Skip to main content

Riassunto

Circa il 90% della massa ossea viene accumulata entro le prime due decadi di vita soprattutto per l’effetto di fattori genetici (80%). I fattori ambientali, in particolare l’attività fisica e l’apporto dietetico di calcio, sono importanti per il raggiungimento del potenziale genetico e per l’acquisizione di un adeguato picco di massa ossea che sembra rappresentare uno dei principali fattori per la prevenzione dell’osteoporosi nell’età adulto-senile [1]. La misurazione della massa ossea durante l’età evolutiva ha quindi un ruolo fondamentale per identificare i soggetti che potrebbero essere esposti a un aumentato rischio di fratture da osteoporosi nell’età adulta.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. Cooper C, Westlake S, Harvey N et al (2006) Review: developmental origins of osteoporotic fracture. Osteoporos Int 17:337–347

    Article  PubMed  Google Scholar 

  2. Baroncelli GI, Bertelloni S, Sodini F, Saggese G (2005) Osteoporosis in children and adolescents: etiology and management. Paediatr Drugs 7:295–323

    Article  PubMed  Google Scholar 

  3. Bianchi ML (2007) Osteoporosis in children and adolescents. Bone 41:486–495

    Article  PubMed  Google Scholar 

  4. Njeh CF, Boivin CM, Langton CM (1997) The role of ultrasound in the assessment of osteoporosis: a review. Osteoporos Int 7:7–22

    Article  CAS  PubMed  Google Scholar 

  5. Baroncelli GI (2008) Quantitative ultrasound methods to assess bone mineral status in children: technical characteristics, performance, and clinical application. Pediatr Res 63:220–228

    Article  PubMed  Google Scholar 

  6. Baroncelli GI, Federico G, Vignolo M et al; The Phalangeal Quantitative Ultrasound Group (2006) Cross-sectional reference data for phalangeal quantitative ultrasound from early childhood to young-adulthood according to gender, age, skeletal growth, and pubertal development. Bone 39:159–173

    Article  PubMed  Google Scholar 

  7. Pedrotti L, Mora R, Bertani B et al (2007) Densitometria ossea a ultrasuoni in eta? pediatrica: creazione di un database in una popolazione italiana con densitometro multisede Omnisense. Pediatr Med Chir 29:194–201

    CAS  PubMed  Google Scholar 

  8. Mora S, Bachrach L, Gilsanz V (2003) Noninvasive techniques for bone mass measurement. In: Glorieux F, Pettifor J, Jueppner H (eds) Pediatric bone: biology and diseases. Academic Press, San Diego, California, pp 303–324

    Google Scholar 

  9. Neu CM, Manz F, Rauch F et al (2001) Bone densities and bone size at the distal radius in healthy children and adolescents: a study using peripheral quantitative computed tomography. Bone 28:227–232

    Article  CAS  PubMed  Google Scholar 

  10. Ward KA, Mughal Z, Adams JE (2007) Tools for measuring bone in children and adolescents. In: Sawyer AJ, Bachrach LK, Fung EB (eds) Bone densitometry in growing patients: guidelines for clinical practice. Humana Press, Totowa, New Jersey, pp 15–40

    Chapter  Google Scholar 

  11. Baroncelli GI, Federico G, Bertelloni S et al (2003) Assessment of bone quality by quantitative ultrasound of proximal phalanges of the hand and fracture rate in children and adolescents with bone and mineral disorders. Pediatr Res 54:125–136

    Article  PubMed  Google Scholar 

  12. Fewtrell MS; British Paediatric and Adolescents Bone Group (2003) Bone densitometry in children assessed by dual x ray absorptiometry: uses and pitfalls. Arch Dis Child 88:795–798

    Article  CAS  PubMed  Google Scholar 

  13. Lewiecki EM, Gordon CM, Baim S et al (2008) Special report on the 2007 adult and pediatric Position Development Conferences of the International Society for Clinical Densitometry. Osteoporos Int 19:1369–1378

    Article  CAS  PubMed  Google Scholar 

  14. Baroncelli GI, Saggese G (2000) Critical ages and stages of puberty in the accumulation of spinal and femoral bone mass: the validity of bone mass measurements. Horm Res 54(Suppl 1):2–8

    CAS  PubMed  Google Scholar 

  15. Carter DR, Bouxsein ML, Marcus R (1992) New approaches for interpreting projected bone densitometry data. J Bone Miner Res 7:137–145

    Article  CAS  PubMed  Google Scholar 

  16. Kroger H, Kotaniemi A, Kroger L, Alhava E (1993) Development of bone mass and bone density of the spine and femoral neck. A prospective study of 65 children and adolescents. Bone Miner 23:171–182

    Article  CAS  PubMed  Google Scholar 

  17. Mølgaard C, Thomsen BL, Prentice A et al (1997) Whole body bone mineral content in healthy children and adolescents. Arch Dis Child 76:9–15

    Article  PubMed  Google Scholar 

  18. Fewtrell MS, Gordon I, Biassoni L, Cole TJ (2005) Dual X-ray absorptiometry (DXA) of the lumbar spine in a clinical paediatric setting: does the method of size-adjustment matter? Bone 37: 413–419

    Article  CAS  PubMed  Google Scholar 

  19. Crabtree NJ, Leonard MB, Zemel BS (2007) Dual-energy X-ray absorptiometry In: Sawyer AJ, Bachrach LK, Fung EB (eds) Bone densitometry in growing patients: guidelines for clinical practice. Humana Press, Totowa, New Jersey, pp 41–57

    Chapter  Google Scholar 

  20. Cheng S, Njeh CF, Fan B et al (2002) Influence of region of interest and bone size on calcaneal BMD: implications for the accuracy of quantitative ultrasound assessments at the calcaneus. Br J Radiol 75:59–68

    CAS  PubMed  Google Scholar 

  21. Baroncelli GI, Federico G, Bertelloni S et al (2001) Bone quality assessment by quantitative ultrasound of proximal phalanxes of the hand in healthy subjects aged 3–21 years. Pediatr Res 49:713–718

    Article  CAS  PubMed  Google Scholar 

  22. Kaga M, Takahashi K, Suzuki H et al (2002) Ultrasound assessment of tibial cortical bone acquisition in Japanese children and adolescents. J Bone Miner Metab 20:111–115

    Article  PubMed  Google Scholar 

  23. Magkos F, Manios Y, Babaroutsi E, Sidossis LS (2005) Contralateral differences in quantitative ultrasound of the heel: the importance of side in clinical practice. Osteoporos Int 16:879–886

    Article  PubMed  Google Scholar 

  24. Lequin MH, van Rijn RR, Robben SG et al (1999) Evaluation of short-term precision for tibial ultrasonometry. Calcif Tissue Int 64:24–27

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Italia

About this chapter

Cite this chapter

Baroncelli, G.I., Bertelloni, S., Vierucci, F. (2009). Misurazione della massa ossea in pediatria. In: Osteoporosi e malattie metaboliche dell’osso. Springer, Milano. https://doi.org/10.1007/978-88-470-1357-5_39

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1357-5_39

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1356-8

  • Online ISBN: 978-88-470-1357-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics