Skip to main content

Riassunto

“I circuiti neuronali dell’encefalo determinano il comportamento ponendo in essere l’esecuzione di movimenti differenti e di movimenti complessi che consentono all’organismo di raggiungere determinati obbiettivi. Le proiezioni discendenti dalla cortex motrice” e il tronco dell’encefalo “costituiscono i canali attraverso cui i messaggi che in ultimo saranno tradotti in movimenti e movimenti complessi sono trasmessi agli organi effettori, ovvero al complesso di neuroni motori e muscoli” ([119]). Gli studi anatomici e funzionali di Kuypers, condotti nell’uomo e nei primati non umani nella seconda metà del secolo scorso, hanno posto le fondamenta per le attuali conoscenze relative al controllo motorio. Questi concetti sono stati modificati e ampliati riguardo all’organizzazione della cortex motrice e premotrice (rassegna critica di Matelli e coll. [139]), all’anatomia funzionale dei sistemi motori sottocorticali (vedi anche i Capp. 17 e 22), e al contributo del sistema limbico e dell’ipotalamo al controllo del moto (analisi critica di Holstege e coll. [103]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. Alipour M, Chen Y, Jürgens U (2002) Anterograde projections of the motorcortical tongue area in the saddle-back tamarin (Saguinus fuscicollis). Brain Behav Evol 60:101–116

    Article  PubMed  Google Scholar 

  2. Alstermark B, Lindstrom S, Lundberg A, Sybirska E (1981) Integration in descending motor pathways controlling the forelimb in the cat. 8. Ascending projection to the lateral reticular nucleus from C3-C4 propriospinal also projecting to forelimb motoneurones. Exp Brain Res 42:282–298

    Article  CAS  PubMed  Google Scholar 

  3. Alstermark B, Lundberg A, Pinter M, Sasaki S (1987) Subpopulations and functions of long C3-C5 propriospinal neurones. Brain Res 404:395–400

    Article  CAS  PubMed  Google Scholar 

  4. Alstermark B, Kummel H, Pinter MJ, Tantisira B (1990) Integration in descending motor pathways controlling the forelimb in the cat. 17. Axonal projection and termination of C3-C4 propriospinal neurones in the C6-Th1 segments. Exp Brain Res 81:447–461

    Article  CAS  PubMed  Google Scholar 

  5. Alstermark B, Isa T, Kummel H, Tantisira B (1990) Projection from excitatory C3-C4 propriospinal neurones to lamina VII and VIII neurones in the C6-Th1 segments of the cat. Neurosci Res 8:131–137

    Article  CAS  PubMed  Google Scholar 

  6. Andersson G, Armstrong DM (1987) Complex spikes in Purkinje cells in the lateral vermis (b zone) of the cat cerebellum during locomotion. J Physiol 385:107–134

    CAS  PubMed  Google Scholar 

  7. Aoyama M, Hongo T, Kudo N (1988) Sensory input to cells of origin of uncrossed spinocerebellar tract located below Clarke’s column in the cat. J Physiol 398:233–257

    CAS  PubMed  Google Scholar 

  8. Armstrong DM (1986) Supraspinal contributions to the initiation and control of locomotion in the cat. Prog Neurobiol 26:273–361

    Article  CAS  PubMed  Google Scholar 

  9. Armstrong DM, Edgley SA (1984) Discharges of nucleus interpositus neurones during locomotion in the cat. J Physiol 351:411–432

    CAS  PubMed  Google Scholar 

  10. Armstrong DM, Edgley SA (1984) Discharges of Purkinje cells in the paravermal part of the cerebellar anterior lobe during locomotion in the cat. J Physiol 352:403–424

    CAS  PubMed  Google Scholar 

  11. Armstrong DM, Edgley SA (1988) Discharges of interpositus and Purkinje cells of the cat cerebellum during locomotion under different conditions. J Physiol 400:425–445

    CAS  PubMed  Google Scholar 

  12. Armstrong DM, Edgley SA, Lidierth M (1988) Complex spikes in Purkinje cells of the paravermal part of the anterior lobe of the cat cerebellum during locomotion. J Physiol 400:405–414

    CAS  PubMed  Google Scholar 

  13. Arshafsky YI, Gelfand IM, Orlovsky GN (1986) Cerebellum and rhythmical movements. Springer, Berlin Heidelberg New York

    Google Scholar 

  14. Arshavsky YI, Orlovsky GN, Perret C (1988) Activity of rubrospinal neurons during locomotion and scratching in the cat. Behav Brain Res 28:193–199

    Article  CAS  PubMed  Google Scholar 

  15. Baldissera F, Hultborn H, Ilert M (1981) Integration in spinal neuronal systems. In: Brooks VB (ed) Handbook of physiology. The nervous system Motor control. American Physiological Society, Bethesda, pp 509–595

    Google Scholar 

  16. Barrett RT, Bao X, Miselis RR, Altschuler SM (1994) Brain stem localization of rodent esophageal premotor neurons revealed by transneuronal passage of pseudorabies virus. Gastroenterology 107:728–737

    CAS  PubMed  Google Scholar 

  17. Barrington FJF (1925) The effect of lesions of the hind-and mid-brain on micturition in the cat. Quart J Exp Physiol Cogn Med 15:81–102

    Google Scholar 

  18. Bates JF, Goldman-Rakic PS (1993) Prefrontal connections of medial motor areas in the rhesus monkey. J Comp Neurol 336:211–228

    Article  CAS  PubMed  Google Scholar 

  19. Bengtsson F, Svensson P, Hesslow G (2004) Feedback control of Purkinje cell activity by the cerebelloolivary pathway. Eur J Neurosci 20:2999–3005

    Article  CAS  PubMed  Google Scholar 

  20. Betz W (1874) Anatomischer Nachweis zweier Gehirncentra. Centralbl Med Wiss 12:578–580, 595–599

    Google Scholar 

  21. Bieger D, Hopkins DA (1987) Viscerotopic representation of the upper alimentary tract in the medulla oblongata in the rat: the nucleus ambiguus. J Comp Neurol 262:546–562

    Article  CAS  PubMed  Google Scholar 

  22. Binkofski F, Buccino G, Stephan KM, Rizzolatti G, Seitz RJ, Freund HJ (1999) A parieto-premotor network for object manipulation: evidence from neuroimaging. Exp Brain Res 128:210–213

    Article  CAS  PubMed  Google Scholar 

  23. Blok BF, Holstege G (1994) Direct projections from the periaqueductal gray to the pontine micturition center (M-region). An anterograde and retrograde tracing study in the cat. Neurosci Lett 166:93–96

    Article  CAS  PubMed  Google Scholar 

  24. Blok BF, Holstege G (1999) Two pontine micturition centers in the cat are not interconnected directly: implications for the central organization of micturition. J Comp Neurol 403:209–218

    Article  CAS  PubMed  Google Scholar 

  25. Blok BF, de Weerd H, Holstege G (1997) The pontine micturition center projects to sacral cord GABA immunoreactive neurons in the cat. Neurosci Lett 233:109–112

    Article  CAS  PubMed  Google Scholar 

  26. Blok BF, Willemsen AT, Holstege G (1997) A PET study on brain control of micturition in humans. Brain 120(Pt 1):111–121

    Article  PubMed  Google Scholar 

  27. Blok BF, Sturms LM, Holstege G (1998) Brain activation during micturition in women. Brain 121(Pt 11):2033–2042

    Article  PubMed  Google Scholar 

  28. Boggs JW, Wenzel BJ, Gustafson KJ, Grill WM (2005) Spinal micturition reflex mediated by afferents in the deep perineal nerve. J Neurophysiol 93:2688–2697

    Article  PubMed  Google Scholar 

  29. Bourque MJ, Kolta A (2001) Properties and interconnections of trigeminal interneurons of the lateral pontine reticular formation in the rat. J Neurophysiol 86:2583–2596

    CAS  PubMed  Google Scholar 

  30. Brown TG (1911) The intrinsic factors in the act of progression in the mammal. Proc R Soc Lond B84:308–319

    Article  Google Scholar 

  31. Brown TG (1912) The factors in rhythmic ativity of the nervous system. Proc R Soc Lond B85:278–289

    Article  Google Scholar 

  32. Buccino G, Vogt S, Ritzl A, Fink GR, Zilles K, Freund HJ, Rizzolatti G (2004) Neural circuits underlying imitation learning of hand actions: an event-related fMRI study. Neuron 42:323–334

    Article  CAS  PubMed  Google Scholar 

  33. Cattaneo L, Voss M, Brochier T, Prabhu G, Wolpert DM, Lemon RN (2005) A cortico-cortical mechanism mediating object-driven grasp in humans. PNAS 102:898–903

    Article  CAS  PubMed  Google Scholar 

  34. Cheema S, Rustioni A, Whitsel BL (1985) Sensorimotor cortical projections to the primate cuneate nucleus. J Comp Neurol 240:196–211

    Article  CAS  PubMed  Google Scholar 

  35. Christensen LO, Johannsen P, Sinkjaer T, Petersen N, Pyndt HS, Nielsen JB (2000) Cerebral activation during bicycle movements in man. Exp Brain Res 135:66–72

    Article  CAS  PubMed  Google Scholar 

  36. Clendenin M, Ekerot CF, Oscarsson O (1974) The lateral reticular nucleus in the cat. III. Organization of component activated from ipsilateral forelimb tract. Exp Brain Res 21:501–513

    CAS  PubMed  Google Scholar 

  37. Clendenin M, Ekerot CF, Oscarsson O, Rosen I (1974) The lateral reticular nucleus in the cat. I. Mossy fibre distribution in cerebellar cortex. Exp Brain Res 21:473–486

    CAS  PubMed  Google Scholar 

  38. Clendenin M, Ekerot CF, Oscarsson O, Rosen I (1974) The lateral reticular nucleus in the cat. II. Organization of component activated from bilateral ventral flexor reflex tract (bVFRT). Exp Brain Res 21:487–500

    CAS  PubMed  Google Scholar 

  39. Coolen LM, Allard J, Truitt WA, McKenna KE (2004) Central regulation of ejaculation. Physiol Behav 83:203–215

    CAS  PubMed  Google Scholar 

  40. Cowie RJ, Holstege G (1992) Dorsal mesencephalic projections to pons, medulla, and spinal cord in the cat: limbic and non-limbic components. J Comp Neurol 319:536–559

    Article  CAS  PubMed  Google Scholar 

  41. Cunningham ET Jr, Sawchenko PE (2000) Dorsal medullary pathways subserving oromotor reflexes in the rat: implications for the central neural control of swallowing. J Comp Neurol 417:448–466

    Article  PubMed  Google Scholar 

  42. Debaere F, Wenderoth N, Sunaert S, Van Hecke P, Swinnen SP (2004) Cerebellar and premotor function in bimanual coordination: parametric neural responses to spatiotemporal complexity and cycling frequency. Neuroimage 21:1416–1427

    Article  CAS  PubMed  Google Scholar 

  43. Deecke L, Kornhuber HH, Lang W, Lang M, Schreiber H (1985) Timing function of the frontal cortex in sequential motor and learning tasks. Hum Neurobiol 4:143–154

    CAS  PubMed  Google Scholar 

  44. Drew T, Prentice S, Schepens B (2004) Cortical and brainstem control of locomotion. Prog Brain Res 143:251–261

    Article  PubMed  Google Scholar 

  45. Duhamel JR, Colby CL, Goldberg ME (1998) Ventral intraparietal area of the macaque: congruent visual and somatic response properties. J Neurophysiol 79:126–136

    CAS  PubMed  Google Scholar 

  46. Dum RP, Strick PL (1990) Premotor areas: nodal points for parallel efferent systems involved in the central control of movement. In: Humphrey DR, Freund H-J (eds) Motor control: concepts and issues. Wiley, London

    Google Scholar 

  47. Dum RP, Strick PL (1991) The origin of corticospinal projections from the premotor areas in the frontal lobe. J Neurosci 11:667–689

    CAS  PubMed  Google Scholar 

  48. Dum RP, Strick PL (1996) Spinal cord terminations of the medial wall motor areas in macaque monkeys. J Neurosci 16:6513–6525

    CAS  PubMed  Google Scholar 

  49. Dum RP, Strick PL (2005) Frontal lobe inputs to the digit representations of the motor areas on the lateral surface of the hemisphere. J Neurosci 25:1375–1386

    Article  CAS  PubMed  Google Scholar 

  50. Duysens J (2006) How deletions in a model could help explain deletions in the laboratory. J Neurophysiol 95:562–563

    Article  PubMed  Google Scholar 

  51. Duysens J, Pearson KG (1980) Inhibition of flexor burst generation by loading ankle extensor muscles in walking cats. Brain Res 187:321–332

    Article  CAS  PubMed  Google Scholar 

  52. Duysens J, Van de Crommert HW (1998) Neural control of locomotion. The central pattern generator from cats to humans. Gait Posture 7:131–141

    Article  PubMed  Google Scholar 

  53. Eccles JC, Hubbard JI, Oscarsson O (1961) Intracellular recording from cells of the ventral spinocerebellar tract. J Physiol 158:486–516

    CAS  PubMed  Google Scholar 

  54. Edgley SA, Lidierth M (1988) Step-related discharges of Purkinje cells in the paravermal cortex of the cerebellar anterior lobe in the cat. J Physiol 401:399–415

    CAS  PubMed  Google Scholar 

  55. Eidelberg E, Walden JG, Nguyen LH (1981) Locomotor control in macaque monkeys. Brain 104:647–663

    Article  CAS  PubMed  Google Scholar 

  56. Ekerot CF (1990) The lateral reticular nucleus in the cat. VI. Excitatory and inhibitory afferent paths. Exp Brain Res 79:109–119

    Article  CAS  PubMed  Google Scholar 

  57. Ekerot CF (1990) The lateral reticular nucleus in the cat. VII. Excitatory and inhibitory projection from the ipsilateral forelimb tract (iF tract). Exp Brain Res 79:120–128

    Article  CAS  PubMed  Google Scholar 

  58. Ekerot CF (1990) The lateral reticular nucleus in the cat. VIII. Excitatory and inhibitory projection from the bilateral ventral flexor reflex tract (bVFRT). Exp Brain Res 79:129–137

    Article  CAS  PubMed  Google Scholar 

  59. Ekerot CF, Garwicz M, Jörntell H (1997) The control of forelimb movements by intermediate cerebellum. Prog Brain Res 114:423–429

    Article  CAS  PubMed  Google Scholar 

  60. Fink GR, Frackowiak RS, Pietrzyk U, Passingham RE (1997) Multiple nonprimary motor areas in the human cortex. J Neurophysiol 77:2164–2174

    CAS  PubMed  Google Scholar 

  61. Forssberg H, Grillner S (1973) The locomotion of the acute spinal cat injected with clonidine i. iv. Brain Res 50:184–186

    Article  CAS  PubMed  Google Scholar 

  62. Fritsch GT, Hitzig E (1870) Über die electrische Erregbarkeit des Grosshirns. Arch Anat Physiol: 300–332

    Google Scholar 

  63. Fulton JF (1935) A note on the definition of the ‘motor’ and ‘premotor’ areas. Brain 58:311–316

    Article  Google Scholar 

  64. Galea MP, Darian-Smith I (1994) Multiple corticospinal neuron populations in the macaque monkey are specified by their unique cortical origins, spinal terminations, and connections. Cereb Cortex 4:166–194

    Article  CAS  PubMed  Google Scholar 

  65. Gallese V, Fadiga L, Fogassi L, Rizzolatti G (1996) Action recognition in the premotor cortex. Brain 119(Pt 2):593–609

    Article  PubMed  Google Scholar 

  66. Garcia-Rill E (1991) The pedunculopontine nucleus. Prog Neurobiol 36:363–389

    Article  CAS  PubMed  Google Scholar 

  67. Garcia-Rill E, Skinner RD, Jackson MB, Smith MM (1983) Connections of the mesencephalic locomotor region (MLR). I. Substantia nigra afferents. Brain Res Bull 10:57–62

    Article  CAS  PubMed  Google Scholar 

  68. Garcia-Rill E, Skinner RD, Gilmore SA, Owings R (1983) Connections of the mesencephalic locomotor region (MLR). II. Afferents and efferents. Brain Res Bull 10:63–71

    Article  CAS  PubMed  Google Scholar 

  69. Garcia-Rill E, Kinjo N, Atsuta Y, Ishikawa M, Webber M, Skinner D (1990) Posterior midbrain-induced locomotion. Brain Res Bull 24:499–508

    Article  CAS  PubMed  Google Scholar 

  70. Gellman R, Gibson AR, Houk JC (1985) Inferior olivary neurons in the awake cat: detection of contact and passive body displacement. J Neurophysiol 54:40–60

    CAS  PubMed  Google Scholar 

  71. Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT (1982) On the relations between the direction of twodimensional arm movements and cell discharge in primate motor cortex. J Neurosci 2:1527–1537

    CAS  PubMed  Google Scholar 

  72. Georgopoulos AP, Caminiti R, Kalaska JF, Massey JT (1983) Spatial coding of movement direction by motor cortical populations. Exp Brain Res Suppl 7:327–335

    Google Scholar 

  73. Geyer S, Matelli M, Luppino G, Zilles K (2000) Functional neuroanatomy of the primate isocortical motor system. Anat Embryol (Berl) 202:443–474

    Article  CAS  Google Scholar 

  74. Gibson AR, Horn KM, Pong M (2002) Inhibitory control of olivary discharge. Ann N Y Acad Sci 978:219–231

    Article  PubMed  Google Scholar 

  75. Godschalk M, Lemon RN, Kuypers HG, Ronday HK (1984) Cortical afferents and efferents of monkey postarcuate area: an anatomical and electrophysiological study. Exp Brain Res 56:410–424

    Article  CAS  PubMed  Google Scholar 

  76. Godschalk M, Mitz AR, van Duin B, van der Burg H (1995) Somatotopy of monkey premotor cortex examined with microstimulation. Neurosci Res 23:269–279

    Article  CAS  PubMed  Google Scholar 

  77. Gong S, DeCuypere M, Zhao Y, LeDoux MS (2005) Cerebral cortical control of orbicularis oculi motoneurons. Brain Res 1047:177–193

    Article  CAS  PubMed  Google Scholar 

  78. Grafton ST (1994) Cortical control of movement. Amnn Neurol 36:3–4

    Article  CAS  Google Scholar 

  79. Graziano MS (2006) The organization of behavioral repertoire in motor cortex. Annu Rev Neurosci 29:105–134

    Article  CAS  PubMed  Google Scholar 

  80. Graziano MS, Aflalo TN, Cooke DF (2005) Arm movements evoked by electrical stimulation in the motor cortex of monkeys. J Neurophysiol 94:4209–4223

    Article  PubMed  Google Scholar 

  81. Grofova I, Keane S (1991) Descending brainstem projections of the pedunculopontine tegmental nucleus in the rat. Anat Embryol (Berl) 184:275–290

    Article  CAS  Google Scholar 

  82. Hage SR, Jürgens U (2006) On the role of the pontine brainstem in vocal pattern generation: a telemetric single-unit recording study in the squirrel monkey. J Neurosci 26:7105–7115

    Article  CAS  PubMed  Google Scholar 

  83. Hage SR, Jürgens U (2006) Localization of a vocal pattern generator in the pontine brainstem of the squirrel monkey. Eur J Neurosci 23:840–844

    Article  PubMed  Google Scholar 

  84. Hage SR, Jürgens U (2006) On the role of the pontine brainstem in vocal pattern generation: a telemetric single-unit recording study in the squirrel monkey. J Neurosci 26:7105–7115

    Article  CAS  PubMed  Google Scholar 

  85. Hajnik T, Lai YY, Siegel JM (2000) Atonia-related regions in the rodent pons and medulla. J Neurophysiol 84:1942–1948

    CAS  PubMed  Google Scholar 

  86. Hannig S, Jürgens U (2006) Projections of the ventrolateral pontine vocalization area in the squirrel monkey. Exp Brain Res 169:92–105

    Article  CAS  PubMed  Google Scholar 

  87. Hatanaka N, Tokuno H, Nambu A, Inoue T, Takada M (2005) Input-output organization of jaw movement-related areas in monkey frontal cortex. J Comp Neurol 492:401–425

    Article  PubMed  Google Scholar 

  88. He SQ, Dum RP, Strick PL (1993) Topographic organization of corticospinal projections from the frontal lobe: motor areas on the lateral surface of the hemisphere. J Neurosci 13:952–980

    CAS  PubMed  Google Scholar 

  89. He SQ, Dum RP, Strick PL (1995) Topographic organization of corticospinal projections from the frontal lobe: motor areas on the medial surface of the hemisphere. J Neurosci 15:3284–3306

    CAS  PubMed  Google Scholar 

  90. Hikosaka O, Sakai K, Miyauchi S, Takino R, Sasaki Y, Putz B (1996) Brain activation during learning of sequential procedures. Electroencephalogr Clin Neurophysiol Suppl 47:245–252

    CAS  PubMed  Google Scholar 

  91. Holstege G (1989) Anatomical study of the final common pathway for vocalization in the cat. J Comp Neurol 284:242–252

    Article  CAS  PubMed  Google Scholar 

  92. Holstege G (1991) Descending motor pathways and the spinal motor system: limbic and non-limbic components. Prog Brain Res 87:307–421

    Article  CAS  PubMed  Google Scholar 

  93. Holstege G, Kuypers HG (1977) Propriobulbar fibre connections to the trigeminal, facial and hypoglossal motor nuclei. I. An anterograde degeneration study in the cat. Brain 100:239–264

    Article  CAS  PubMed  Google Scholar 

  94. Holstege G, Kuypers HG (1982) The anatomy of brain stem pathways to the spinal cord in cat. A labeled amino acid tracing study. Prog Brain Res 57:145–175

    Article  CAS  PubMed  Google Scholar 

  95. Holstege G, Tan J (1987) Supraspinal control of motoneurons innervating the striated muscles of the pelvic floor including urethral and anal sphincters in the cat. Brain 110(Pt 5):1323–1344

    Article  PubMed  Google Scholar 

  96. Holstege G, Tan J (1988) Projections from the red nucleus and surrounding areas to the brainstem and spinal cord in the cat. An HRP and autoradiographical tracing study. Behav Brain Res 28:33–57

    Article  CAS  PubMed  Google Scholar 

  97. Holstege G, Georgiadis JR (2003) Neurobiology of cat and human sexual behavior. Int Rev Neurobiol 56:213–225

    Article  CAS  PubMed  Google Scholar 

  98. Holstege G, Kuypers HG, Dekker JJ (1977) The organization of the bulbar fibre connections to the trigeminal, facial and hypoglossal motor nuclei. II. An autoradiographic tracing study in cat. Brain 100:264–286

    CAS  PubMed  Google Scholar 

  99. Holstege G, Graveland G, Bijker-Biemond C, Schuddeboom I (1983) Location of motoneurons innervating soft palate, pharynx and upper esophagus. Anatomical evidence for a possible swallowing center in the pontine reticular formation. An HRP and autoradiographical tracing study. Brain Behav Evol 23:47–62

    Article  CAS  PubMed  Google Scholar 

  100. Holstege G, Tan J, van Ham J, Bos A (1984) Mesencephalic projections to the facial nucleus in the cat. An autoradiographical tracing study. Brain Res 311:7–22

    Article  CAS  PubMed  Google Scholar 

  101. Holstege G, Griffiths D, de Wall H, Dalm E (1986) Anatomical and physiological observations on supraspinal control of bladder and urethral sphincter muscles in the cat. J Comp Neurol 250:449–461

    Article  CAS  PubMed  Google Scholar 

  102. Holstege G, Georgiadis JR, Paans AM, Meiners LC, van der Graaf FH, Reinders AA (2003) Brain activation during human male ejaculation. J Neurosci 23:9185–9193

    CAS  PubMed  Google Scholar 

  103. Holstege G, Mouton LAJ, Gerrits NM (2004) Emotional motor system. In: Paxinos G, Mai JK (eds) The human nervous system. Elsevier, Amsterdam, pp 1306–1324

    Chapter  Google Scholar 

  104. Hoover JE, Strick PL (1999) The organization of cerebellar and basal ganglia outputs to primary motor cortex as revealed by retrograde transneuronal transport of herpes simplex virus type 1. J Neurosci 19:1446–1463

    CAS  PubMed  Google Scholar 

  105. Huisman AM, Kuypers HG, Verburgh CA (1981) Quantitative differences in collateralization of the descending spinal pathways from red nucleus and other brain stem cell groups in rat as demonstrated with the multiple fluorescent retrograde tracer technique. Brain Res 209:271–286

    Article  CAS  PubMed  Google Scholar 

  106. Huisman AM, Kuypers HG, Verburgh CA (1982) Differences in collateralization of the descending spinal pathways from red nucleus and other brain stem cell groups in cat and monkey. Prog Brain Res 57:185–217

    Article  CAS  PubMed  Google Scholar 

  107. Huisman AM, Ververs B, Cavada C, Kuypers HG (1984) Collateralization of brainstem pathways in the spinal ventral horn in rat as demonstrated with the retrograde fluorescent double-labeling technique. Brain Res 300:362–367

    Article  CAS  PubMed  Google Scholar 

  108. Hultborn H, Nielsen JB (2007) Spinal control of locomotion-from cat to man. Acta Physiol (Oxf) 189:111–121

    Article  CAS  Google Scholar 

  109. Isa T, Ohki Y, Seki K, Alstermark B (2006) Properties of propriospinal neurons in the C3-C4 segments mediating disynaptic pyramidal excitation to forelimb motoneurons in the macaque monkey. J Neurophysiol 95:3674–3685

    Article  PubMed  Google Scholar 

  110. Jankowska E, Jukes MG, Lund S, Lundberg A (1967) The effect of DOPA on the spinal cord. 6. Halfcentre organization of interneurones transmitting effects from the flexor reflex afferents. Acta Physiol Scand 70:389–402

    Article  CAS  PubMed  Google Scholar 

  111. Jeannerod M, Arbib MA, Rizzolatti G, Sakata H (1995) Grasping objects: the cortical mechanisms of visuomotor transformation. Trends Neurosci 18:314–320

    Article  CAS  PubMed  Google Scholar 

  112. Jürgens U, Alipour M (2002) A comparative study on the cortico-hypoglossal connections in primates, using biotin dextranamine. Neurosci Lett 328:245–248

    Article  PubMed  Google Scholar 

  113. Keizer K, Kuypers HG (1984) Distribution of corticospinal neurons with collaterals to lower brain stem reticular formation in cat. Exp Brain Res 54:107–120

    Article  CAS  PubMed  Google Scholar 

  114. Kluck P (1980) The autonomic innervation of the human urinary bladder, bladder neck and urethra: a histochemical study. Anat Rec 198:439–447

    Article  CAS  PubMed  Google Scholar 

  115. Kuypers HGJM (1958) Some projections from the peri-central cortex to the pons and the lower brain stem in monkey and chimpanzee. J Comp Neurol 110:221–255

    Article  CAS  PubMed  Google Scholar 

  116. Kuypers HGJM (1958) Corticobulbar connections to the pons and lower brain-stem in man. Brain 81:365–388

    Article  Google Scholar 

  117. Kuypers HGJM (1962) Corticospinal connections: postnatal development in the Rhesus monkey. Science 138:678–680

    Article  CAS  PubMed  Google Scholar 

  118. Kuypers HGJM (1973) The anatomical organization of the descending pathways and their contribution to motor control especially in primates. In: Desmedt J (ed) New developments in EEG and clinical neurophysilogy. Karger, Basel, pp 38–68

    Google Scholar 

  119. Kuypers HGJM (1987) Some aspects of the organization of the output of the motor cortex. In: Ciba foundation symposium: Motor areas of the cerebral cortex. Wiley, Chichester, pp 63–68

    Chapter  Google Scholar 

  120. Kuypers HGJM, Brinkman J (1970) Precentral projections to different parts of the spinal intermediate zone in the rhesus monkey. Brain Res 24:29–48

    Article  CAS  PubMed  Google Scholar 

  121. Kuypers HGJM, Lawrence DG (1967) Cortical projections to the red nucleus and the brain stem in the Rhesus monkey. Brain Res 4:151–188

    Article  CAS  PubMed  Google Scholar 

  122. Kuze B, Matsuyama K, Matsui T, Miyata H, Mori S (1999) Segment-specific branching patterns of single vestibulospinal tract axons arising from the lateral vestibular nucleus in the cat: A PHA-L tracing study. J Comp Neurol 414:80–96

    Article  CAS  PubMed  Google Scholar 

  123. Kwan HC, MacKay WA, Murphy JT, Wong YC (1978) Spatial organization of precentral cortex in awake primates. II. Motor outputs. J Neurophysiol 41:1120–1131

    CAS  PubMed  Google Scholar 

  124. Lacroix S, Havton LA, McKay H, Yang H, Brant A, Roberts J, Tuszynski MH (2004) Bilateral corticospinal projections arise from each motor cortex in the macaque monkey: a quantitative study. J Comp Neurol 473:147–161

    Article  PubMed  Google Scholar 

  125. Lawrence DG, Kuypers HG (1968) The functional organization of the motor system in the monkey. I. The effects of bilateral pyramidal lesions. Brain 91:1–14

    Article  CAS  PubMed  Google Scholar 

  126. Lawrence DG, Kuypers HG (1968) The functional organization of the motor system in the monkey. II. The effects of lesions of the descending brainstem pathways. Brain 91:15–36

    Article  CAS  PubMed  Google Scholar 

  127. Leicht R, Rowe MJ, Schmidt RF (1973) Cortical and peripheral modification of cerebellar climbing fibre activity arising from cutaneous mechanoreceptors. J Physiol 228:619–635

    CAS  PubMed  Google Scholar 

  128. Li JL, Wu SX, Tomioka R, Okamoto K, Nakamura K, Kaneko T, Mizuno N (2005) Efferent and afferent connections of GABAergic neurons in the supratrigeminal and the intertrigeminal regions. An immunohistochemical tract-tracing study in the GAD67-GFP knock-in mouse. Neurosci Res 51:81–91

    Article  CAS  PubMed  Google Scholar 

  129. Li YQ, Tao FS, Okamoto K, Nomura S, Kaneko T, Mizuno N (2002) The supratrigeminal region of the rat sends GABA/glycine-cocontaining axon terminals to the motor trigeminal nucleus on the contralateral side. Neurosci Lett 330:13–16

    Article  CAS  PubMed  Google Scholar 

  130. Lundberg A (1971) Function of the ventral spinocerebellar tract. Exp Brain Res 12:317–330

    CAS  PubMed  Google Scholar 

  131. Lundberg A, Oscarsson O (1960) Functional organization of the dorsal spino-cerebellar tract in the cat. VII. Identification of units by antidromic activation from the cerebellar cortex with recognition of five functional subdivisions. Acta Physiol Scand 50:356–374

    Article  CAS  PubMed  Google Scholar 

  132. Luschei ES (1987) Central projections of the mesencephalic nucleus of the fifth nerve: an autoradiographic study. J Comp Neurol 263:137–145

    Article  CAS  PubMed  Google Scholar 

  133. Maier MA, Armand J, Kirkwood PA, Yang HW, Davis JN, Lemon RN (2002) Differences in the corticospinal projection from primary motor cortex and supplementary motor area to macaque upper limb motoneurons: an anatmical and electrophysiological study. Cereb Cortex 12:381–396

    Article  Google Scholar 

  134. Mantyh PW (1983) Connections of midbrain periaqueductal gray in the monkey. I. Ascending efferent projections. J Neurophysiol 49:567–581

    CAS  PubMed  Google Scholar 

  135. Matelli M, Luppino G (1996) Thalamic input to mesial and superior area 6 in the macaque monkey. J Comp Neurol 372:59–87

    Article  CAS  PubMed  Google Scholar 

  136. Matelli M, Luppino G, Rizzolatti G (1985) Patterns of cytochrome oxidase activity in the frontal agranular cortex of the macaque monkey. Behav Brain Res 18:125–136

    Article  CAS  PubMed  Google Scholar 

  137. Matelli M, Luppino G, Fogassi L, Rizzolatti G (1989) Thalamic input to inferior area 6 and area 4 in the macaque monkey. J Comp Neurol 280:468–488

    Article  CAS  PubMed  Google Scholar 

  138. Matelli M, Luppino G, Rizzolatti G (1991) Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey. J Comp Neurol 311:445–462

    Article  CAS  PubMed  Google Scholar 

  139. Matelli M, Govoni P, Galletti C, Kutz DF, Luppino G (1998) Superior area 6 afferents from the superior parietal lobule in the macaque monkey. J Comp Neurol 402:327–352

    Article  CAS  PubMed  Google Scholar 

  140. Matelli M, Luppino G, Geyer S, Zilles K (2004) Motor cortex. In: Paxinos G, Mai JK (eds) The human nervous system. Elsevier, Amsterdam, pp 973–996

    Chapter  Google Scholar 

  141. Matsuyama K, Drew T (2000) Vestibulospinal and reticulospinal neuronal activity during locomotion in the intact cat. II. Walking on an inclined plane. J Neurophysiol 84:2257–2276

    CAS  PubMed  Google Scholar 

  142. Matsuyama K, Takakusaki K, Nakajima K, Mori S (1997) Multi-segmental innervation of single pontine reticulospinal axons in the cervico-thoracic region of the cat: anterograde PHA-L tracing study. J Comp Neurol 377:234–250

    Article  CAS  PubMed  Google Scholar 

  143. Matsuyama K, Kobayashi Y, Takakusaki K, Mori S, Kimura H (1993) Termination mode and branching patterns of reticuloreticular and reticulospinal fibers of the nucleus reticularis pontis oralis in the cat: an anterograde PHA-L tracing study. Neurosci Res 17:9–21

    Article  CAS  PubMed  Google Scholar 

  144. Matsuyama K, Mori F, Nakajima K, Drew T, Aoki M, Mori S (2004) Locomotor role of the corticoreticularreticulospinal-spinal interneuronal system. Prog Brain Res 143:239–249

    Article  PubMed  Google Scholar 

  145. McCurdy ML, Hansma DI, Houk JC, Gibson AR (1987) Selective projections from the cat red nucleus to digit motor neurons. J Comp Neurol 265:367–379

    Article  CAS  PubMed  Google Scholar 

  146. Middleton FA, Strick PL (1997) Cerebellar output channels. Int Rev Neurobiol 41:61–82

    Article  CAS  PubMed  Google Scholar 

  147. Miller LE, Gibson AR (2007) The red nucleus. In: The New Encyclopedia of Neural Science. Elsevier, Amsterdam

    Google Scholar 

  148. Minkels RF, Juch PJ, van Willigen JD (1995) Interneurones of the supratrigeminal area mediating reflex inhibition of trigeminal and facial motorneurones in the rat. Arch Oral Biol 40:275–284

    Article  CAS  PubMed  Google Scholar 

  149. Miyai I, Tanabe HC, Sase I, Eda H, Oda I, Konishi I, Tsunazawa Y, Suzuki T, Yanagida T, Kubota K (2001) Cortical mapping of gait in humans: a nearinfrared spectroscopic topography study. Neuroimage 14:1186–1192

    Article  CAS  PubMed  Google Scholar 

  150. Mizuno N, Matsuda K, Iwahori N, Uemura-Sumi M, Kume M, Matsushima R (1981) Representation of the masticatory muscles in the motor trigeminal nucleus of the macaque monkey. Neurosci Lett 21:19–22

    Article  CAS  PubMed  Google Scholar 

  151. Morcuende S, Delgado-Garcia JM, Ugolini G (2002) Neuronal premotor networks involved in eyelid responses: retrograde transneuronal tracing with rabies virus from the orbicularis oculi muscle in the rat. J Neurosci 22:8808–8818

    CAS  PubMed  Google Scholar 

  152. Morecraft RJ, Van Hoesen GW (1998) Convergence of limbic input to the cingulate motor cortex in the rhesus monkey. Brain Res Bull 45:209–232

    Article  CAS  PubMed  Google Scholar 

  153. Morecraft RJ, Louie JL, Herrick JL, Stilwell-Morecraft KS (2001) Cortical innervation of the facial nucleus in the non-human primate: a new interpretation of the effects of stroke and related subtotal brain trauma on the muscles of facial expression. Brain 124:176–208

    Article  CAS  PubMed  Google Scholar 

  154. Morecraft RJ, McNeal DW, Stilwell-Morecraft KS, Gedney M, Ge J, Schroeder CM, van Hoesen GW (2007) Amygdala interconnections with the cingulate motor cortex in the rhesus monkey. J Comp Neurol 500:134–165

    Article  PubMed  Google Scholar 

  155. Mori S, Matsui T, Kuze B, Asanome M, Nakajima K, Matsuyama K (1998) Cerebellar-induced locomotion: reticulospinal control of spinal rhythm generating mechanism in cats. Ann NY Acad Sci 860:94–105

    Article  CAS  PubMed  Google Scholar 

  156. Murata A, Fadiga L, Fogassi L, Gallese V, Raos V, Rizzolatti G (1997) Object representation in the ventral premotor cortex (area F5) of the monkey. J Neurophysiol 78:2226–2230

    CAS  PubMed  Google Scholar 

  157. Nakagawa S (1980) Onuf’s nucleus of the sacral cord in a South American monkey (Saimiri): its location and bilateral cortical input. Brain Res 191:337–344

    Article  CAS  PubMed  Google Scholar 

  158. Nakano K, Hasegawa Y, Kayahara T, Tokushige A, Kuga Y (1993) Cortical connections of the motor thalamic nuclei in the Japanese monkey, Macaca fuscata. Stereotact Funct Neurosurg 60:42–61

    Article  CAS  PubMed  Google Scholar 

  159. Nielsen JB (2002) Motoneuronal drive during human walking. Brain Res Rev 40:192–201

    Article  Google Scholar 

  160. Olszewski J (1952) The thalamus of Macaca mulatta. Kruger, Basel

    Google Scholar 

  161. Onuf(rowicz) B (1900) On the arrangement and function of cells groups of the sacral region of the spinal cord in man. Arch Neurol Psych 3:387–411

    Google Scholar 

  162. Oriolo PJ, Strick PL (1989) Cerebellar connections with the motor cortex and the arcuate premotor area: an analysis employing retrograde transneuronal transport of WGA-HRP. J Comp Neurol 268:612–626

    Article  Google Scholar 

  163. Oscarsson O (1965) Functional organization of the spino-and cuneocerebellar tracts. Physiol Rev 43:495–522

    Google Scholar 

  164. Pandya DN, Seltzer B (1982) Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey. J Comp Neurol 204:196–210

    Article  CAS  PubMed  Google Scholar 

  165. Passingham EE (1993) The frontal lobe and voluntary action. Oxford University Press, Oxford

    Google Scholar 

  166. Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443

    Article  Google Scholar 

  167. Penfield W, Welch K (1951) The supplementary motor area of the cerebral cortex; a clinical and experimental study. AMA Arch Neurol Psychiatry 66:289–317

    CAS  PubMed  Google Scholar 

  168. Picard N, Strick PL (1996) Motor areas of the medial wall: a review of their location and functional activation. Cereb Cortex 6:342–353

    Article  CAS  PubMed  Google Scholar 

  169. Pijpers A (2007) Functional anatomy of the intermediate cerebellum in the rat. Thesis Erasmus University, Rotterdam

    Google Scholar 

  170. Poppele RE, Rankin A, Eian J (2003) Dorsal spinocerebellar tract neurons respond to contralateral limb stepping. Exp Brain Res 149:361–370

    CAS  PubMed  Google Scholar 

  171. Pritchard TC, Hamilton RB, Morse JR, Norgren R (1986) Projections of thalamic gustatory and lingual areas in the monkey, Macaca fascicularis. J Comp Neurol 244:213–228

    Article  CAS  PubMed  Google Scholar 

  172. Pritchard TC, Hamilton RB, Norgren R (2000) Projections of the parabrachial nucleus in the old world monkey. Exp Neurol 165:101–117

    Article  CAS  PubMed  Google Scholar 

  173. Reed AF (1940) The nuclear masses in the cervical spinal cord of Macaca mulatta. J Comp Neurol 72:187–205

    Article  Google Scholar 

  174. Rho MJ, Lavoie S, Drew T (1999) Effects of red nucleus microstimulation on the locomotor pattern and timing in the intact cat: a comparison with the motor cortex. J Neurophysiol 81:2297–2315

    CAS  PubMed  Google Scholar 

  175. Rizzolatti G, Luppino G, Matelli M (1998) The organization of the cortical motor system: new concepts. Electroencephalogr Clin Neurophysiol 106:283–296

    Article  CAS  PubMed  Google Scholar 

  176. Rizzolatti G, Fogassi L, Gallese V (2002) Motor and cognitive functions of the ventral premotor cortex. Curr Opin Neurobiol 12:149–154

    Article  CAS  PubMed  Google Scholar 

  177. Romanes GJ (1951) The motor cell columns of the lumbo-sacral spinal cord of the cat. J Comp Neurol 94:313–363

    Article  CAS  PubMed  Google Scholar 

  178. Rossignol S, Dubuc R, Gossard JP (2006) Dynamic sensorimotor interactions in locomotion. Physiol Rev 86:89–154

    Article  PubMed  Google Scholar 

  179. Rouiller EM, Liang F, Babalian A, Moret V, Wiesendanger M (1994) Cerebellothalamocortical and pallidothalamocortical projections to the primary and supplementary motor cortical areas: a multiple tracing study in macaque monkeys. J Comp Neurol 345:185–213

    Article  CAS  PubMed  Google Scholar 

  180. Rozzi S, Calzavara R, Belmalih A, Borra E, Gregoriou GG, Matelli M, Luppino G (2006) Cortical connections of the inferior parietal cortical convexity of the macaque monkey. Cereb Cortex 16:1389–1417

    Article  PubMed  Google Scholar 

  181. Ruigrok TJ, Cella F, Voogd J (1995) Connections of the lateral reticular nucleus to the lateral vestibular nucleus in the rat. An anterograde tracing study with Phaseolus vulgaris leucoagglutinin. Eur J Neurosci 7:1410–1413

    Article  CAS  PubMed  Google Scholar 

  182. Ruigrok TJ, van der Burg H, Sabel-Goedknegt E (1996) Locomotion coincides with c-Fos expression in related areas of inferior olive and cerebellar nuclei in the rat. Neurosci Lett 214:119–122

    Article  CAS  PubMed  Google Scholar 

  183. Russell DF, Zajac FE (1979) Effects of stimulating Deiters’ nucleus and medial longitudinal fasciculus on the timing of the fictive locomotor rhythm induced in cats by DOPA. Brain Res 177:588–592

    Article  CAS  PubMed  Google Scholar 

  184. Rybak IA, Shevtsova NA, Lafreniere-Roula M, McCrea DA (2006) Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion. J Physiol 577:617–639

    Article  CAS  PubMed  Google Scholar 

  185. Sakai ST, Inase M, Tanji J (1996) Comparison of cerebellothalamic and pallidothalamic projections in the monkey (Macaca fuscata): a double anterograde labeling study. J Comp Neurol 368:215–228

    Article  CAS  PubMed  Google Scholar 

  186. Sakai ST, Inase M, Tanji J (1999) Pallidal and cerebellar inputs to thalamocortical neurons projecting to the supplementary motor area in Macaca fuscata: a triple-labeling light microscopic study. Anat Embryol (Berl) 199:9–19

    Article  CAS  Google Scholar 

  187. Sakata H, Taira M (1994) Parietal control of hand action. Curr Opin Neurobiol 4:847–856

    Article  CAS  PubMed  Google Scholar 

  188. Sakata H, Taira M, Kusunoki M, Murata A, Tanaka Y, Tsutsui K (1998) Neural coding of 3D features of objects for hand action in the parietal cortex of the monkey. Philos Trans R Soc Lond B Biol Sci 353:1363–1373

    Article  CAS  PubMed  Google Scholar 

  189. Satoda T, Takahashi O, Tashiro T, Matsushima R, Uemura-Sumi M, Mizuno N (1987) Representation of the main branches of the facial nerve within the facial nucleus of the Japanese monkey (Macaca fuscata). Neurosci Lett 78:283–287

    Article  CAS  PubMed  Google Scholar 

  190. Satoda T, Uemura-Sumi M, Tashird T, Takahashi O, Matsushima R, Mizuno N (1990) Localization of motoneurons innervating the stylohyoid muscle in the monkey, cat, rabbit, rat and shrew. J Hirnforsch 31:731–737

    CAS  PubMed  Google Scholar 

  191. Satoda T, Takahashi O, Murakami C, Uchida T, Mizuno N (1996) The sites of origin and termination of afferent and efferent components in the lingual and pharyngeal branches of the glossopharyngeal nerve in the Japanese monkey (Macaca fuscata). Neurosci Res 24:385–392

    Article  CAS  PubMed  Google Scholar 

  192. Schoen HJR (1964) Comparative aspects of the descending fibre systems in the spinal cord. Progress in Brain Research 11:203–222

    Article  CAS  PubMed  Google Scholar 

  193. Schoen JHR (1969) The corticofugal projection on the brain stem and spinal cord in man. Psychiat Neurol Neurochir 72:121–128

    CAS  PubMed  Google Scholar 

  194. Schubert M, Curt A, Jensen L, Dietz V (1997) Corticospinal input in human gait: modulation of magnetically evoked motor responses. Exp Brain Res 115:234–246

    Article  CAS  PubMed  Google Scholar 

  195. Schubert M, Bohner C, Berger W, Sprundel M, Duysens JE (2003) The role of vision in maintaining heading direction: effects of changing gaze and optic flow on human gait. Exp Brain Res 150:163–173

    CAS  PubMed  Google Scholar 

  196. Scott SH (2003) The role of primary motor cortex in goal-directed movements: insights from neurophysiological studies on non-human primates. Curr Opin Neurobiol 13:671–677

    Article  CAS  PubMed  Google Scholar 

  197. Sharrard WJW (1955) The distribution of the permanent paralysis in the lower limb in poliomyelitis. J Bone Jt Surg 37:540–558

    Google Scholar 

  198. Shiba K, Umezaki T, Zheng Y, Miller AD (1997) The nucleus retroambigualis controls laryngeal muscle activity during vocalization in the cat. Exp Brain Res 115:513–519

    Article  CAS  PubMed  Google Scholar 

  199. Shigenaga Y, Yoshida A, Mitsuhiro Y, Doe K, Suemune S (1988) Morphology of single mesencephalic trigeminal neurons innervating periodontal ligament of the cat. Brain Res 448:331–338

    Article  CAS  PubMed  Google Scholar 

  200. Shigenaga Y, Yoshida A, Mitsuhiro Y, Tsuru K, Doe K (1988) Morphological and functional properties of trigeminal nucleus oralis neurons projecting to the trigeminal motor nucleus of the cat. Brain Res 461:143–149

    Article  CAS  PubMed  Google Scholar 

  201. Shik ML, Severin FV, Orlovsky GN (1966) Control of walking and running by means of electrical stimulation of the midbrain. Biophysics 11:756–765

    Google Scholar 

  202. Shinoda Y, Yokota J, Futami T (1981) Divergent projection of individual corticospinal axons to motoneurons motoneurons of multiple muscles in the monkey. Neurosci Lett 23:7–12

    Article  CAS  PubMed  Google Scholar 

  203. Shinoda Y, Sugiuchi Y, Izawa Y, Hata Y (2005) Long descending motor tract axons and their control of neck and axial muscles. Prog Brain Res 151:527–563

    Article  Google Scholar 

  204. Skinner RD, Kinjo N, Ishikawa Y, Biedermann JA, Garcia-Rill E (1990) Locomotor projections from the pedunculopontine nucleus to the medioventral medulla. Neuroreport 1:207–210

    Article  CAS  PubMed  Google Scholar 

  205. Spann BM, Grofova I (1991) Nigropedunculopontine projection in the rat: an anterograde tracing study with phaseolus vulgaris-leucoagglutinin (PHA-L). J Comp Neurol 311:375–388

    Article  CAS  PubMed  Google Scholar 

  206. Sterling P, Kuypers HG (1967) Anatomical organization of the brachial spinal cord of the cat. II. The motoneuron plexus. Brain Res 4:16–32

    Article  CAS  PubMed  Google Scholar 

  207. Sukhotinsky I, Reiner K, Govrin-Lippmann R, Belenky M, Lu J, Hopkins DA, Saper CB, Devor M (2006) Projections from the mesopontine tegmental anesthesia area to regions involved in pain modulation. J Chem Neuroanat 32:159–178

    Article  CAS  PubMed  Google Scholar 

  208. Takakusaki K, Saitoh K, Harada H, Kashiwayanagi M (2004) Role of basal ganglia-brainstem pathways in the control of motor behaviors. Neurosci Res 50:137–151

    Article  CAS  PubMed  Google Scholar 

  209. Takakusaki K, Habaguchi T, Saitoh K, Kohyama J (2004) Changes in the excitability of hindlimb motoneurons during muscular atonia induced by stimulating the pedunculopontine tegmental nucleus in cats. Neuroscience 124:467–480

    Article  CAS  PubMed  Google Scholar 

  210. Tanji J (1996) New concepts of the supplementary motor area. Cur Opin Neurobiol 6:782–787

    Article  CAS  Google Scholar 

  211. Tunik E, Frey SH, Grafton ST (2005) Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp. Nat Neurosci 8:505–511

    CAS  PubMed  Google Scholar 

  212. Uemura M, Matsuda K, Kume M, Takeuchi Y, Matsushima R, Mizuno N (1979) Topographical arrangement of hypoglossal motoneurons: an HRP study in the cat. Neurosci Lett 13:99–104

    Article  CAS  PubMed  Google Scholar 

  213. Ueyama T, Arakawa H, Mizuno N (1987) Central distribution of efferent and afferent components of the pudendal nerve in rat. Anat Embryol (Berl) 177:37–49

    Article  CAS  Google Scholar 

  214. Van de Crommert HW, Mulder T, Duysens J (1998) Neural control of locomotion: sensory control of the central pattern generator and its relation to treadmill training. Gait Posture 7:251–263

    Article  PubMed  Google Scholar 

  215. Van Wezel BM, Ottenhoff FA, Duysens J (1997) Dynamic control of location-specific information in tactile cutaneous reflexes from the foot during human walking. J Neurosci 17:3804–3814

    PubMed  Google Scholar 

  216. Vanderhorst VG, Holstege G (1997) Organization of lumbosacral motoneuronal cell groups innervating hindlimb, pelvic floor, and axial muscles in the cat. J Comp Neurol 382:46–76

    Article  CAS  PubMed  Google Scholar 

  217. Van der Horst VG, Mouton LJ, Blok BF, Holstege G (1996) Distinct cell groups in the lumbosacral cord of the cat project to different areas in the periaqueductal gray. J Comp Neurol 376:361–385

    Article  Google Scholar 

  218. Van der Horst VG, Terasawa E, Ralston HJ, 3rd, Holstege G (2000) Monosynaptic projections from the lateral periaqueductal gray to the nucleus retroambiguus in the rhesus monkey: implications for vocalization and reproductive behavior. J Comp Neurol 424:251–268

    Article  Google Scholar 

  219. Van der Horst VG, Terasawa E, Ralston HJ, 3rd (2001) Monosynaptic projections from the nucleus retroambiguus region to laryngeal motoneurons in the rhesus monkey. Neuroscience 107:117–125

    Article  Google Scholar 

  220. Vilensky JA, O’Connor BL (1998) Stepping in nonhuman primates with a complete spinal cord transection: old and new data, and implications for humans. Ann NY Acad Sci 860:528–530

    Article  CAS  PubMed  Google Scholar 

  221. Vinay L, Padel Y, Bourbonnais D, Steffens H (1993) An ascending spinal pathway transmitting a central rhythmic pattern to the magnocellular red nucleus in the cat. Exp Brain Res 97:61–70

    Article  CAS  PubMed  Google Scholar 

  222. Wang HF, Shortland P, Park MJ, Grant G (1998) Retrograde and transganglionic transport of horseradish-conjugated cholera toxin B unit, wheatgerm agglutinin and isolectin B4 from Griffonia simplicifolia I in pimary afferent neurons innervating the rat urinary bladder. Neuroscience 87:275–278

    Article  CAS  PubMed  Google Scholar 

  223. Weiss C, Houk JC, Gibson AR (1990) Inhibition of sensory responses of cat inferior olive neurons produced by stimulation of red nucleus. J Neurophysiol 64:1170–1185

    CAS  PubMed  Google Scholar 

  224. Wiesendanger M, Wise SP (1992) Current issues concerning the functional organization of motor cortical areas in nonhuman primates. Adv Neurol 57:117–134

    CAS  PubMed  Google Scholar 

  225. Woolsey CN, Settlage PH, Meyer DR, Sencer W, Pinto Hamuy T, Travis AM (1952) Patterns of localization in precentral and “supplementary” motor areas and their relation to the concept of a premotor area. Res Publ Assoc Res Nerv Ment Dis 30:238–264

    CAS  PubMed  Google Scholar 

  226. Yoshida Y, Mitsumasu T, Miyazaki T, Hirano M, Kanaseki T (1984) Distribution of motoneurons in the brain stem of monkeys, innervating the larynx. Brain Res Bull 13:413–419

    Article  CAS  PubMed  Google Scholar 

  227. Yoshida Y, Mitsumasu T, Hirano M, Kanaseki T (1985) Somatotopic representation of the laryngeal motoneurons in the medulla of monkeys. Acta Otolaryngol 100:299–303

    Article  CAS  PubMed  Google Scholar 

  228. Zald DH, Pardo JV (1999) The functional neuroanatomy of voluntary swallowing. Ann Neurol 46:281–286

    Article  CAS  PubMed  Google Scholar 

  229. Zhang SP, Davis PJ, Bandler R, Carrive P (1994) Brain stem integration of vocalization: role of the midbrain periaqueductal gray. J Neurophysiol 72:1337–1356

    CAS  PubMed  Google Scholar 

  230. Zilles K, Schlaug G, Geyer S, Luppino G, Matelli M, Qu M, Schleicher A, Schormann T (1996) Anatomy and transmitter receptors of the supplementary motor areas in the human and nonhuman primate brain. Adv Neurol 70:29–43

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Italia

About this chapter

Cite this chapter

Nieuwenhuys, R., Voogd, J., van Huijzen, C., Papa, M. (2010). Sistemi motori. In: Il sistema nervoso centrale. Springer, Milano. https://doi.org/10.1007/978-88-470-1140-3_21

Download citation

Publish with us

Policies and ethics