Skip to main content
  • 1076 Accesses

Abstract

US evaluation of the Adrenal glands requires that particular attention be paid to the scan technique, possibly involving a painstaking study to find the best approach to the orgaris. This is particularly true in the assessment of subjects who are obese and/or have intestinal gas. US is unable to explore all of the adrenal gland, nor in all cases, especially on the left, it is always able to visualize or at least rule out significant enlargement of the glands. In cases initially studied with US and persistent suspicion of hyper-plasia despite a negative US finding, work-up with CT or MR is advisable. US can also be used as an alternative to CT in the percutaneous biopsy of adrenal masses (after pharmacologic prophylaxis in the suspicion of pheochromocytoma) and also in PEI of adenomas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rüeger R (2005) Sonography of the adrenal glands. Praxis 94:343–348

    PubMed  Google Scholar 

  2. Jeffrey RB et al (1995) Sonography of the abdomen. Raven Press, New York

    Google Scholar 

  3. Mitchell IC et al (2007) Adrenal masses in the cancer patient: surveillance or excision. Oncologist 12:168–174

    PubMed  Google Scholar 

  4. Dunnick NR (1990) Adrenal imaging: current status. AJR Am J Roentgenol 154:927–936

    CAS  PubMed  Google Scholar 

  5. de Bree E et al (1998) Cysts of the adrenal gland: diagnosis and management. Int Urol Nephrol 30:369–376

    PubMed  Google Scholar 

  6. Trojan J et al (2000) Cystic adrenal lymphangioma: incidental diagnosis on abdominal sonography. AJR Am J Roentgenol 174:1164–1165

    CAS  PubMed  Google Scholar 

  7. Reznek RH et al (2004) Primary adrenal malignancy. In: Husband JE et al (eds) Imaging in oncology, II Edition. Taylor & Francis, London, 307–323

    Google Scholar 

  8. Musante F et al (1988) Myelolipoma of the adrenal gland: sonographic and CT features. AJR Am J Roentgenol 151:961–964

    CAS  PubMed  Google Scholar 

  9. Hugosson C et al (1999) Imaging of abdominal neuroblastoma in children. Acta Radiol 40:534–542

    CAS  PubMed  Google Scholar 

  10. Siegel MJ (2004) Neuroblastoma. In: Husband JE et al (eds) Imaging in oncology. II Edition. Taylor &Francis, London, 953–972

    Google Scholar 

  11. Amundson GM et al (1987) Neuroblastoma: a specific sonographic tissue pattern. AJR Am J Roentgenol 148:943–946

    CAS  PubMed  Google Scholar 

  12. Ghiatas AA et al (1996) Is sonography flow imaging useful in the differential diagnosis of adrenal masses? Br J Radiol 69:1005–1008

    CAS  PubMed  Google Scholar 

  13. O’Kane P et al (2000) The adrenals. In: Shirkhoda A (eded) Variants and pitfalls in body imaging. Lippincott Williams & Wilkins, Philadelphia, 375–390

    Google Scholar 

  14. Dewbury KC (2001) The adrenals. In: Meire H et al (eds) Abdominal and general ultrasound, II Edition. Churchill Livingstone, London, 479–495

    Google Scholar 

  15. Amendola MA (2000) The kidneys. In: Shirkhoda A (ed) Variants and pitfalls in body imaging. Lippincott Williams & Wilkins, Philadelphia, 355–374

    Google Scholar 

  16. Hélénon O et al (2001) Ultrasound of renal tumors. Eur Radiol 11:1890–1901

    PubMed  Google Scholar 

  17. Ascenti G et al (2001) Usefulness of power Doppler and contrast-enhanced sonography in the differentiation of hyperechoic renal masses. Abdom Imaging 26:654–660

    CAS  PubMed  Google Scholar 

  18. Jamis-Dow CA et al (1996) Small (≤3-cm) renal masses: detection with CT versus US and pathologic correlation. Radiology 198:785–788

    CAS  PubMed  Google Scholar 

  19. Setola SV et al (2007) Contrast-enhanced sonography of the kidney. Abdom Imaging 32:21–28

    CAS  PubMed  Google Scholar 

  20. Bosniak MA et al (1995) Small renal parenchymal neoplasms: further observations on growth. Radiology 197:589–597

    CAS  PubMed  Google Scholar 

  21. Curry NS (2002) Imaging the small solid renal mass. Abdom Imaging 27:629–636

    CAS  PubMed  Google Scholar 

  22. Caskey CI (2000) Ultrasound techniques for evaluating renal masses, renal obstruction, and other upper tract pathology. Ultrasound Q 16:23–39

    Google Scholar 

  23. Webb JAW (2001) Renal masses and trauma. In: Meire H et al (eds) Abdominal and general ultrasound. II Edition. Churchill Livingstone, London, 549–568

    Google Scholar 

  24. Jinzaki M et al (1997) Small solid renal lesions: usefulness of power Doppler US. Radiology 209:549–550

    Google Scholar 

  25. Quaia E et al (2003) Characterization of renal tumours with pulse inversion harmonic imaging by intermittent high mechanical index technique: initial results. Eur Radiol 13:1402–1412

    PubMed  Google Scholar 

  26. Lemaitre L et al (1995) Renal angiomyolipoma: growth followed up with CT and /or US. Radiology 197:598–602

    CAS  PubMed  Google Scholar 

  27. Zhang J et al (2006) Imaging of kidney cancer. Radiol Clin North Am 45:119–147

    Google Scholar 

  28. Jewett MA et al (2008) Renal tumor natural history: the rationale and role for active surveillance. Urol Clin North Am 35:627–634

    PubMed  Google Scholar 

  29. Siow WY et al (2000) Renal cell carcinoma: incidental detection and pathological staging. J R Coll Surg Edinb 45:291–295

    CAS  PubMed  Google Scholar 

  30. Snyder ME et al (2006) Incindence of benign lesions for clinically renal masses smaller than 7 cm in radiological diameter: influence of sex? J Urol 176:2391–2396

    PubMed  Google Scholar 

  31. Wittekind CH et al (2005) TNM atlas. Springer-Verlag Berlin

    Google Scholar 

  32. Robson CJ et al (1969) The results of radical nephrectomy for renal cell carcinoma. J Urol 101:297–301

    CAS  PubMed  Google Scholar 

  33. Ascenti G et al (2004) Contrast-enhanced second-harmonic sonography in the detection of pseudocapsule in renal cell carinoma. AJR Am J Roentgenol 182:1525–1530

    PubMed  Google Scholar 

  34. Li G et al (2004) Characteristics of imaging-detected solid renal masses: implication for optimal treatment. Int J Urol 11:63–67

    PubMed  Google Scholar 

  35. Raj GV et al (2007) Predicting the histology of renal masses using preoperative Doppler ultrasonography. J Urol 177:53–58

    PubMed  Google Scholar 

  36. Tamai H et al (2005) Contrast-enhanced ultrasonography in the diagnosis of solid renal tumors. J Ultrasound Med 24:1635–1640

    PubMed  Google Scholar 

  37. Hora M et al (2004) Rupture of papillary renal cell carcinoma. Scand J Urol Nephrol 38:481–484

    PubMed  Google Scholar 

  38. Habboub HK et al (1997) Accuracy of color Doppler sonography in assessing venous thrombus extension in renal cell carcinoma. AJR Am J Roentgenol 168:267–271

    CAS  PubMed  Google Scholar 

  39. Kallman DA et al (1992) Renal vein and inferior vena cava tumor thrombus in renal cell carcinoma: CT, US, MRI and venacavography. J Comput Assist Tomogr 16:240–247

    CAS  PubMed  Google Scholar 

  40. Seong CK et al (2002) Hypoechoic normal renal sinus and renal pelvis tumors. Sonographic differentiation. J Ultrasound Med 21:993–999

    PubMed  Google Scholar 

  41. Duncan AW et al (1996) Cysts within septa: an ultrasound feature distinguishing neoplastic from non-neoplastic renal lesions in children? Pediatr Radiol 26:315–317

    CAS  PubMed  Google Scholar 

  42. Williams H et al (2004) Wilms’ tumor and associated neoplasms of the kidney. In: Husband JE et al (eds) Imaging in oncology, II Edition. Taylor & Francis, London, 933–952

    Google Scholar 

  43. Reznek RH et al (2004) Lymphoma. In: Husband JE et al (eds) Imaging in oncology, H Edition. Taylor & Francis, London, 817–874

    Google Scholar 

  44. Duyndam DAC et al (2002) Bilateral perirenal lymphoma: imaging with ultrasound, CT and MRI. Clin Radiol Extra 57:1–2

    Google Scholar 

  45. Bosniak MA (1997) The use of the Bosniak classification system for renal cysts and cystic tumors. J Urol 157:1852–1853

    CAS  PubMed  Google Scholar 

  46. Robbin ML et al (2003) Renal imaging with ultrasound contrast: current status. Radiol Clin North Am 41:963–978

    PubMed  Google Scholar 

  47. Kim AY et al (1999) Contrast-enhanced power Doppler sonography for the differentiation of cystic renal lesions: preliminary study. J Ultrasound Med 18:581–588

    CAS  PubMed  Google Scholar 

  48. Ascenti G et al (2007) Complex cystic renal masses: characterization with contrast-enhanced US. Radiology 243:158–165

    PubMed  Google Scholar 

  49. Quaia E et al (2008) Comparison of contrast-enhanced sonography with unenhanced sonography and contrast-enhanced CT in the diagnosis of malignancy in complex cystic renal masses. AJR Am J Roentgenol 191:1239–1249

    PubMed  Google Scholar 

  50. Derchi LE et al (2002) Ultrasound in gynecology Eur Radiol 11:2137–2155

    Google Scholar 

  51. Ascher SM et al (2002) Cancer of the adnexal organs. In: Bragg DG et al (eds) Oncologic imaging. WB Saunders Company, Philadelphia, 549–574

    Google Scholar 

  52. Jeong et al (2000) Imaging evaluation of ovarian masses. Radiographics 20:1445–1470

    CAS  PubMed  Google Scholar 

  53. Kurtz AB et al (1999) Diagnosis and staging of ovarian cancer: comparative values of Doppler and conventional US, CT, and MR imaging correlated with surgery and histopathologic analysis — report of the Radiology Diagnostic Oncology Group. Radiology 212:19–27

    CAS  PubMed  Google Scholar 

  54. Berlanda N et al (2002) Impact of a multiparameter, ultrasound-based triade on surgical management of adnexal masses. Ultrasound Obstet Gynecol 20:181–185

    CAS  PubMed  Google Scholar 

  55. Sassone AM et al (1991) Transvaginal sonographic characterization of ovarian disease: evaluation of a new scoring system to predict ovarian malignancy. Obstet Gynecol 78:70–76

    CAS  PubMed  Google Scholar 

  56. Brown DL et al (1998) Benign and malignant ovarian masses: selection of the most discriminating gray-scale and Doppler sonographic features. Radiology 208:103–110

    CAS  PubMed  Google Scholar 

  57. Marret H et al (2002) Color Doppler energy prediction of malignancy in adnexal masses using logistic regression models. Ultrasound Obstet Gynecol 20:597–604

    CAS  PubMed  Google Scholar 

  58. Guerriero S et al (2002) Complex pelvic mass as a target of evaluation of vessel distribution by color Doppler sonography for the diagnosis of adnexal malignancies. Results of a multicenter European study. J Ultrasound Med 21:1105–1111

    PubMed  Google Scholar 

  59. Wilson WD et al (2006) Sonographic quantification of ovarian tumor vascularity. J Ultrasound Med 25:1577–1581

    PubMed  Google Scholar 

  60. Hata K et al (1995) Intratumoral peak systolic velocity as a new possible predictor for detection of adnexal malignancy. Am J Obstet Gynecol 172:1496–1500

    CAS  PubMed  Google Scholar 

  61. Kurjak A et al (1992) Transvaginal ultrasound, color flow, and Doppler waveform of the postmenopausal adnexal mass. Obstet Gynecol 80:917–921

    CAS  PubMed  Google Scholar 

  62. Valentin L et al (2006) Which extrauterine pelvic masses are difficult to correctly classify as benign or malignant on the basis of ultrasound findings and is there a way of making a correct diagnosis? Ultrasound Obstet Gynecol 27:438–444

    CAS  PubMed  Google Scholar 

  63. Fleischer AC et al (2008) Contrast-enhanced transvaginal sonography of benign versus malignant ovarian masses: preliminary findings J Ultrasound Med 27:1011–1018

    PubMed  Google Scholar 

  64. Testa AC et al (2005) The use of contrasted transvaginal sonography in the diagnosis of gynecologic diseases. A preliminary study. J Ultrasound Med 24:1267–1278

    PubMed  Google Scholar 

  65. Arger PH (1996) Asymptomatic palpable adnexal masses. In: Bluth EI et al (eds) Syllabus: a special course in ultrasound. RSNA Publications, Oak Brook, 241–248

    Google Scholar 

  66. Jan KA et al (2002) Sonographic spectrum of hemorrhagic ovarian cysts. J Ultrasound Med 21:879–886

    Google Scholar 

  67. Patel MD et al (1999) Endometriomas: diagnostic performance of US. Radiology 210:739–745

    CAS  PubMed  Google Scholar 

  68. Tongsong T et al (2006) Numerous intracystic floating balls as a sonographic feature of benign cystic teratoma. Report of 5 cases. J Ultrasound Med 25:1587–1591

    PubMed  Google Scholar 

  69. Caspi B et al (2006) variable echogenicity as a sonographic sign in the preoperative diagnosis of ovarian mucinous tumors. J Ultrasound Med 25:1583–1585

    PubMed  Google Scholar 

  70. Lee MS et al (2001) Ovarian sclerosing stromal tumors. Gray scale and color-Doppler sonographic findings. J Ultrasound Med 20:413–417

    CAS  PubMed  Google Scholar 

  71. Alcázar JL et al (2003) Transvaginal gray scale and color Doppler sonography in primary ovarian cancer and metastatic tumors to the ovary. J Ultrasound Med 22:243–247

    PubMed  Google Scholar 

  72. Chen CY et al (2007) The power Doppler velocity index, pulsatility index, and resistive index can assist in making a differential diagnosis of primary ovarian carcinoma and Krukenberg tumors: a preliminary study? J Ultrasound Med 26:921–926

    PubMed  Google Scholar 

  73. Akin O et al (2006) Imaging of uterine cancer. Radiol Clin North Am 45:167–182

    Google Scholar 

  74. Boles SM et al (2002) Carcinoma of the cervix and endometrium. In: Bragg DG et al (eds) Oncologic imaging. WB Saunders Company, Philadelphia, 523–548

    Google Scholar 

  75. Kitchener H (2006) Management of endometrial carcinoma. Eur J Surg Oncol 32:838–843

    CAS  PubMed  Google Scholar 

  76. Valenzano M et al (2001) The role of transvaginal ultrasound and sonohysterography in the diagnosis and staging of endometrial adenocarcinoma. Radiol Med 101:365–370

    CAS  PubMed  Google Scholar 

  77. Epstein E et al (2002) An algorithm including results of gray-scale and power Doppler ultrasound examination to predict endometrial malignancy in women with postmenopausal bleedings. Ultrasound Obstet Gynecol 20:370–376

    CAS  PubMed  Google Scholar 

  78. Levine D et al (1995) Change in endometrial thickness in postmenopausal women undergoing hormone replacement therapy. Radiology 197:603–609

    CAS  PubMed  Google Scholar 

  79. Coleman BG (1996) Imaging women receiving tamoxifene therapy. In: Bluth EI et al (eds) Syllabus: a special course in ultrasounds. RSNA Publications, Oak Brook, 185–194

    Google Scholar 

  80. Bega G et al (2003) Three-dimensional ultrasonography in gynecology. Technical aspects and clinical applications. J Ultrasound Med 22:1249–1269

    PubMed  Google Scholar 

  81. Takacs P et al (2005) Echogenic endometrial fluid collection in postmenopausal women is a significant risk factor for disease. J Ultrasound Med 24:1477–1481

    PubMed  Google Scholar 

  82. Warming L et al (2002) Measurement precision and normal range of endometrial thickness in a postmenopausal population by transvaginal ultrasound. Ultrasound Obstet Gynecol 20:492–495

    CAS  PubMed  Google Scholar 

  83. Peri N et al (2007) Sonographic evaluation of the endometrium in patients with history or an appearance of polycystic ovarian syndrome. J Ultrasound Med 26:55–58

