypointense along the body’s weight-bearing regions [2]. Within the epiphyseal cartilage there is no capillary network; instead, there are multiple vascular canals which contain the veins and arteries that bring nutrients to the chondrocytes [3]. These can be visible as parallel striations on neonatal sonograms, and Doppler interrogation demonstrates flow within them [4]. Following contrast administration, magnetic resonance imaging (MRI) will show the vascular canals, which become arranged in a radial pattern as the ossification centers develop [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rivas R, Shapiro, F (2002) Structural stages in the development of the long bones and epiphyses: A study in the New Zealand white rabbit. J Bone Joint Surg 84-A:85–100

    PubMed  Google Scholar 

  2. Hopkins KL, Li KC, Bergman G (1995) Gadolinium-DTPA-enhanced magnetic resonance imaging of musculoskeletal infectious processes. Skeletal Radiol 24:325–330

    Article  CAS  PubMed  Google Scholar 

  3. Jaramillo D, Villegas-Medina OL, Doty DK et al (2004) Agerelated vascular changes in the epiphysis, physis, and metaphysis: normal findings on gadolinium-enhanced MRI of piglets. AJR Am J Roentgenol 182:353–360

    PubMed  Google Scholar 

  4. Yousefzadeh DK, Doerger K, Sullivan C (2008) The blood supply of early, late, and nonossifying cartilage: preliminary gray-scale and Doppler assessment and their implications. Pediatr Radiol 38:146–158

    Article  CAS  PubMed  Google Scholar 

  5. Barnewolt CE, Shapiro F, Jaramillo D (1997) Normal gadolinium-enhanced MR images of the developing appendicular skeleton: Part I. Cartilaginous epiphysis and physis. AJR Am J Roentgenol 169:183–189

    CAS  PubMed  Google Scholar 

  6. Ecklund K, Jaramillo D (2001) Imaging of growth disturbance in children. Radiol Clin North Am 39:823–841

    Article  CAS  PubMed  Google Scholar 

  7. Chung T, Jaramillo D (1995) Normal maturing distal tibia and fibula: changes with age at MR imaging. Radiology 194:227–232

    CAS  PubMed  Google Scholar 

  8. Shapiro F (2001) Developmental Bone Biology In: Shapiro F (ed) Pediatric orthopaedic deformities. Academic Press, San Diego, pp 21–53

    Google Scholar 

  9. Nimkin K, Kleinman PK, Teeger S et al (1995) Distal humeral physeal injuries in child abuse: MR imaging and ultrasonography findings. Pediatr Radiol 25:562–565

    Article  CAS  PubMed  Google Scholar 

  10. Jaramillo D, Kämmen BF, Shapiro F (2000) Cartilaginous path of physeal fracture-separations: evaluation with MR imaging — an experimental study with histologic correlation in rabbits. Radiology 215:504–511

    CAS  PubMed  Google Scholar 

  11. Laor T, Chun GF, Dardzinski BJ et al (2002) Posterior distal femoral and proximal tibial metaphyseal stripes at MR imaging in children and young adults. Radiology 224:669–674

    Article  PubMed  Google Scholar 

  12. Shapiro F, Holtrop ME, Glimcher MJ (1977) Organization and cellular biology of the perichondrial ossification groove of Ranvier: a morphological study in rabbits. J Bone Joint Surg 59:703–723

    CAS  PubMed  Google Scholar 

  13. Kleinman PK, Marks SC Jr (1995) Relationship of the subperiosteal bone collar to metaphyseal lesions in abused infants. J Bone Joint Surg 77:1471–1476

    CAS  PubMed  Google Scholar 

  14. Vogler JB, 3rd, Murphy WA (1988) Bone marrow imaging. Radiology 168:679–693

    PubMed  Google Scholar 

  15. Meyer JS, Siegel MJ, Farooqui SO et al (2005) Which MRI sequence of the spine best reveals bone-marrow metastases of neuroblastoma? Pediatr Radiol 35:778–785

    Article  PubMed  Google Scholar 

  16. Ogden J (1991) The uniqueness of growing bones. In: CA Rockwood J, Wilkins K, King R (eds) Fractures in children. JB Lippincott, Philadelphia, pp 50–51

    Google Scholar 

  17. Laor T, Jaramillo D, Oestreich AE (1998) Musculoskeletal system. In: Kirks DR, Griscom NT (eds) Practical pediatric imaging: diagnostic radiology of infants and children. Lippincott-Raven, Philadelphia, pp 327–510

    Google Scholar 

  18. Kim HK, Laor T, Shire NJ et al (2008) Anterior and posterior cruciate ligaments at different patient ages: MR imaging findings. Radiology 247:826–835

    Article  PubMed  Google Scholar 

  19. Clark CR, Ogden JA (1983) Development of the menisci of the human knee joint. Morphological changes and their potential role in childhood meniscal injury J Bone Joint Surg [Am] 65:538–547

    CAS  Google Scholar 

  20. Major NM, Beard LN Jr, Helms CA (2003) Accuracy of MR imaging of the knee in adolescents. AJR Am J Roentgenol 180:17–19

    PubMed  Google Scholar 

  21. Caffey J, Madell SH, Royer C, Morales P (1958) Ossification of the distal femoral epiphysis. J Bone Joint Surg 40-A:647–654

    PubMed  Google Scholar 

  22. Nawata K, Teshima R, Morio Y, Hagino H (1999) Anomalies of ossification in the posterolateral femoral condyle: assessment by MRI. Pediatr Radiol 29:781–784

    Article  CAS  PubMed  Google Scholar 

  23. Ogden JA, Southwick WO (1976) Osgood-Schlatter’s disease and tibial tuberosity development. Clin Orthop Rel Res 116:180–189

    Google Scholar 

  24. Cassas KJ, Cassettari-Wayhs A (2006) Childhood and adolescent sports-related overuse injuries. American family physician 73:1014–1022

    PubMed  Google Scholar 

  25. Brown SD, Kasser JR, Zurakowski D, Jaramillo D (2004) Analysis of 51 tibial triplane fractures using CT with multiplanar reconstruction. AJR Am J Roentgenol 183:1489–1495

    PubMed  Google Scholar 

  26. Blickman JG, Wilkinson RH, Graef JW (1986) The radiologic “lead band” revisited. AJR Am J Roentgenol 146:245–247

    CAS  PubMed  Google Scholar 

  27. Ogden J (1990) Injury to the growth mechanisms. In: Ogden J (ed) Skeletal injury in the child. Saunders, Philadelphia, pp 97–174

    Google Scholar 

  28. Laor T, Jaramillo D (2009) MR imaging insights into skeletal maturation: what is normal? Radiology 250:28–38

    Article  PubMed  Google Scholar 

  29. Poznanski AK (1978) Annual oration. Diagnostic clues in the growing ends of bone. J Can Assoc Radiol 29:7–21

    CAS  PubMed  Google Scholar 

  30. Kan JH, Kleinman PK (2007) Pediatric and adolescent musculoskeletal MRI: a case based approach. Springer, Berlin Hei-delberg New York

    Google Scholar 

  31. Medina LS, Crone K, Kuntz KM (2001) Newborns with suspected occult spinal dysraphism: a cost-effectiveness analysis of diagnostic strategies. Pediatrics 108:E101

    Article  CAS  PubMed  Google Scholar 

  32. Kleinman PK (2002) A regional approach to osteomyelitis of the lower extremities in children. Radiol Clin North Am 40:1033–1059

    Article  PubMed  Google Scholar 

  33. Connolly SA, Connolly LP, Drubach LA et al (2007) MRI for detection of abscess in acute osteomyelitis of the pelvis in children. AJR Am J Roentgenol 189:867–872

    Article  PubMed  Google Scholar 

  34. Darge K, Jaramillo D, Siegel MJ (2008) Whole-body MRI in children: current status and future applications. Eur J Radiol 68:289–298

    Article  PubMed  Google Scholar 

  35. Samoto N, Kozuma M, Tokuhisa T, Kobayashi K (2002) Diagnosis of discoid lateral meniscus of the knee on MR imaging. Magn Reson Imaging 20:59–64

    Article  PubMed  Google Scholar 

  36. Samoto N, Kozuma M, Tokuhisa T, Kobayashi K (2006) Diagnosis of the “large medial meniscus” of the knee on MR imaging. Magn Reson Imaging 24:1157–1165

    Article  PubMed  Google Scholar 

  37. Oeppen RS, Jaramillo D (2003) Sports injuries in the young athlete. Top Magn Reson Imaging 14:199–208

    Article  PubMed  Google Scholar 

  38. Laor T, Wall EJ, Vu LP (2006) Physeal widening in the knee due to stress injury in child athletes. AJR Am J Roentgenol 186:1260–1264

    Article  PubMed  Google Scholar 

  39. Kijowski R, Blankenbaker DG, Shinki K, Fine JP, Graf BK, De Smet AA (2008) Juvenile versus adult osteochondritis dissecans of the knee: appropriate MR imaging criteria for instability. Radiology 248:571–578

    Article  PubMed  Google Scholar 

  40. Lamer S, Dorgeret S, Khairouni A et al (2002) Femoral head vascularisation in Legg-Calvé-Perthes disease: comparison of dynamic gadolinium-enhanced subtraction MRI with bone scintigraphy. Pediatr Radiol 32:580–585

    Article  PubMed  Google Scholar 

  41. de Sanctis N, Rega AN, Rondinella F (2000) Prognostic evaluation of Legg-Calvé-Perthes disease by MRI. Part I: the role of physeal involvement. J Pediatr 20:455–462

    Google Scholar 

  42. de Sanctis N, Rondinella F (2000) Prognostic evaluation of Legg-Calvé-Perthes disease by MRI. Part II: pathomorphogenesis and new classification. J Pediatr Orthop 20:463–470

    Article  PubMed  Google Scholar 

  43. Jaramillo D, Villegas-Medina OL, Doty DK et al (1996) Gadolinium-enhanced MR imaging demonstrates abductioncaused hip ischemia and its reversal in piglets. AJR Am J Roentgenol 166:879–887

    CAS  PubMed  Google Scholar 

  44. Tiderius C, Jaramillo D, Connolly S et al (2009) Post-closed reduction perfusion magnetic resonance imaging as a predictor of avascular necrosis in developmental hip dysplasia: a preliminary report. J Pediatr Orthop 29:14–20

    PubMed  Google Scholar 

  45. Onikul E, Fletcher BD, Parham DM, Chen G (1996) Accuracy of MR imaging for estimating intraosseous extent of osteosarcoma. AJR Am J Roentgenol 167:1211–1215

    CAS  PubMed  Google Scholar 

  46. Reddick WE, Taylor JS, Fletcher BD (1999) Dynamic MR imaging (DEMRI) of microcirculation in bone sarcoma. J Magn Reson Imaging 10:277–285

    Article  CAS  PubMed  Google Scholar 

  47. Doria AS, Kiss MH, Lotito AP et al (2001) Juvenile rheumatoid arthritis of the knee: evaluation with contrast-enhanced color Doppler ultrasound. Pediatr Radiol 31:524–531

    Article  CAS  PubMed  Google Scholar 

  48. Doria AS, Noseworthy M, Oakden W et al (2006) Dynamic contrast-enhanced MRI quantification of synovium microcirculation in experimental arthritis. AJR Am J Roentgenol 186:1165–1171

    Article  PubMed  Google Scholar 

  49. Waters PM, Smith GR, Jaramillo D (1998) Glenohumeral deformity secondarv to brachial plexus birth palsy. J Bone Joint Surg 80:668–677

    CAS  PubMed  Google Scholar 

  50. Tomczak RJ, Guenther KP, Rieber A et al (1997) MR imaging measurement of the femoral antetorsional angle as a new technique: comparison with CT in children and adults. AJR Am J Roentgenol 168:791–794

    CAS  PubMed  Google Scholar 

  51. Karol LA (1997) Rotational deformities in the lower extremities. Current Opiii Pediatr 9:77–80

    Article  CAS  Google Scholar 

  52. Boubaker A, Bischof Delaloye A (2008) MIBG scintigraphy for the diagnosis and follow-up of children with neuroblastoma. Q J Nucl Med Mol Imaging 52:388–402

    CAS  PubMed  Google Scholar 

  53. Bleeker-Rovers CP, Vos FJ, Corstens FH, Oyen WJ (2008) Imaging of infectious diseases using [18F] fluorodeoxyglucose PET. Q J Nucl Med Mol Imaging 52:17–29

    CAS  PubMed  Google Scholar 

  54. Bleeker-Rovers CP, Vos FJ, de Kleijn EM et al (2007) A prospective multi center study on fever of unknown origin: the yield of a structured diagnostic protocol. Medicine 86:26–38

    Article  PubMed  Google Scholar 

  55. Drubach LA, Sapp MV, Laffin S et al (2008) Fluorine-18 NaF PET imaging of child abuse. Pediatr Radiol 38:776–779

    Article  PubMed  Google Scholar 

  56. Rosendahl K, Markestad T, Lie RT (1996) Developmental dysplasia of the hip prevalence based on ultrasound diagnosis. Pediatr Radiol 26:635–639

    Article  CAS  PubMed  Google Scholar 

  57. Terjesen T (1998) Ultrasonography for evaluation of hip dysplasia. Methods and policy in neonates, infants, and older children. Acta Orthop Scand 69:653–662

    Article  CAS  PubMed  Google Scholar 

  58. Strouse PJ, DiPietro MA, Adler RS (1998) Pediatric hip effusions: evaluation with power Doppler sonography. Radiology 206:731–735

    CAS  PubMed  Google Scholar 

  59. Kocher MS, DiCanzio J, Zurakowski D, Micheli LJ (2001) Diagnostic performance of clinical examination and selective magnetic resonance imaging in the evaluation of intraarticular knee disorders in children and adolescents. Am J Sports Med 29:292–296

    CAS  PubMed  Google Scholar 

  60. Doria AS, Guarniero R, Molnar LJ et al (2000) Threedimensional (3D) contrast-enhanced power Doppler imaging in Legg-Calvé-Perthes disease. Pediatr Radiol 30:871–874

    Article  CAS  PubMed  Google Scholar 

  61. Chapman VM, Kalra M, Halpern E et al (2005) 16-MDCT of the posttraumatic pediatric elbow: optimum parameters and associated radiation dose. AJR Am J Roentgenol 185:516–521

    PubMed  Google Scholar 

  62. Gekeler J (2007) Radiology of adolescent slipped capital femoral epiphysis: measurement of epiphyseal angles and diagnosis. Operative Orthopädie und Traumatologie 19:329–344

    Article  PubMed  Google Scholar 

  63. Eggli KD, King SH, Boal DK, Quiogue T (1994) Low-dose CT of developmental dysplasia of the hip after reduction: diagnostic accuracy and dosimetry. AJR Am J Roentgenol 163:1441–1443

    CAS  PubMed  Google Scholar 

  64. Newman JS, Newberg AH (2000) Congenital tarsal coalition: multimodality evaluation with emphasis on CT and MR imaging. Radiographics 20:321–332; quiz 526–327, 532

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Italia

About this chapter

Cite this chapter

Jaramillo, D., Kleinman, P.K. (2009). Special Aspects of Musculoskeletal Imaging in Children. In: Hodler, J., Zollikofer, C.L., Von Schulthess, G.K. (eds) Musculoskeletal Diseases 2009–2012. Springer, Milano. https://doi.org/10.1007/978-88-470-1378-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1378-0_26

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1377-3

  • Online ISBN: 978-88-470-1378-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics