Disorders of Bone Marrow

  • Apostolos H. Karantanas
  • David M. Panicek


Bone marrow is one of the largest organs in the body, after the osseous skeleton, skin, and body fat, and is present on nearly every magnetic resonance image obtained of the human body. Hematopoietic (red) marrow is present throughout the entire skeleton at birth, but over the ensuing two decades of life different regions of hematopoietic marrow convert to fatty (yellow) marrow. This conversion begins in the periphery of the skeleton and then symmetrically extends into the central skeleton (Fig. 1a). An additional, superimposed sequence of marrow conversion occurs in the long bones, starting in the diaphyses and progressing towards the metaphyses (particularly the distal metaphysis) (Fig. 1b). In the second decade of life, marrow in the long bones becomes predominantly fatty, except in the proximal metaphyses. In the late third decade, the marrow distribution reaches its mature state, with hematopoietic marrow occupying the axial skeleton (skull, spine, sternum, clavicles, scapulas, pelvis) as well as the proximal metaphyses of the humeri and femurs; later in life, even those regions gradually convert to fatty marrow.
Fig. 1a.

Bone marrow conversion patterns. a The conversion of hematopoietic marrow at birth to fatty marrow occurs overall from the peripheral to the axial skeleton (arrows).

Fig. 1b.

Bone marrow conversion patterns. b In long bones, hematopoietic marrow first converts to yellow in the diaphysis, then proceeds to the metaphysis (double-headed arrows). During times of increased requirement for hematopoiesis, both sequences proceed in the opposite directions to reconvert fatty marrow to hematopoietic marrow. Bone scans are used here to demonstrate the directions of marrow changes


Bone Marrow Edema Insufficiency Fracture Reflex Sympathetic Dystrophy Bone Bruise Fatty Marrow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Suggested Reading

  1. Drakonaki EE, Maris TG, Papadakis A, Karantanas AH (2007) Bone marrow changes in beta-thalassemia major: quantitative MR imaging findings and correlation with iron stores. Eur Radiol 17:2079–2087CrossRefPubMedGoogle Scholar
  2. Durie BGM (2006) The role of anatomic and functional staging in myeloma: description of Durie/Salmon plus staging system. Eur J Cancer 42:1539–1543CrossRefPubMedGoogle Scholar
  3. Hartman RP, Sundaram M, Okuno SH, Sim FH (2004) Effect of granulocyte-stimulating factors on marrow of adult patients with musculoskeletal malignancies: incidence and MRI findings. AJR Am J Roentgenol 183:645–653PubMedGoogle Scholar
  4. Hwang S, Lefkowitz R, Landa J et al (2008) Local changes in bone marrow at MRI after treatment of extremity soft tissue sarcoma. Skeletal Radiol 38(1):11–19CrossRefPubMedGoogle Scholar
  5. Hwang S, Panicek DM (2007) Magnetic resonance imaging of bone marrow in oncology, Part 1. Skeletal Radiol 36:913–920CrossRefPubMedGoogle Scholar
  6. Hwang S, Panicek DM (2007) Magnetic resonance imaging of bone marrow in oncology, Part 2. Skeletal Radiol 36:1017–1027CrossRefPubMedGoogle Scholar
  7. Iida S, Harada Y, Shimizu K et al (2000) Correlation between bone marrow edema and collapse of the femoral head in steroid-induced osteonecrosis. AJR Am J Roentgenol 174:735–743PubMedGoogle Scholar
  8. Ito H, Matsuno T, Minami A (2006) Relationship between bone marrow edema and development of symptoms in patients with osteonecrosis of the femoral head. AJR Am J Roentgenol 186:1761–1770CrossRefPubMedGoogle Scholar
  9. James SL, Hughes RJ, Ali KE, Saifuddin A (2006) MRI of bone marrow oedema associated with focal bone lesions. Clin Radiol 61:1003–1009CrossRefPubMedGoogle Scholar
  10. James SL, Panicek DM, Davies AM (2008) Bone marrow oedema associated with benign and malignant bone tumours. Eur J Radiol 67:11–21CrossRefPubMedGoogle Scholar
  11. Karantanas AH (2007) Acute bone marrow edema of the hip: role of MR imaging. Eur Radiol 17:2225–2236CrossRefPubMedGoogle Scholar
  12. Karantanas AH, Drakonaki E, Karachalios T et al (2008) Acute non-traumatic marrow edema syndrome in the knee: MRI findings at presentation, correlation with spinal DEXA and outcome. Eur J Radiol 67:22–33CrossRefPubMedGoogle Scholar
  13. Karantanas AH, Nikolakopoulos I, Korompilias AV et al (2008) Regional migratory osteoporosis in the knee: MRI findings in 22 patients and review of the literature. Eur J Radiol 67:34–41CrossRefPubMedGoogle Scholar
  14. Karchevsky M, Babb JS, Schweitzer ME (2008) Can diffusion-weighted imaging be used to differentiate benign from pathologic fractures? A meta-analysis. Skeletal Radiol 37:791–795CrossRefPubMedGoogle Scholar
  15. Kijowski R, Stanton O, Fine J, De Smet A (2006) Subchondral bone marrow edema in patients with degeneration of the articular cartilage of the knee joint. Radiology 238:943–949CrossRefPubMedGoogle Scholar
  16. Korompilias AV, Karantanas AH, Lykissas MG, Beris AE (2008) Transient osteoporosis. J Am Acad Orthop Surg 16:480–489PubMedGoogle Scholar
  17. Maas M, van Kuijk C, Stoker J et al (2003) Quantification of bone involvement in Gaucher disease: MR imaging bone marrow burden score as an alternative to Dixon quantitative chemical shift MR imaging — initial experience. Radiology 229:554–561CrossRefPubMedGoogle Scholar
  18. Malizos KN, Karantanas AH, Varitimidis SE et al (2007) Osteonecrosis of the femoral head: etiology, imaging and treatment. Eur J Radiol 63:16–28CrossRefPubMedGoogle Scholar
  19. Malizos KN, Zibis AH, Dailiana Z et al (2004) MR imaging findings in transient osteoporosis of the hip. Eur J Radiol 50:238–244CrossRefPubMedGoogle Scholar
  20. Mirowitz SA, Apicella P, Reinus WR, Hammerman AM (1994) MR imaging of bone marrow lesions: relative conspicuousness on T1-weighted, fat-suppressed T2-weighted, and STIR images. AJR Am J Roentgenol 162:215–221PubMedGoogle Scholar
  21. Montazel J-L, Divine M, Lepage E et al (2003) Normal spinal bone marrow in adults: dynamic gadolinium-enhanced MR imaging. Radiology 229:703–709CrossRefPubMedGoogle Scholar
  22. Moulopoulos LA, Dimopoulos MA (1997) Magnetic resonance imaging of the bone marrow in hematologic malignancies. Blood 90:2127–2147PubMedGoogle Scholar
  23. Mulligan ME, Badros AZ (2007) PET/CT and MR imaging in myeloma. Skeletal Radiol 36:5–16CrossRefPubMedGoogle Scholar
  24. Palmer WE, Levine SM, Dupuy DE (1997) Knee and shoulder fractures: association of fracture detection and marrow edema on MR images with mechanism of injury. Radiology 204:395–399PubMedGoogle Scholar
  25. Rahmouni A, Montazel J-L, Divine M et al (2003) Bone marrow with diffuse tumor infiltration in patients with lymphoproliferative diseases: dynamic gadolinium-enhanced MR imaging. Radiology 229:710–717CrossRefPubMedGoogle Scholar
  26. Ruzal-Shapiro C, Berdon WE, Cohen MD, Abramson SJ (1991) MR imaging of diffuse bone marrow replacement in pediatric patients with cancer. Radiology 181:587–589PubMedGoogle Scholar
  27. Schweitzer ME, Levine C, Mitchell DG et al (1993) Bull’s-eyes and halos: useful MR discriminators of osseous metastases. Radiology 188:249–252PubMedGoogle Scholar
  28. Schweitzer ME, White L (1996) Does altered biomechanics cause marrow edema? Radiology 198:851–853PubMedGoogle Scholar
  29. Sheah K, Ouellette HA, Torriani M et al (2008) Metastatic myxoid liposarcomas: imaging and histopathologic findings. Skeletal Radiol 37:251–258CrossRefPubMedGoogle Scholar
  30. Simpfendorfer CS, Ilaslan H, Davies AM et al (2008) Does the presence of focal normal marrow fat signal within a tumor on MRI exclude malignancy? An analysis of 184 histologically proven tumors of the pelvic and appendicular skeleton. Skeletal Radiol 37:797–804CrossRefPubMedGoogle Scholar
  31. Vanel D, Bittoun J, Tardivon A (1998) MRI of bone metastases. Eur Radiol 8:1345–1351CrossRefPubMedGoogle Scholar
  32. Yamamoto T, Bullough PG (2000) Spontaneous osteonecrosis of the knee: the result of subchondral insufficiency fracture. J Bone Joint Surg Am 82A:858–866Google Scholar

Copyright information

© Springer-Verlag Italia 2009

Authors and Affiliations

  • Apostolos H. Karantanas
    • 1
  • David M. Panicek
    • 2
  1. 1.Department of RadiologyUniversity HospitalHeraklionGreece
  2. 2.Department of RadiologyMemorial Sloan-Kettering Cancer CenterNew YorkUSA

Personalised recommendations