Skip to main content

Riassunto

Il magnesio è il catione intracellulare più abbondante dopo il potassio. Il contenuto corporeo in un uomo di 70 kg è di circa 1750 mEq. Di questo, l’1% è extracellulare, il 31% è contenuto nelle cellule e il 67% è presente nell’osso. Nel plasma il magnesio è presente in concentrazioni variabili tra 1,8 e 3 mg/dl, per il 30% legato alle proteine (soprattutto albumina) e per il rimanente sotto forma ionizzata [1]. Il magnesio svolge un ruolo essenziale in un gran numero di reazioni cellulari per la sua capacità di legarsi con enzimi e altre strutture cellulari come le proteine, gli acidi nucleici e le lipoproteine. Poiché gran parte del magnesio all’interno delle cellule è legato all’adenosina trifosfato (ATP), variazioni della concentrazione del magnesio libero ne possono alterare i depositi e compromettere la corretta funzione cellulare. Il magnesio partecipa all’attività di oltre 300 sistemi enzimatici.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. Wester PO (1987) Magnesium. Am J Clin Nutr 45:1305–1312

    CAS  PubMed  Google Scholar 

  2. Jones JE, Manalo R, Flink EB (1967) Magnesium requirements in adults. Am J Clin Nutr 20:632–635

    CAS  PubMed  Google Scholar 

  3. Marier IR (1986) Magnesium content of the food supply in the modern-day world. Magnesium (Basel) 5:1–8

    CAS  Google Scholar 

  4. Seelig MS (1981) Magnesium requirements in human nutrition. Magnesium Bull 3:26–27

    Google Scholar 

  5. Roth P, Werner E (1979) Intestinal absorption of magnesium in man. Int J Appl Radiat Isot 30:523–526

    Article  CAS  PubMed  Google Scholar 

  6. Estep H, Shaw WA, Watlington C et al (1969) Hypocalcemia due to hypomagnesemia and reversible parathyroid hormone unresponsiveness. J Clin Endocrinol Metab 29:842–848

    Article  CAS  PubMed  Google Scholar 

  7. Harwal A, Gujral AS, Bharia R.P et al (1989) Association of hypomagnesemia with diabetic retinopathy. Acta Ophthalmol (Copenhagen) 67:714–716

    Article  Google Scholar 

  8. Shils ME (1969) Experimental production of magnesium deficiency in man. Ann N Y Acad Sci 162:847–855

    Article  CAS  PubMed  Google Scholar 

  9. Paunier L, Radde IC, Kooh SW et al (1968) Primary hypomagnesemia with secondary hypocalcemia in an infant. Pediatrics 41:385–402

    CAS  PubMed  Google Scholar 

  10. Blendea MC, Orbai P, Dragotoiu G et al (1999) Effects of parenteral pharmacological magnesium loading on insulin secretion in experimental thyrotoxicosis. Magnes Res 12:31–35

    CAS  PubMed  Google Scholar 

  11. Ejiri S, Shoda R, Sumitani T et al. (1986) Three cases of primary aldosteronism including one case with postoperative ventricular tachycardia. Hinyokika Kiyo 32:67–76

    CAS  PubMed  Google Scholar 

  12. Atarashi K, Matsuoka H, Takagi M et al (1989) Magnesium ion: a possible physiological regulator of aldosterone production. Life Sci 44:1483–1489

    Article  CAS  PubMed  Google Scholar 

  13. Laitinen K, Tahtela R, Valimaki M (1992) The dose-dependency of alcohol-induced hypoparathyroidism, hypercalciuria, and hypermagnesuria. Bone Miner 19:75–83

    Article  CAS  PubMed  Google Scholar 

  14. Lim P, Jacob E (1972) Magnesium status of alcoholic patients. Metabolism 21:1045–1051

    Article  CAS  PubMed  Google Scholar 

  15. Victor M (1973) The role of hypomagnesemia and respiratory alkalosis in the genesis of alcohol-withdrawal symptoms. Ann N Y Acad Sci 215:235–248