    PubMed  Google Scholar 

  84. Fleischer AC (2003) Color Doppler sonography of uterine disorders. Ultrasound Q 19:179–189

    PubMed  Google Scholar 

  85. Alcázar JL et al (2006) Reproducibility of endometrial vascular patterns in endometrial disease as assessed by transvaginal power Doppler sonography in women with postmenopausal bleedings. J Ultrasound Med 25:159–163

    PubMed  Google Scholar 

  86. Alcázar JL et al (2005) Endometrial volume and vascularity measurements by transvaginal three-dimensional ultrasonography in stimulated and tumoral endometria: an interobserver reproducibility study. J Ultrasound Med 24:1091–1098

    PubMed  Google Scholar 

  87. Mercé LT et al (2007) Clinical usefulness of 3-dimensional sonography and power Doppler angiography for diagnosis of endometrial carcinoma. J Ultrasound Med 26:1279–1287

    PubMed  Google Scholar 

  88. Sarna A et al (2005) Computed tomographic and ultrasonographic findings of endometrial carcinoma appearing as a fungating inguinal mass. J Ultrasound Med 24:1579–1582

    PubMed  Google Scholar 

  89. Gordon AN et al (1990) Depth of myometrial invasion in endometrial cancer: preoperative assessment by transvaginal ultrasonography. Gynecol Oncol 39:321–327

    CAS  PubMed  Google Scholar 

  90. Takac I (2007) Transvaginal ultrasonography with and without saline infusion in assessment of myometrial invasion of endometrial cancers. J Ultrasound Med 26:949–955

    PubMed  Google Scholar 

  91. Artner A et al (1994) The value of ultrasound in preoperative assessment of the myometrial and cervical invasion in endometrial carcinoma. Gynaecol Oncol 54:147–151

    CAS  Google Scholar 

  92. Del Maschio A et al (1993) Estimating the depth of myometrial involvement by endometrial carcinoma: efficacy of transvaginal sonography vs MR imaging. AJR Am J Roentgenol 161:595–538

    Google Scholar 

  93. Schmidt G (2006) Differential diagnosis in ultrasound imaging. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  94. Zhang J et al (2006) Imaging of bladder cancer. Radiol Clin North Am 45:183–205

    Google Scholar 

  95. Rickards D et al (2001) The lower urinary tract. In: Meire H et al (eds) Abdominal and general ultrasound, II Edition. Churchill Livingstone, London, 585–612

    Google Scholar 

  96. Husband JE et al (2004) Primary adrenal malignancy. In: Husband JE et al (eds) Imaging in oncology, II Edition. Taylor & Francis, London, 343–374

    Google Scholar 

  97. Balci NC et al (2002) Cancer of the adnexal organs. In: Bragg DG et al (eds) Oncologic imaging. WB Saunders Company, Philadelphia, 629–645

    Google Scholar 

  98. Francica G et al (2008) Correlation of transabdominal sonographic and cystoscopic findings in the diagnosis of focal abnormalities of the urinary bladder wall: a prospective study. J Ultrasound Med 27:887–894

    PubMed  Google Scholar 

  99. Kocakoc E et al (2008) Detection of bladder tumors with 3-dimensional sonography and virtual sonographic cystoscopy. J Ultrasound Med 27:45–53

    PubMed  Google Scholar 

  100. Özden E et al (2007) A New parameter for staging bladder carcinoma: ultrasonographic contact length and height-to-length ratio. J Ultrasound Med 26:1137–1142

    PubMed  Google Scholar 

  101. Karahan OI et al (2004) Color Doppler ultrasonography findingsof bladder tumors: correlation with stage and histopatologic grade. Acta Radiol 45:481–486

    CAS  PubMed  Google Scholar 

  102. Akin O et al (2006) Imaging of prostate cancer. Radiol Clin North Am 45:207–222

    Google Scholar 

  103. Yu et al (2002) Cancer of the prostate. In: Bragg DG et al (eds) Oncologic imaging. WB Saunders Company, Philadelphia, pp 575–602

    Google Scholar 

  104. Gleason DF (1977) The veterants administration cooperative urological research group. In: Tannenbaum M (ed) Urologic pathology: the prostate. Lea & Febiger, Philadelphia, 171–198

    Google Scholar 

  105. Turgut AT et al (2007) Power Doppler ultrasonography of the feeding arteries of the prostate gland: a novel approach to the diagnosis of prostate cancer? J Ultrasound Med 26:875–883

    PubMed  Google Scholar 

  106. Halpern EJ et al (2001) Prostate cancer: use of contrastenhanced US for detection. Radiology 219:219–225

    CAS  PubMed  Google Scholar 

  107. Yi A et al (2006) Contrast-enhanced sonography for prostate cancer detection in patients with indeterminate clinical findings. AJR Am J Roentgenol 186:1431–1435

    PubMed  Google Scholar 

  108. Pelzers A et al (2005) Prostate cancer detection in men with prostate specific antigen 4 to 10 ng/ml using a combined approach of contrast-enhanced color Doppler targeted and systematic biopsy. J Urol 173:1926–1929

    Google Scholar 

  109. Littrup PJ et al (1991) Determination of prostate volume by transrectal US for cancer screening. Part I. Comparison with prostate specific antigen assays. Radiology 178:537–542

    CAS  PubMed  Google Scholar 

  110. Veneziano S et al (1990) Correlation between prostate specific antigen and prostate volume, evaluated by transrectal ultrasonography: usefulness in diagnosis of prostate cancer. Eur Urol 18:112–116

    CAS  PubMed  Google Scholar 

  111. Clements R (2001) Ultrasound of prostate cancer. Eur Radiol 11:2119–2125

    CAS  PubMed  Google Scholar 

  112. Lan S-K et al (2007) Diagnostic performance of a random versus lesion-directed biopsy of the prostate from transrectal ultrasound. Results of a 5-year consecutive clinical study in 1 institution in south Taiwan. J Ultrasound Med 26:11–17

    PubMed  Google Scholar 

  113. Nudell DM et al (2000) Imaging for recurrent prostate cancer. Radiol Clin North Am 38:213–229

    CAS  PubMed  Google Scholar 

  114. Akin EA et al (2004) Ultrasound of the scrotum. Ultrasound Q 20:181–200

    PubMed  Google Scholar 

  115. Oyen RH (2002) Scrotal ultrasound. Eur Radiol 12:19–34

    PubMed  Google Scholar 

  116. Dogra VS et al (2003) Sonography of the scrotum. Radiology 227:18–36

    PubMed  Google Scholar 

  117. Miller FN et al (2007), Testicular calcification and microlithiasis: association with primary intra-testicular malignancy in 3,477 patients. Eur Radiol 17:363–369

    PubMed  Google Scholar 

  118. Parenti GC et al (2007) Association between testicular microlithiasis and primary malignancy of the testis: our experience and review of the literature. Radiol Med 112:588–596

    CAS  PubMed  Google Scholar 

  119. Fowler R (2001) The scrotum and penis. In: Meire H et al (eds) Abdominal and general ultrasound, II Edition. Churchill Livingstone, London, 627–658

    Google Scholar 

  120. Horstman WG et al (1992) Testicular tumors: findings with color Doppler US. Radiology 185:733–737

    CAS  PubMed  Google Scholar 

  121. Maizlin ZV et al (2004) Leydis cell tumors of the testis. Gray scale and color Doppler sonographic appearance. J Ultrasound Med 23:959–964

    PubMed  Google Scholar 

  122. Comiter CV et al (1996) Burned-out primary testicular cancer: sonographic and pathological characteristics. J Urol 156:85–88

    CAS  PubMed  Google Scholar 

  123. Patel MD et al (2007) Sonographic and magnetic resonance imaging apperance of a burned-out testicular germ cell neoplasm. J Ultrasound Med 26:143–146

    PubMed  Google Scholar 

  124. Kutlu R et al (2003) Intratesticular arteriovenous malformation. Color Doppler sonographic findings. J Ultrasound Med 22:295–298

    PubMed  Google Scholar 

  125. Sudakoff GS et al (2002) Scrotal ultrasonography with emphasis on the extratesticular space: anatomy, embryology, and pathology. Ultrasound Q 18:255–273

    PubMed  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Italia

About this chapter

Cite this chapter

(2009). The Urogenital Tract. In: Fundamentals in Oncologic Ultrasound. Springer, Milano. https://doi.org/10.1007/978-88-470-1355-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1355-1_6

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1354-4

  • Online ISBN: 978-88-470-1355-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics