Skip to main content

Grande sistema limbico

  • Chapter
Il sistema nervoso centrale

Riassunto

Nell’uomo, la maggior parte della superficie mediale degli emisferi cerebrali è occupata dalla neocortex notevolmente espansa. Comunque, su questo lato dell’encefalo, sono presenti anche numerose strutture che non sono neocorticali. Due di queste, il sistema olfattorio centrale e il setto, occupano una posizione superficiale, mentre altre due, il complesso amigdaloideo e la formazione ippocampale, sono per la maggior parte nascoste nella struttura degli emisferi. A seguito del cospicuo sviluppo della neocortex e della relativa espansione del lobo temporale, i principali sistemi efferenti del complesso amigdaloideo e della formazione dell’ippocampo risultano espansi in lunghi fasci arciformi che, rispettivamente, costituiscono la stria terminalis e il fornice (Figg. 23.123.4). Il setto, l’amigdala, la formazione ippocampale e i loro fasci efferenti costituiscono, nell’insieme, la zona più mediale dell’emisfero a forma di anello (Figg. 23.3, 23.5). Questa zona è per gran parte circoscritta da una seconda zona che, nei primati, comprende due circonvoluzioni, il giro cingolato e il giro paraippocampale (Figg. 23.1, 23.3, 23.5). Nel 1878, Broca [17] denominò questi due giri, nell’insieme, come le grand lobe limbique (‘il grande lobo limbico’). Egli fece notare di aver coniato questo termine allo scopo di definire una struttura anatomica e non un’unità funzionale. Durante gli ultimi due decenni del diciannovesimo e i primi due decenni del ventesimo secolo, in generale, è stato ritenuto che la maggior parte delle strutture comprese nel lobo limbico di Broca, se non tutte, è dominata dalle proiezioni olfattorie e, pertanto, costituisce parte del rinencefalo.

Sintesi del complesso limbicoipotalamico. Suddivisione dell’area in unità centrali e anelli. H, ipotalamo; LMA, arealimbica mesencefalica; PO), regione preottica; S, setto; anello (limbico) interne in rosso scuro; anello (paralimbico) esterno in rosso chiaro

Le principali vie del sistema limbico e del rinencefalo

La struttura dei sistemi limbico e olfattorio e alcune vie afferenti-efferenti come visibili in proiezione mediale (3/2 ×). Un certo spostamento delle strutture serve per rendere visibili altre strutture. I,e pareti del terzo ventricolo e il tronco encefalico sono stati quasi completamente omessi; del talamo sono raffigurati solo i nuclei anteriore, mediodorsale e abenulari

La parte centrale dell’area limbica; proiezione mediale dei nuclei e dei tratti (5/2 ×)

Proiezione mediale dell’eneefalo umano. Sono schematicamente indicate le posizioni di giro cingolato (G CINGULI), giro paraippocampale (GPH), setto (S), fornice + stria terminalis (f+st), ipotalamo (Hy), ippocampo (H), amigdala (A), core + paracore laterale (C+LPC) e paracore mediano (MPC)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliograffa

  1. Aicher SA, Schreihofer AM, Kraus JA et al (2001) Muopioid receptors are present in functionally identified sympathoexcitatory neurons in the rat rostral ventrolateral medulla. J Comp Neurol 433:34–47

    Article  CAS  PubMed  Google Scholar 

  2. Amaral DG, Price JL, Pitkänen A, Carmichael ST (1992) Anatomical organization of the primate amygdaloid complex. In: Aggleton JP (ed) The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction. Wiley-Liss, New York, pp 1–66

    Google Scholar 

  3. An X, Bandler R, OÅNngur D, Price JL (1998) Prefrontal cortical projections to longitudinal columns in the midbrain periaqueductal gray in macaque monkeys. J Comp Neurol 401:455–479

    Article  CAS  PubMed  Google Scholar 

  4. Aston-Jones G, Cohen JD (2005) An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci 28:403–450

    Article  CAS  PubMed  Google Scholar 

  5. Bandler R, Keay KA (1996) Columnar organization in the midbrain periaqueductal gray and the integration of emotional expression. Progr Brain Res 107:285–300

    Article  CAS  Google Scholar 

  6. Bandler R, Carrive P, Zhang SP (1991) Integration of somatic and autonomic reactions within the midbrain periaqueductal grey: viscerotopic, somatotopic and functional organization. Prog Brain Res 87:269–305

    Article  CAS  PubMed  Google Scholar 

  7. Bard P (1929) The central representation of the sympathetic nervous system as indicated by certain physiologic observations. Arch Neurol Psychiatry 22:230–246

    Google Scholar 

  8. Barrington FJF (1925) The effect of lesions of the hind-and mid-brain on micturition in the cat. Q J Exp Physiol Cogn Med 15:81–102

    Google Scholar 

  9. Baude A, Shigemoto R (1998) Cellular and subcellular distribution of substance P receptor immunoreactivity in the dorsal vagal complex of the rat and cat: a light and electron microscope study. J Comp Neurol 402:181–196

    Article  CAS  PubMed  Google Scholar 

  10. Berk ML, Finkelstein JA (1981) Afferent projections to the preoptic area and hypothalamic regions in the rat brain. Neuroscience 6:1601–1624

    Article  CAS  PubMed  Google Scholar 

  11. Bernard JF, Alden M, Besson JM (1993) The organization of the efferent projections from the pontine parabrachial area to the amygdaloid complex: a Phaseolus vulgaris leucoagglutinin (PHA-L) study in the rat. J Comp Neurol 329:201–229

    Article  CAS  PubMed  Google Scholar 

  12. Bernard JF, Bester H, Besson JM (1996) Involvement of the spino-parabrachio-amygdaloid and-hypothalamic pathways in the autonomic and affective emotional aspects of pain. Prog Brain Res 107:243–255

    Article  CAS  PubMed  Google Scholar 

  13. Blaustein JD (1992) Cytoplasmic estrogen receptors in rat brain: immunocytochemical evidence using three antibodies with distinct epitopes. Endocrinology 131:1336–1342

    Article  CAS  PubMed  Google Scholar 

  14. Blessing WW (1997) Inadequate frameworks for understanding bodily homeostasis. Trends Neurosci 20:235–239

    Article  CAS  PubMed  Google Scholar 

  15. Blok BF, Willemsen AT, Holstege G (1997) A PET study on brain control of micturition in humans. Brain 120(Pt 1):111–121

    Article  PubMed  Google Scholar 

  16. Blok BF, Sturms LM, Holstege G (1998) Brain activation during micturition in women. Brain 121(Pt 11):2033–2042

    Article  PubMed  Google Scholar 

  17. Broca P (1878) Anatomie comparée des circonvolutions cerebrales: le grand lobe limbique et la scissure dans la serie des mammiferes. Rev Anthropol (Paris) 2:285–498

    Google Scholar 

  18. Brodal A (1981) Neurological anatomy in relation to clinical medicine, 3rd edn. Oxford University Press, New York, p 1053

    Google Scholar 

  19. Buma P, Veening J, Hafmans T, Joosten H, Nieuwenhuys R (1992) Ultrastructure of the periaqueductal grey matter of the rat: an electron microscopical and horseradish peroxidase study. J Comp Neurol 319:519–535

    Article  CAS  PubMed  Google Scholar 

  20. Burstein R (1996) Somatosensory and visceral input to the hypothalamus and limbic system. Prog Brain Res 107:257–267

    Article  CAS  PubMed  Google Scholar 

  21. Canteras NS, Simerly RB, Swanson LW (1992) Projections of the ventral premamillary nucleus. J Comp Neurol 324:195–212

    Article  CAS  PubMed  Google Scholar 

  22. Carrive P, Morgan MM (2004) Periaqueductal gray. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 393–423

    Google Scholar 

  23. Castel M, Feinstein N, Cohen S, Harari N (1990) Vasopressinergic innervation of the mouse suprachiasmatic nucleus: an immuno-electron microscopic analysis. J Comp Neurol 298:172–187

    Article  CAS  PubMed  Google Scholar 

  24. Chiba T, Kayahara T, Nakano K (2001) Efferent projections of infralimbic and prelimbic areas of the medial prefrontal cortex in the Japanese monkey, Macaca fuscata. Brain Res 888:83–101

    Article  CAS  PubMed  Google Scholar 

  25. Ciriello J, Caverson MM (1984) Direct pathway from neurons in the ventrolateral medulla relaying cardiovascular afferent information to the supraoptic nucleus in the cat. Brain Res 292:221–228

    Article  CAS  PubMed  Google Scholar 

  26. Coolen LM, Allard J, Truitt WA, McKenna KE (2004) Central regulation of ejaculation. Physiol Behav 83:203–215

    CAS  PubMed  Google Scholar 

  27. Craig AD (1995) Distribution of brainstem projections from spinal lamina I neurons in the cat and the monkey. J Comp Neurol 361:225–248

    Article  CAS  PubMed  Google Scholar 

  28. Craig AD (1996) An ascending general homeostatic afferent pathway originating in lamina I. Prog Brain Res 107:225–242

    Article  CAS  PubMed  Google Scholar 

  29. Cunningham ET Jr, Sawchenko PE (2000) Dorsal medullary pathways subserving oromotor reflexes in the rat: implications for the central neural control of swallowing. J Comp Neurol 417:448–466

    Article  PubMed  Google Scholar 

  30. Dana C, Vial M, Leonard K et al (1989) Electron microscopic localization of neurotensin binding sites in the midbrain tegmentum of the rat. I. Ventral tegmental area and the interfascicular nucleus. J Neurosci 9:2247–2257

    CAS  PubMed  Google Scholar 

  31. De Wied D (1987) Neuropeptides and behavior. In: Adelman G (ed) Encyclopedia of neuroscience, vol II. Birkhäuser, Boston, pp 839–841

    Google Scholar 

  32. Dietrichs E, Haines DE (1989) Interconnections between hypothalamus and cerebellum. Anat Embryol (Berl) 179:207–220

    Article  CAS  Google Scholar 

  33. Dong HW, Swanson LW (2003) Projections from the rhomboid nucleus of the bed nuclei of the stria terminalis: implications for cerebral hemisphere regulation of ingestive behaviors. J Comp Neurol 463:434–472

    Article  PubMed  Google Scholar 

  34. Dong HW, Swanson LW (2004) Organization of axonal projections from the anterolateral area of the bed nuclei of the stria terminalis. J Comp Neurol 468:277–298

    Article  PubMed  Google Scholar 

  35. Dong HW, Swanson LW (2004) Projections from bed nuclei of the stria terminalis, posterior division: implications for cerebral hemisphere regulation of defensive and reproductive behaviors. J Comp Neurol 471:396–433

    Article  PubMed  Google Scholar 

  36. Dong HW, Swanson LW (2006) Projections from bed nuclei of the stria terminalis, anteromedial area: cerebral hemisphere integration of neuroendocrine, autonomic, and behavioral aspects of energy balance. J Comp Neurol 494:142–178

    Article  PubMed  Google Scholar 

  37. Dong HW, Swanson LW (2006) Projections from bed nuclei of the stria terminalis, dorsomedial nucleus: implications for cerebral hemisphere integration of neuroendocrine, autonomic, and drinking responses. J Comp Neurol 494:75–107

    Article  PubMed  Google Scholar 

  38. Dong HW, Swanson LW (2006) Projections from bed nuclei of the stria terminalis, magnocellular nucleus: implications for cerebral hemisphere regulation of micturition, defecation, and penile erection. J Comp Neurol 494:108–141

    Article  PubMed  Google Scholar 

  39. Fulwiler CE, Saper CB (1984) Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat. Brain Res Rev 7:229–259

    Article  Google Scholar 

  40. Garcia-Rill E (1991) The pedunculopontine nucleus. Prog Neurobiol 36:363–389

    Article  CAS  PubMed  Google Scholar 

  41. Garcia-Rill E, Kinjo N, Atsuta Y et al (1990) Posterior midbrain-induced locomotion. Brain Res Bull 24:499–508

    Article  CAS  PubMed  Google Scholar 

  42. Groenewegen HJ, Wright CI, Beijer AV (1996) The nucleus accumbens: gateway for limbic structures to reach the motor system? Prog Brain Res 107:485–511

    Article  CAS  PubMed  Google Scholar 

  43. Hage SR, Ju rgens U (2006) Localization of a vocal pattern generator in the pontine brainstem of the squirrel monkey. Eur J Neurosci 23:840–844

    Article  PubMed  Google Scholar 

  44. Hage SR, Ju rgens U (2006) On the role of the pontine brainstem in vocal pattern generation: a telemetric single-unit recording study in the squirrel monkey. J Neurosci 26:7105–7115

    Article  CAS  PubMed  Google Scholar 

  45. Herbert H, Moga MM, Saper CB (1990) Connections of the parabrachial nucleus with the nucleus of the solitary tract and the medullary reticular formation in the rat. J Comp Neurol 293:540–580

    Article  CAS  PubMed  Google Scholar 

  46. Herbert J (1993) Peptides in the limbic system: neurochemical codes for co-ordinated adaptive responses to behavioural and physiological demand. Prog Neurobiol 41:723–791

    Article  CAS  PubMed  Google Scholar 

  47. Herbert J (1997) Do we need a limbic system? Trends Neurosci 20:508–509

    Article  CAS  PubMed  Google Scholar 

  48. Hess WR (1954) Diencephalon: autonomic and extrapyramidal functions. Grune and Stratton, New York

    Google Scholar 

  49. Holstege G (1987) Some anatomical observations on the projections from the hypothalamus to brainstem and spinal cord: an HRP and autoradiographic tracing study in the cat. J Comp Neurol 260:98–126

    Article  CAS  PubMed  Google Scholar 

  50. Holstege G (1989) Anatomical study of the final common pathway for vocalization in the cat. J Comp Neurol 284:242–252

    Article  CAS  PubMed  Google Scholar 

  51. Holstege G (1991) Descending motor pathways and the spinal motor system: limbic and non-limbic components. Prog Brain Res 87:307–421

    Article  CAS  PubMed  Google Scholar 

  52. Holstege G (1992) The emotional motor system. Eur J Morphol 30:67–79

    CAS  PubMed  Google Scholar 

  53. Holstege G (1998) The emotional motor system in relation to the supraspinal control of micturition and mating behavior. Behav Brain Res 92:103–109

    Article  CAS  PubMed  Google Scholar 

  54. Holstege G, Georgiadis JR (2003) Neurobiology of cat and human sexual behavior. Int Rev Neurobiol 56:213–225

    Article  CAS  PubMed  Google Scholar 

  55. Holstege G, Graveland G, Bijker-Biemond C, Schuddeboom I (1983) Location of motoneurons innervating soft palate, pharynx and upper esophagus. Anatomical evidence for a possible swallowing center in the pontine reticular formation. An HRP and autoradiographical tracing study. Brain Behav Evol 23:47–62

    Article  CAS  PubMed  Google Scholar 

  56. Holstege G, Meiners L, Tan K (1985) Projections of the bed nucleus of the stria terminalis to the mesencephalon, pons, and medulla oblongata in the cat. Exp Brain Res 58:379–391

    Article  CAS  PubMed  Google Scholar 

  57. Holstege G, Griffiths D, De Wall H, Dalm E (1986) Anatomical and physiological observations on supraspinal control of bladder and urethral sphincter muscles in the cat. J Comp Neurol 250:449–461

    Article  CAS  PubMed  Google Scholar 

  58. Holstege G, Mouton LJ, Gerrits NM (2004) Emotional motor system. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 1306–1324

    Google Scholar 

  59. Hopkins DA, Holstege G (1978) Amygdaloid projections to the mesencephalon, pons and medulla oblongata in the cat. Exp Brain Res 32:529–548

    Article  CAS  PubMed  Google Scholar 

  60. Hosoya Y, Matsushita M (1981) Brainstem projections from the lateral hypothalamic area in the rat, as studied with autoradiography. Neurosci Lett 24:111–116

    Article  CAS  PubMed  Google Scholar 

  61. Jhamandas JH, Petrov T, Harris KH, Vu T, Krukoff TL (1996) Parabrachial nucleus projection to the amygdala in the rat: electrophysiological and anatomical observations. Brain Res Bull 39:115–126

    Article  CAS  PubMed  Google Scholar 

  62. Jia HG, Rao ZR, Shi JW (1994) An indirect projection from the nucleus of the solitary tract to the central nucleus of the amygdala via the parabrachial nucleus in the rat: a light and electron microscopic study. Brain Res 663:181–190

    Article  CAS  PubMed  Google Scholar 

  63. Jones BE, Friedman L (1983) Atlas of catecholamine perikarya, varicosities and pathways in the brainstem of the cat. J Comp Neurol 215:382–396

    Article  CAS  PubMed  Google Scholar 

  64. Ju rgens U (1974) The hypothalamus and behavioral patterns. Prog Brain Res 41:445–463

    Article  CAS  PubMed  Google Scholar 

  65. Ju rgens U, Ploog D (1970) Cerebral representation of vocalization in the squirrel monkey. Exp Brain Res 10:532–554

    Article  CAS  PubMed  Google Scholar 

  66. Klemm WR, Vertes RP (1990) Brainstem mechanisms of behavior. Wiley, New York

    Google Scholar 

  67. Klu ver H, Bucy PC (1937) Psychic blindness and other symptoms following bilateral temporal lobectomy in rhesus monkeys. Am J Physiol 119:352–353

    Google Scholar 

  68. Klu ver H, Bucy PC (1939) Preliminary analysis of functions of the temporal lobes in monkeys. Arch Neurol Psychiatry 42:979–1000

    Google Scholar 

  69. Koch M, Ehret G (1989) Immunocytochemical localization and quantitation of estrogen-binding cells in the male and female (virgin, pregnant, lactating) mouse brain. Brain Res 489:101–112

    Article  CAS  PubMed  Google Scholar 

  70. Kötter R, Meyer N (1992) The limbic system: a review of its empirical foundation. Behav Brain Res 52:105–127

    Article  PubMed  Google Scholar 

  71. Kuipers R, Mensinga GM, Boers J, Klop EM, Holstege G (2006) Infralimbic cortex projects to all parts of the pontine and medullary lateral tegmental field in cat. Eur J Neurosci 23:3014–3024

    Article  PubMed  Google Scholar 

  72. Larsen PJ, Hay-Schmidt A, Mikkelsen JD (1994) Efferent connections from the lateral hypothalamic region and the lateral preoptic area to the hypothalamic paraventricular nucleus of the rat. J Comp Neurol 342:299–319

    Article  CAS  PubMed  Google Scholar 

  73. Leah J, Menetrey D, De Pommery J (1988) Neuropeptides in long ascending spinal tract cells in the rat: evidence for parallel processing of ascending information. Neuroscience 24:195–207

    Article  CAS  PubMed  Google Scholar 

  74. LeDoux JE (1987) Emotion. In: Plum F (ed) Higher functions of the brain. Handbook of physiology 1, The nervous system, vol V. American Physiological Society, Bethesda, MD, pp 419–460

    Google Scholar 

  75. LeDoux JE (1991) Emotion and the limbic system concept. Concepts Neurosci 2:169–199

    Google Scholar 

  76. Lehman M, Silver R (2000) CSF signaling in physiology and behavior. Prog Brain Res 125:415–433

    Article  CAS  PubMed  Google Scholar 

  77. MacLean PD (1952) Some psychiatric implications of physiological studies on frontotemporal portion of limbic system (visceral brain). Electroencephalogr Clin Neurophysiol [Suppl 4]:407–418

    Google Scholar 

  78. MacLean PD (1970) The triune brain, emotion and scientific bias. In: Schmitt FO (ed) The neurosciences second study program. Rockefeller University Press, New York, pp 336–349

    Google Scholar 

  79. MacLean PD (1990) The triune brain in evolution: Role in paleocerebral function. Plenum, New York

    Google Scholar 

  80. MacLean PD (1992) The limbic system concept. In: Trimble MR, Bolwig TG (eds) The temporal lobes and the limbic system. Wrightson, Petersfield, pp 1–14

    Google Scholar 

  81. Madeira MD, Lieberman AR (1995) Sexual dimorphism in the mammalian limbic system. Prog Neurobiol 45:275–333

    Article  CAS  PubMed  Google Scholar 

  82. Mesulam MM (1985) Principles of behavioral neurology. Davis, Philadelphia

    Google Scholar 

  83. Mesulam MM (1998) From sensation to cognition. Brain 121:1013–1052

    Article  PubMed  Google Scholar 

  84. Miller AJ (1982) Deglutition. Physiol Rev 62:129–184

    CAS  PubMed  Google Scholar 

  85. Moga MM, Herbert H, Hurley KM et al (1990) Organization of cortical, basal forebrain, and hypothalamic afferents to the parabrachial nucleus in the rat. J Comp Neurol 295:624–661

    Article  CAS  PubMed  Google Scholar 

  86. Mogenson GJ, Jones DL, Yim CY (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14:69–97

    Article  CAS  PubMed  Google Scholar 

  87. Morris JF, Pow DV (1991) Widespread release of peptides in the central nervous system: quantitation of tannic acid-captured exocytoses. Anat Rec 231:437–445

    Article  CAS  PubMed  Google Scholar 

  88. Nauta WJH (1958) Hippocampal projections and related neural pathways to the midbrain in the cat. Brain 81:319–340

    Article  CAS  PubMed  Google Scholar 

  89. Nauta WJH (1973) Connections of the frontal lobe with the limbic system. In: Laitinen LV, Livingston KE (eds) Surgical approaches in psychiatry. Medical and Technical Publishing, Lancester, pp 303–314

    Google Scholar 

  90. Nauta WJH (1979) Expanding borders of the limbic system concept. In: Rasmussen T, Marino R (eds) Functional neurosurgery. Raven, New York, pp 7–24

    Google Scholar 

  91. Nauta WJH, Haymaker W (1969) Hypothalamic nuclei and fiber connections. In: Haymaker W, Anderson E, Nauta WJH (eds) The hypothalamus. Thomas, Springfield, pp 136–209

    Google Scholar 

  92. Nicholson C (1999) Signals that go with the flow. Trends Neurosci 22:143–145

    Article  CAS  PubMed  Google Scholar 

  93. Nieuwenhuys R (1985) Chemoarchitecture of the brain. Springer, Berlin Heidelberg New York

    Google Scholar 

  94. Nieuwenhuys R, Geeraedts LMG, Veening JG (1982) The medial forebrain bundle of the rat. I. General introduction. J Comp Neurol 206:49–81

    Article  CAS  PubMed  Google Scholar 

  95. Nieuwenhuys R, Veening JG, Van Domburg P (1988) Core and paracores; some new chemoarchitectural entities in the mammalian neuraxis. Acta Morphol Neerl Scand 26:131–163

    PubMed  Google Scholar 

  96. Nieuwenhuys R, Voogd J, Van Huijzen C (1988) The human central nervous system: a synopsis and atlas, 3rd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  97. Olszewski J, Baxter D (1954) Cytoarchitecture of the human brain stem. Karger, Basel

    Google Scholar 

  98. OÅNngu r D, An X, Price JL (1998) Prefrontal cortical projections to the hypothalamus in macaque monkeys. J Comp Neurol 401:480–505

    Article  Google Scholar 

  99. Papez JW (1937) A proposed mechanism of emotion. Arch Neurol Psychiatry 38:725–743

    Google Scholar 

  100. Pijnenburg AJJ, Honig WMM, Van der Heyden JAM, Van Rossum JM (1976) Effects of chemical stimulation of the mesolimbic dopamine system upon locomotor activity. Eur J Pharmacol 35:45–58

    Article  CAS  PubMed  Google Scholar 

  101. Pow DV, Morris JF (1989) Dendrites of hypothalamic magnocellular neurons release neurohypophysial peptides by exocytosis. Neuroscience 32:435–439

    Article  CAS  PubMed  Google Scholar 

  102. Price JL (2004) Olfaction. In: Paxinos G, Mai JK (ed) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 1197–1211

    Google Scholar 

  103. Price JL, Amaral DG (1981) An autoradiographic study of the projections of the central nucleus of the monkey amygdala. J Neurosci 1:1242–1259

    CAS  PubMed  Google Scholar 

  104. Rennels ML, Gregory TF, Blaumanis OR, Fujimoto K, Grady PA (1985) Evidence for a ‘paravascular’ fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res 326:47–63

    Article  CAS  PubMed  Google Scholar 

  105. Ricardo JA, Koh ET (1978) Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus and the amygdala, and other forebrain structures in the rat. Brain Res 153:1–26

    Article  CAS  PubMed  Google Scholar 

  106. Risold PY, Swanson LW (1997) Connections of the rat lateral septal complex. Brain Res Rev 24:115–195

    Article  CAS  PubMed  Google Scholar 

  107. Roeling TA, Veening JG, Kruk MR et al (1994) Efferent connections of the hypothalamic “aggression area” in the rat. Neuroscience 59:1001–1024

    Article  CAS  PubMed  Google Scholar 

  108. Ross CA, Ruggiero DA, Reis DJ (1985) Projections from the nucleus tractus solitarii to the rostral ventrolateral medulla. J Comp Neurol 242:511–534

    Article  CAS  PubMed  Google Scholar 

  109. Saether K, Hilaire G, Monteau R (1987) Dorsal and ventral respiratory groups of neurons in the medulla of the rat. Brain Res 419:87–96

    Article  CAS  PubMed  Google Scholar 

  110. Saper CB (2002) The central autonomic nervous system: conscious visceral perception and autonomic pattern generation. Annu Rev Neurosci 25:433–469

    Article  CAS  PubMed  Google Scholar 

  111. Saper CB, Loewy AD (1980) Efferent connections of the parabrachial nucleus in the rat. Brain Res 197:291–317

    Article  CAS  PubMed  Google Scholar 

  112. Sawchenko PE, Swanson LW (1982) The organization of noradrenergic pathways from the brainstem to the paraventricular and supraoptic nuclei in the rat. Brain Res Rev 4:275–325

    Article  Google Scholar 

  113. Shaikh MB, Brutus M, Siegel HE, Siegel A (1985) Topographically organized midbrain modulation of predatory and defensive aggression in the cat. Brain Res 336:308–312

    Article  CAS  PubMed  Google Scholar 

  114. Shik ML, Severin FV, Orlovskii GN (1966) Upravlenie khod’boi i begom posredstvom elektricheskoi stimulatsii srednego mozga (Control of walking and running by means of electric stimulation of the midbrain). Biofizika 11:659–666

    CAS  PubMed  Google Scholar 

  115. Simerly RB, Swanson LW (1988) Projections of the medial preoptic nucleus: a Phaseolus vulgaris leucoagglutinin anterograde tract-tracing study in the rat. J Comp Neurol 270:209–242

    Article  CAS  PubMed  Google Scholar 

  116. Slugg RM, Light AR (1994) Spinal cord and trigeminal projections to the pontine parabrachial region in the rat as demonstrated with Phaseolus vulgaris leucoagglutinin. J Comp Neurol 339:49–61

    Article  CAS  PubMed  Google Scholar 

  117. Smith DA, Flynn JP (1979) Afferent projections related to attack sites in the pontine tegmentum. Brain Res 164:103–119

    Article  CAS  PubMed  Google Scholar 

  118. Sofroniew MY (1983) Direct reciprocal connections between the bed nucleus of the stria terminalis and dorsomedial medulla oblongata: evidence from immunohistochemical detection of tracer proteins. J Comp Neurol 213:399–405

    Article  CAS  PubMed  Google Scholar 

  119. Strack AM, Sawyer WB, Hughes JH, Platt KB, Loewy AD (1989) A general pattern of CNS innervation of the sympathetic outflow demonstrated by transneuronal pseudorabies viral infections. Brain Res 491:156–162

    Article  CAS  PubMed  Google Scholar 

  120. Stumpf WE (1975) The brain: an endocrine gland and hormone target. In: Stumpf WE, Grant LO (eds) Anatomical neuroendocrinology. Karger, Basel, pp 2–8

    Google Scholar 

  121. Stumpf WE, Sar M (1978) Anatomical distribution of estrogen, androgen, progestin, corticosteroid and thyroid hormone target sites in the brain of mammals: phylogeny and ontogeny. Amer Zool 18:435–445

    CAS  Google Scholar 

  122. Swanson LW (1987) Limbic system. In: Adelman G (ed) Encyclopedia of neuroscience, vol I. Birkhäuser, Boston, pp 589–591

    Google Scholar 

  123. Swanson LW (1987) The hypothalamus. In: Björklund A, Swanson LW (eds) Integrated systems of the CNS, part I. Elsevier, Amsterdam, pp 125–277 (Handbook of Chemical Neuroanatomy, vol 5)

    Google Scholar 

  124. Swanson LW (2000) Cerebral hemisphere regulation of motivated behavior. Brain Res 886:113–164

    Article  CAS  PubMed  Google Scholar 

  125. Swanson LW, Cowan WM (1979) The connections of the septal region in the rat. J Comp Neurol 186:621–655

    Article  CAS  PubMed  Google Scholar 

  126. Swanson LW, Mogenson GJ (1981) Neural mechanisms for the functional coupling of autonomic, endocrine and somatomotor responses in adaptive behavior. Brain Res Rev 3:1–34

    Article  CAS  Google Scholar 

  127. Thompson RH, Swanson LW (1998) Organization of inputs to the dorsomedial nucleus of the hypothalamus: a reexamination with Fluorogold and PHAL in the rat. Brain Res Rev 27:89–118

    Article  CAS  PubMed  Google Scholar 

  128. Thompson RH, Swanson LW (2003) Structural characterization of a hypothalamic visceromotor pattern generator network. Brain Res Rev 41:153–202

    Article  CAS  PubMed  Google Scholar 

  129. Thompson RH, Canteras NS, Swanson LW (1996) Organization of projections from the dorsomedial nucleus of the hypothalamus: a PHA-L study in the rat. J Comp Neurol 376:143–173

    Article  CAS  PubMed  Google Scholar 

  130. Van Bockstaele EJ, Colago EE, Cheng P et al (1996) Ultrastructural evidence for prominent distribution of the mu-opioid receptor at extrasynaptic sites on noradrenergic dendrites in the rat nucleus locus coeruleus. J Neurosci 16:5037–5048

    PubMed  Google Scholar 

  131. Van der Kooy D, Koda LY, McGinty JF, Gerfen CR, Bloom FE (1984) The organization of projections from the cortex, amygdala, and hypothalamus to the nucleus of the solitary tract in rat. J Comp Neurol 224:1–24

    Article  PubMed  Google Scholar 

  132. Van der Horst VGJM, Mouton LJ, Blok BF, Holstege G (1996) Distinct cell groups in the lumbosacral cord of the cat project to different areas in the periaqueductal gray. J Comp Neurol 376:361–385

    Article  Google Scholar 

  133. Van der Horst VGJM, Terasawa E, Ralston HJ 3rd, Holstege G (2000) Monosynaptic projections from the nucleus retroambiguus to motoneurons supplying the abdominal wall, axial, hindlimb, and pelvic floor muscles in the female rhesus monkey. J Comp Neurol 424:233–250

    Article  Google Scholar 

  134. Van der Horst VGJM, Terasawa E, Ralston HJ 3rd, Holstege G (2000) Monosynaptic projections from the lateral periaqueductal gray to the nucleus retroambiguus in the rhesus monkey: implications for vocalization and reproductive behavior. J Comp Neurol 424:251–268

    Article  Google Scholar 

  135. Van der Horst VGJM, Terasawa E, Ralston HJ 3rd (2001) Monosynaptic projections from the nucleus retroambiguus region to laryngeal motoneurons in the rhesus monkey. Neuroscience 107:117–125

    Article  Google Scholar 

  136. Veening J, Buma P, Ter Horst GJ et al (1991) Hypothalamic projections to the PAG in the rat: topographical, immuno-electronmicroscopical and functional aspects. In: Depaulis A, Bandler R (eds) The midbrain periaqueductal gray matter. Plenum, New York, pp 387–415

    Google Scholar 

  137. Veening JG, Swanson LW, Cowan WM, Nieuwenhuys R, Geeraedts LMG (1982) The medial forebrain bundle of the rat. II. An autoradiographic study of the topography of the major descending and ascending components. J Comp Neurol 206:82–108

    Article  CAS  PubMed  Google Scholar 

  138. Victor M, Agamanolis D (1990) Amnesia due to lesions confined to the hippocampus: a clinicalpathologic study. J Cognit Neurosci 2:246–257

    Article  Google Scholar 

  139. Wood RI, Brabec RK, Swann JM, Newman SW (1992) Androgen and estrogen concentrating neurons in chemosensory pathways of the male Syrian hamster brain. Brain Res 596:89–98

    Article  CAS  PubMed  Google Scholar 

  140. Zagon A, Totterdell S, Jones RS (1994) Direct projections from the ventrolateral medulla oblongata to the limbic forebrain: anterograde and retrograde tracttracing studies in the rat. J Comp Neurol 340:445–468

    Article  CAS  PubMed  Google Scholar 

  141. Zhang SP, Davis PJ, Bandler R, Carrive P (1994) Brain stem integration of vocalization: role of the midbrain periaqueductal gray. J Neurophysiol 72:1337–1356

    CAS  PubMed  Google Scholar 

  142. Zola-Morgan S, Squire LR (1986) Memory impairment in monkeys following lesions limited to the hippocampus. Behav Neurosci 100:155–160

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Italia

About this chapter

Cite this chapter

Nieuwenhuys, R., Voogd, J., van Huijzen, C., Papa, M. (2010). Grande sistema limbico. In: Il sistema nervoso centrale. Springer, Milano. https://doi.org/10.1007/978-88-470-1140-3_23

Download citation

Publish with us

Policies and ethics