    Article  CAS  PubMed  Google Scholar 

  16. Cohen L, Kitzes R, Shnaider H (1985) The myth of long-term thiazide-induced magnesium deficency. Magnesium 4:176–181

    CAS  PubMed  Google Scholar 

  17. Kuller L, Farrier N, Caggiula A et al (1985) Relationship of diuretic therapy and serum magnesium levels among participants in the Multiple Risk Factor Intervention Trial. Am J Epidemiol 122:1045–1059

    CAS  PubMed  Google Scholar 

  18. Wilkinson R, Lucas GL, Heath DA et al (1986) Hypomagnesaemic tetany associated with prolonged treatment with aminoglycosides. Br Med J 292:818–819

    Article  CAS  Google Scholar 

  19. Simon DB, Karet F.E, Hamdan JM et al (1996) Bartter’s syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2C1 cotransporter NKCC2. Nat Genet 13:183–188

    Article  CAS  PubMed  Google Scholar 

  20. Simon DB, Nelson-Williams C, Bia MJ et al (1996) Gitelman’s variant of Bartter’s syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na-Cl cotransporter. Nat Genet 12:24–30

    Article  CAS  PubMed  Google Scholar 

  21. Praga M, Vara J, Gonzalez-Parra E et al (1995) Familial hypomagnesemia with hypercalciuria and nephrocalcinosis. Kidney Int 47:1419–1425

    Article  CAS  PubMed  Google Scholar 

  22. Shils ME (1969) Experimental human magnesium depletion. Medicine, Baltimore 48:61–85

    Article  CAS  Google Scholar 

  23. Chase LR, Slatopolsky E (1974) Secretion and metabolic efficacy of parathyroid hormone in patients with severe hypomagnesemia. J Clin Endocrinol Metab 38:363–371

    Article  CAS  PubMed  Google Scholar 

  24. Levi J, Massry SG, Coburn JW et al (1974) Hypocalcemia in magnesium-depleted dogs: evidence for reduced responsiveness to parathyroid hormone and relative failure of parathyroid gland function. Metabolism 23:323–335

    Article  CAS  PubMed  Google Scholar 

  25. Pak CY, Diller EC (1969) Ionic interaction with bone mineral. V. Effect of Mg2+, citrate3−, F−, and S04 negative 2 ion on the solubility, dissolution and growth of bone mineral. Calcif Tissue Res 4:69–77

    Article  CAS  PubMed  Google Scholar 

  26. Chipperfield B, Chipperfield JR (1978) Differences in metal content of the heart musle in death from ischemic heart disease. Am Heart J 95:732–737

    Article  CAS  PubMed  Google Scholar 

  27. Sangal AK, Kevwitch M, Rao DS et al (1989) Hypomagnesemia and hypertension in primary hyperparathyroidism. South Med J 82:1116–1118

    CAS  PubMed  Google Scholar 

  28. Ferdinandus J, Pederson JA, Whang R (1981) Hypermagnesemia as a cause of refractory hypotension, respiratory depression, and coma. Arch Intern Med 141:669–670

    Article  CAS  PubMed  Google Scholar 

  29. Abate MA (1981) Magnesium content of antacids (Letter). Am J Hosp Pharm 38:1662

    CAS  PubMed  Google Scholar 

  30. Contiguglia SR, Alfrey AC, Miller NL et al (1973) Nature of soft tissue calcification in uremia. Kidney Int 4:229–235

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Italia

About this chapter

Cite this chapter

Martini, G., Salvadori, S., Nuti, R. (2009). Ipomagnesiemia e ipermagnesiemia. In: Osteoporosi e malattie metaboliche dell’osso. Springer, Milano. https://doi.org/10.1007/978-88-470-1357-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1357-5_21

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1356-8

  • Online ISBN: 978-88-470-1357-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics