Skip to main content

Osteoporosi e sport

  • Chapter
  • 826 Accesses

Riassunto

I rapporti tra attività sportiva e osteoporosi non sono scontati sia in senso positivo che negativo. L’uso di intense contrazioni muscolari di alcuni tipi di sport da un lato dovrebbe stimolare l’osso a incrementare la resistenza lungo le linee di forza, come dimostrerebbero i valori di densità ossea nei sollevatori di peso, ma carichi ripetuti e troppo frequenti possono in altri sport determinare fratture da stress, che sottintendono come la densità ossea non sia consona alle necessità richieste da una certa attività e cioè che non si siano sviluppati i meccanismi di adattamento che ci si aspetterebbe. Inoltre, talune attività richiedono un peso corporeo minimo ottenibile solo con una dieta rigorosa, che talvolta determina nei soggetti giovani di sesso femminile modificazioni ormonali con amenorrea secondaria e riduzione della densità ossea.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. Conroy BP, Earle RW (1994) Bone, muscle and connective tissue adaptations to physical activity. In: Baechle TR (ed) Essentials of strength training and conditioning. Human Kinetics, Champaign (IL), pp 51–66

    Google Scholar 

  2. Layne JE, Nelson ME (1999) The effects of progressive resistance training on bone density: a review. Med Sci Sport Exerc 31:25–30

    Article  CAS  Google Scholar 

  3. Hamdy RC, Andersson JS, Whalen KE, Harvill LM (1994) Regional differences in bone densit of young men involved in different exercises. Med Sci Sports Exerc 26:884–888

    CAS  PubMed  Google Scholar 

  4. Bailey D, McKay H, Mirwald RL (1999) A six year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the University of Sackatchewan Bone Mineral Acrual Study. J Bone Miner Res 14:1672–1679

    Article  CAS  PubMed  Google Scholar 

  5. Kannus P, Haapasalo H, Sankelo M (1995) Effects of starting age of physical activity on bone mass in the dominant arm of tennis and squash players. Ann Intern Med 123:27–31

    CAS  PubMed  Google Scholar 

  6. Bassey E, Ramsdale SJ (1994) Increase in a femoral bone density in young women following high-impact exercise. Osteoporosis Int 4: 72–75

    Article  CAS  Google Scholar 

  7. Bass SI (2000) The prepubertal years. A uniquely opportune stage of growth when the skeleton in most responsive to exercise. Sports Med 30:73–78

    Article  CAS  PubMed  Google Scholar 

  8. Kontulainen S, Kannus P, Haapasalo H et al (1999) Changes in bone mineral content with decreased training in competitive young adult tennis players and controls: a prospective 4-yr follow-up. Med Sci Sports Exerc 31:646–652

    Article  CAS  PubMed  Google Scholar 

  9. Stewart AD, Hannan J (2000) Total and regional bone density in male runners, cyclists and controls. Med Sci Sports Exerc 32:1373–1377

    Article  CAS  PubMed  Google Scholar 

  10. Khan KM, Green RM, Saul A (1996) Retaired elite female ballet dancers and nonathletic controls have similar bone mineral density at weightbearing sites. J Bone Mineral Res 11:1566–1574

    Article  CAS  Google Scholar 

  11. Slemenda CW, Reister TK, Hui SL (1994) Influence of skeletal mineralization in children and adolescents: evidence for varying effects of sexual maturation and physical activity. J Pediatr 125:201–207

    Article  CAS  PubMed  Google Scholar 

  12. Dyson K, Blimkie CJR, Davidson S (1997) Gymnastic training and bone density in preadolescent female. Med Sci Sport Exerc 29:443–450

    CAS  Google Scholar 

  13. Bradney M, Pearce G, Naughton G (1998) Differing effects of moderate exercise on bone mass, size and volumetric density in pre-pubertal boys. J Bone Miner Res 13:1814–1821

    Article  CAS  PubMed  Google Scholar 

  14. McKay H, Petit MA, Shultz RW (2000) Augmented trochanteric bone mineral density after modification physical education classs: a randomised school-based exercise intervention study in prepubescent and early pubescent children. J Pediatr 136:156–162

    Article  CAS  PubMed  Google Scholar 

  15. Wyss V, Gandini G, Levi AC et al (1989) Influenza del lavoro muscolare intenso e protratto sullo sviluppo di segmenti scheletrici del giovane. Med Sport 42:25–31

    Google Scholar 

  16. Bass S, Pearce G, Bradney M (1998) Exercise before puberty may confer residual benefit in bone density in adulthood: astudies n active prebuberal and retired female gymnasts. J Bone Miner Res 13:500–507

    Article  CAS  PubMed  Google Scholar 

  17. Tothill PA, Avenell Reid DM (1994) Precision and accuracy of measurement of whole-body bone mineral: comparison between Hologic, Lunar, and Norland dual-energy X-ray absorptiometres. Br J Radiol 67:1210–1219

    Article  CAS  PubMed  Google Scholar 

  18. Wolman RL (1994) ABC of sports medicine. Osteoporosis and exercise. BMJ 309:400–403

    CAS  PubMed  Google Scholar 

  19. Smith R, Ruthenford OM (1993) Spine and total body bone mineral density an serum testosterone levels in male athletes. Eur J Appl Physiol 67:330–334

    Article  CAS  Google Scholar 

  20. Choquet J (1980) Comment perfectionner votre tennis. Ed Amphora, Paris, pp 41–45

    Google Scholar 

  21. Sowers M et al (1992) Joint influence of fat and lean body composition compartments on femoral bone mineral density in premenopausal women. Am J Epidemiol 136:257–265

    CAS  PubMed  Google Scholar 

  22. Aloia J, Ross P, Cohn P (1991) Relationship of menopause of skeletal and muscle mass. Am J Clin Nutr 53:1378–1385

    CAS  PubMed  Google Scholar 

  23. Heinonen A, Kannus P, Sievanen H et al (1996) Randomised controlled trial of effect of high-impact exercise on selected risk factor osteoporotic fractures. Lancet 348:1326–1327

    Article  Google Scholar 

  24. Vanderhoeck K, Coupland D, Parkouse W (2000) Effect of 32 weeks of resistance training on strength and balance in older osteopenic/osteoporotic women. Clin Exerc Physiol 2:77–83

    Google Scholar 

  25. Marcus R (1996) Skeletal impact of exercise. Lancet 348:1343–1347

    Article  Google Scholar 

  26. Wolff I, van Croonenborg JJ, Kemper HC, Kostense PJ, Twisk JW (1999) The effect of exercise training programs on bone mass: a meta-analysis of published controlled trials in pre-and postmenopausal women. Osteoporos Int 9:1–12

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Italia

About this chapter

Cite this chapter

Faletti, C., Ganzit, G.P., Stesina, G.L., Goitre, B. (2009). Osteoporosi e sport. In: Osteoporosi e malattie metaboliche dell’osso. Springer, Milano. https://doi.org/10.1007/978-88-470-1357-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1357-5_5

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1356-8

  • Online ISBN: 978-88-470-1357-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics