Skip to main content

Riassunto

Il cervelletto (il “piccolo cervello”) è posto nella fossa cranica posteriore. Le scissure trasverse dividono la sua superficie in strette pieghe definite folia. Il cervelletto elabora informazioni originate da numerose diverse fonti, tra cui il midollo spinale, il tronco encefalico e la cortex cerebrale, e proietta a numerosi differenti centri nel cervello coinvolti nell’adattamento posturale e nella generazione dei movimenti. Il cervelletto è rivestito dalla cortex; i nuclei cerebellari occupano una posizione centrale nella sostanza bianca cerebellare. Nella cortex si distinguono tre strati. Un monostrato formato dai pericaria delle grandi cellule di Purkinje separa lo strato molecolare, superficiale e povero di cellule, dallo strato profondo, occupato dalle cellule dei granuli. Le cellule di Purkinje costituiscono gli unici elementi efferenti della cortex cerebellare. Gli strati granulare e molecolare contengono entrambi diversi tipi di interneuroni.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliograffa

  1. Adrian AD (1943) Afferent areas in the cerebellum connected with the limbs. Brain Res 66:289–315

    Google Scholar 

  2. Ahn AH, Dziennis S, Hawkes R, Herrup K (1994) The cloning of zebrin II reveals its identity with aldolase C. Development 120:2081–2090

    CAS  PubMed  Google Scholar 

  3. Andersson G, Oscarsson O (1978) Projections to lateral vestibular nucleus from cerebellar climbing fiber zones. Exp Brain Res 32:549–564

    CAS  PubMed  Google Scholar 

  4. Andersson G, Oscarsson O (1978) Climbing fiber microzones in cerebellar vermis and their projection to different groups of cells in the lateral vestibular nucleus. Exp Brain Res 32:565–579

    CAS  PubMed  Google Scholar 

  5. Armstrong CL, Hawkes R (2000) Pattern formation in the cerebellar cortex. Biochem Cell Biol 78:551–562

    Article  CAS  PubMed  Google Scholar 

  6. Armstrong DM (1989) The supraspinal control of mammalian locomotion. J Physiol 405:1–37

    Google Scholar 

  7. Arshafsky YI, Gelfand IM, Orlovsky GN (1986) Cerebellum and rythmical movements. Springer, Berlin Heidelberg New York

    Google Scholar 

  8. Barmack NH, Baughman RW, Eckenstein FP (1992) Cholinergic innervation of the cerebellum of rat, rabbit, cat, and monkey as revealed by choline acetyltransferase activity and immunohistochemistry. J Comp Neurol 317:233–249

    Article  CAS  PubMed  Google Scholar 

  9. Barmack NH, Fredette BJ, Mugnaini E (1998) Parasolitary nucleus: a source of GABAergic vestibular information to the inferior olive of rat and rabbit. J Comp Neurol 392:352–372

    Article  CAS  PubMed  Google Scholar 

  10. Barmack NH, Baughman RW, Eckenstein FP, Shojaku H (1992) Secondary vestibular cholinergic projection to the cerebellum of rabbit and rat as revealed by choline acetyltransferase immunohistochemistry, retrograde and orthograde tracers. J Comp Neurol 317:250–270

    Article  CAS  PubMed  Google Scholar 

  11. Batton RR, Jayaraman A, Ruggiero D, Carpenter MB (1977) Fastigial efferent projections in the monkey: an autoradiographic study. J Comp Neurol 174:281–305

    Article  PubMed  Google Scholar 

  12. Beck E (1950) The origin, course and termination of the prefronto-pontine tract in the human brain. Brain 73:368–391

    Article  CAS  PubMed  Google Scholar 

  13. Bentivoglio M, Kuypers HG (1982) Divergent axon collaterals from rat cerebellar nuclei to diencephalon, mesencephalon, medulla oblongata and cervical cord. A fluorescent double retrograde labeling study. Exp Brain Res 46:339–356

    Article  CAS  PubMed  Google Scholar 

  14. Bentivoglio M, Molinari M (1986) Crossed divergent axon collaterals from cerebellar nuclei to thalamus and lateral medulla oblongata in the rat. Brain Res 362:180–184

    Article  CAS  PubMed  Google Scholar 

  15. Bolk L (1906) Das Cerebellum der Säugetiere. Fischer, Haarlem

    Google Scholar 

  16. Bower JM, Woolston DC (1983) Congruence of spatial organization of tactile projections to granule cell and Purkinje cell layers of cerebellar hemispheres of the albino rat: vertical organization of cerebellar cortex. J Neurophysiol 49:745–766

    CAS  PubMed  Google Scholar 

  17. Braitenberg V, Atwood RP (1958) Morphological observations on the cerebellar cortex. J Comp Neurol 109:1–33

    Article  CAS  PubMed  Google Scholar 

  18. Brochu G, Maler L, Hawkes R (1990) Zebrin II: a polypeptide antigen expressed selectively by Purkinje cells reveals compartments in rat and fish cerebellum. J Comp Neurol 291:538–552

    Article  CAS  PubMed  Google Scholar 

  19. Brodal A (1940) Untersuchungen über die Olivocerebellare Lokalisation. Z Neurol 169:1053

    Google Scholar 

  20. Brodal A, Kawamura K (1980) Olivocerebellar projection: a review. Adv Anat Embryol Cell Biol 64:1–137

    Google Scholar 

  21. Brodal P (1978) The corticopontine projection in the rhesus monkey. Origin and principles of organization. Brain 101:251–283

    Article  CAS  PubMed  Google Scholar 

  22. Brodal P (1979) The pontocerebellar projection in the rhesus monkey: an experimental study with retrograde axonal transport of horseradish peroxidase. Neuroscience 4:193–208

    Article  CAS  PubMed  Google Scholar 

  23. Brown IE, Bower JM (2001) Congruence of mossy fiber and climbing fiber tactile projections in the lateral hemispheres of the rat cerebellum. J Comp Neurol 429:59–70

    Article  CAS  PubMed  Google Scholar 

  24. Buisseret-Delmas C, Angaut P (1993) The cerebellar olivo-corticonuclear connections in the rat. Prog Neurobiol 40:63–87

    Article  CAS  PubMed  Google Scholar 

  25. Buisseret-Delmas C, Yatim N, Buisseret P, Angaut P (1993) The X zone and CX subzone of the cerebellum in the rat. Neurosci Res 16:195–207

    Article  CAS  PubMed  Google Scholar 

  26. Burman K, Darian-Smith C, Darian-Smith I (2000) Macaque red nucleus: origins of spinal and olivary projections and terminations of cortical inputs. J Comp Neurol 423:179–196

    Article  CAS  PubMed  Google Scholar 

  27. Cajal SR y (1888) Estructura de los centros nerviosos de las aves. I. Cerebelo. Revist trimestr de Histol norm y patol 1

    Google Scholar 

  28. Cajal SR y (1972) Histologie du système nerveux de l’homme et des vertebrés. Consejo Superior de Investigaciones Cientificas, Madrid

    Google Scholar 

  29. Catsman-Berrevoets CE, Kuypers HJGM, Lemon RN (1979) Cells of origin of the cortical projections to magnocellular and parvocellular red nucleus and superior colliculus in cynomolgus monkey. An HRP study. Neurosci Lett 12:41–46

    Article  Google Scholar 

  30. Chen S, Hillman DE (1993) Colocalization of neurotransmitters in the deep cerebellar nuclei. J Neurocytol 22:81–91

    Article  CAS  PubMed  Google Scholar 

  31. Chen S, Hillman DE (1994) Immunohistochemical localization of protein kinase C delta during postnatal development of the cerebellum. Brain Res Dev Brain Res 80:19–25

    Article  CAS  PubMed  Google Scholar 

  32. Clower DM, West RA, Lynch JC, Strick PL (2001) The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. J Neurosci 21:6283–6291

    CAS  PubMed  Google Scholar 

  33. Collewijn H, Van der Steen J (1987) Visual control of the vestibulo-ocular reflex in the rabbit: a multilevel interaction. In: Glickstein M, Yeo C, Stein J (eds) Cerebellum and neuronal plasticity. Plenum, London, pp 277–291

    Google Scholar 

  34. Darkschewitsch LO (1889) Über den oberen Kern des Oculomotorius. Arch f Anat u Physiol Anat Abth:107–116

    Google Scholar 

  35. De Zeeuw CI, Ruigrok TJ (1994) Olivary projecting neurons in the nucleus of Darkschewitsch in the cat receive excitatory monosynaptic input from the cerebellar nuclei. Brain Res 653:345–350

    Article  PubMed  Google Scholar 

  36. De Zeeuw CI, Yeo CH (2005) Time and tide in cerebellar memory formation. Curr Opin Neurobiol 15:667–674

    Article  PubMed  CAS  Google Scholar 

  37. De Zeeuw CI, Holstege JC, Ruigrok TJ, Voogd J (1989) Ultrastructural study of the GABAergic, cerebellar, and mesodiencephalic innervation of the cat medial accessory olive: anterograde tracing combined with immunocytochemistry. J Comp Neurol 284:12–35

    Article  PubMed  Google Scholar 

  38. De Zeeuw CI, Holstege JC, Ruigrok TJ, Voogd J (1990) Mesodiencephalic and cerebellar terminals terminate upon the same dendritic spines in the glomeruli of the cat and rat inferior olive: an ultrastructural study using a combination of [3H]leucine and wheat germ agglutinin coupled horseradish peroxidase anterograde tracing. Neuroscience 34:645–655

    Article  PubMed  Google Scholar 

  39. De Zeeuw CI, Gerrits NM, Voogd J, Leonard CS, Simpson JI (1994) The rostral dorsal cap and ventrolateral outgrowth of the rabbit inferior olive receive a GABAergic input from dorsal group Y and the ventral dentate nucleus. J Comp Neurol 341:420–432

    Article  PubMed  Google Scholar 

  40. Dehnes Y, Chaudhry FA, Ullensvang K, Lehre KP, Storm-Mathisen J, Danbolt NC (1998) The glutamate transporter EAAT4 in rat cerebellar Purkinje cells: a glutamate-gated chloride channel concentrated near the synapse in parts of the dendritic membrane facing astroglia. J Neurosci 18:3606–3619

    CAS  PubMed  Google Scholar 

  41. Demolé V (1927) Structure et connexions des noyeaux dentelés du cervelet. I. Schweiz Arch Psychiat Neurol 20:271–294

    Google Scholar 

  42. Demolé V (1927) Structure et connexions des noyeaux dentelés du cervelet. II. Schweiz Arch Psychiat Neurol 21:73–110

    Google Scholar 

  43. Desmurget M, Pelisson D, Grethe JS, Alexander GE, Urquizar C, Prablanc C, Grafton ST (2000) Functional adaptation of reactive saccades in humans: a PET study. Exp Brain Res 132:243–259

    Article  CAS  PubMed  Google Scholar 

  44. Dino MR, Schuerger RJ, Liu Y, Slater NT, Mugnaini E (2000) Unipolar brush cell: a potential feedforward excitatory interneuron of the cerebellum. Neuroscience 98:625–636

    Article  CAS  PubMed  Google Scholar 

  45. Diño MR, Nunzi MG, Anelli R, Mugnaini E (2000) Unipolar brush cells of the vestibulocerebellum: afferents and targets. Prog Brain Res 124:123–137

    Article  PubMed  Google Scholar 

  46. Dusart I, Morel MP, Sotelo C (1994) Parasagittal compartmentation of adult rat Purkinje cells expressing the low-affinity nerve growth factor receptor: changes of pattern expression after a traumatic lesion. Neuroscience 63:351–356

    Article  CAS  PubMed  Google Scholar 

  47. Eccles JC, Provini L, Strata P, Taborikova H (1968) Analysis of electrical potentials evoked in the cerebellar anterior lobe by stimulation of hindlimb and forelimb nerves. Exp Brain Res 6:171–194

    Article  CAS  PubMed  Google Scholar 

  48. Eccles JC, Provini L, Strata P, Taborikova H (1968) Topographical investigations on the climbing fiber inputs from forelimb and hindlimb afferents to the cerebellar anterior lobe. Exp Brain Res 6:195–215

    Article  CAS  PubMed  Google Scholar 

  49. Eisenman LM, Hawkes R (1989) 5_-Nucleotidase and the mabQ113 antigen share a common distribution in the cerebellar cortex of the mouse. Neuroscience 31:231–235

    Article  CAS  PubMed  Google Scholar 

  50. Ekerot CF, Larson B (1979) The dorsal spinoolivocerebellar system in the cat. II. Somatotopical organization. Exp Brain Res 36:219–232

    Article  CAS  PubMed  Google Scholar 

  51. Ekerot CF, Larson B (1979) The dorsal spinoolivocerebellar system in the cat. I. Functional organization and termination in the anterior lobe. Exp Brain Res 36:201–217

    Article  CAS  PubMed  Google Scholar 

  52. Ekerot CF, Larson B (1980) Termination in overlapping sagittal zones in cerebellar anterior lobe of mossy and climbing fiber paths activated from dorsal funiculus. Exp Brain Res 38:163–172

    Article  CAS  PubMed  Google Scholar 

  53. Ekerot CF, Larson B (1982) Branching of olivary axons to innervate pairs of sagittal zones in the cerebellar anterior lobe of the cat. Exp Brain Res 48:185–198

    Article  CAS  PubMed  Google Scholar 

  54. Ekerot CF, Jörntell H (2003) Parallel fiber receptive fields: a key to understanding cerebellar operation and learning. Cerebellum 2:101–109

    Article  PubMed  Google Scholar 

  55. Ekerot CF, Garwicz M, Schouenborg J (1991) Topography and nociceptive receptive fields of climbing fibres projecting to the cerebellar anterior lobe in the cat. J Physiol 441:257–274

    CAS  PubMed  Google Scholar 

  56. Faugier-Grimaud S, Ventre J (1989) Anatomic connections of the inferior parietal cortex (area 7) with subcortical structures related to vestibulo-ocular function in a monkey (Macaca fascicularis). J Comp Neurol 280:1–14

    Article  CAS  PubMed  Google Scholar 

  57. Floris A, Dino M, Jacobowitz DM, Mugnaini E (1994) The unipolar brush cells of the rat cerebellar cortex and cochlear nucleus are calretinin-positive: a study by light and electron microscopic immunocytochemistry. Anat Embryol (Berl) 189:495–520

    CAS  Google Scholar 

  58. Freeman JH, Rabinak CA (2004) Eyeblink conditioning in rats using pontine stimulation as a conditioned stimulus. Integr Physiol Behav Sci 39:180–191

    Article  PubMed  Google Scholar 

  59. Fusco FR, Viscomi MT, Bernardi G, Molinari M (2001) Localization of ataxin-2 within the cerebellar cortex of the rat. Brain Res Bull 56:343–347

    Article  CAS  PubMed  Google Scholar 

  60. Garwicz M (1997) Sagittal zonal organization of climbing fibre input to the cerebellar anterior lobe of the ferret. Exp Brain Res 117:389–398

    Article  CAS  PubMed  Google Scholar 

  61. Gellman R, Houk JC, Gibson AR (1983) Somatosensory properties of the inferior olive of the cat. J Comp Neurol 215:228–243

    Article  CAS  PubMed  Google Scholar 

  62. Gerrits NM, Voogd J (1986) The nucleus reticularis tegmenti pontis and the adjacent rostral paramedian reticular formation: differential projections to the cerebellum and the caudal brain stem. Exp Brain Res 62:29–45

    Article  CAS  PubMed  Google Scholar 

  63. Gerrits NM, Voogd J, Nas WS (1985) Cerebellar and olivary projections of the external and rostral internal cuneate nuclei in the cat. Exp Brain Res 57:239–255

    Article  CAS  PubMed  Google Scholar 

  64. Gerrits NM, Epema AH, van Linge A, Dalm E (1989) The primary vestibulocerebellar projection in the rabbit: absence of primary afferents in the flocculus. Neurosci Lett 105:27–33

    Article  CAS  PubMed  Google Scholar 

  65. Gibson AR, Horn KM, Pong M (2004) Activation of climbing fibers. Cerebellum 3:212–221

    Article  PubMed  Google Scholar 

  66. Gibson AR, Horn KM, Pong M, Van Kan PL (1998) Construction of a reach-to-grasp. Novartis Found Symp 218:233–245

    Article  CAS  PubMed  Google Scholar 

  67. Gilman S, Bloedel JR, Lechtenberg R (1981) Disorders of the cerebellum. Davis, Philadelphia

    Google Scholar 

  68. Glickstein M (1993) Motor skills but not cognitive tasks. Trends Neurosci 16:450–451

    Article  CAS  PubMed  Google Scholar 

  69. Glickstein M, May JG, 3rd, Mercier BE (1985) Corticopontine projection in the macaque: the distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. J Comp Neurol 235:343–359

    Article  CAS  PubMed  Google Scholar 

  70. Glickstein M, Gerrits N, Kralj-Hans I, Mercier B, Stein J, Voogd J (1994) Visual pontocerebellar projections in the macaque. J Comp Neurol 349:51–72

    Article  CAS  PubMed  Google Scholar 

  71. Goossens J, Daniel H, Rancillac A, van der Steen J, Oberdick J, Crepel F, De Zeeuw CI, Frens MA (2001) Expression of protein kinase C inhibitor blocks cerebellar long-term depression without affecting Purkinje cell excitability in alert mice. J Neurosci 21:5813–5823

    CAS  PubMed  Google Scholar 

  72. Gundappa-Sulur G, De Schutter E, Bower JM (1999) Ascending granule cell axon: an important component of cerebellar cortical circuitry. J Comp Neurol 408:580–596

    Article  CAS  PubMed  Google Scholar 

  73. Hansel C, Linden DJ, D’Angelo E (2001) Beyond parallel fiber LTD: the diversity of synaptic and nonsynaptic plasticity in the cerebellum. Nat Neurosci 4:467–475

    CAS  PubMed  Google Scholar 

  74. Harting JK (1977) Descending pathways from the superior collicullus: an autoradiographic analysis in the rhesus monkey (Macaca mulatta). J Comp Neurol 173:583–612

    Article  CAS  PubMed  Google Scholar 

  75. Hartmann-von Monakow KH, Akert K, Künzle H (1979) Projections of precentral and premotor cortex to the red nucleus and other midbrain areas in Macaca fascicularis. Exp Brain Res 34:91–105

    Google Scholar 

  76. Hawkes R, Leclerc N (1987) Antigenic map of the rat cerebellar cortex: the distribution of parasagittal bands as revealed by monoclonal anti-Purkinje cell antibody mapQ113. J Comp Neurol 256:29–41

    Article  CAS  PubMed  Google Scholar 

  77. Hawkes R, Turner RW (1994) Compartmentation of NADPH-diaphorase activity in the mouse cerebellar cortex. J Comp Neurol 346:499–516

    Article  CAS  PubMed  Google Scholar 

  78. Hawkes R, Herrup K (1995) Aldolase C/zebrin II and the regionalization of the cerebellum. J Mol Neurosci 6:147–158

    Article  CAS  PubMed  Google Scholar 

  79. Hess DT (1982) The tecto-olivo-cerebellar pathway in the rat. Brain Res 250:143–148

    Article  CAS  PubMed  Google Scholar 

  80. Hoover JE, Strick PL (1999) The organization of cerebellar and basal ganglia outputs to primary motor cortex as revealed by retrograde transneuronal transport of herpes simplex virus type 1. J Neurosci 19:1446–1463

    CAS  PubMed  Google Scholar 

  81. Hoshi E, Tremblay L, Feger J, Carras PL, Strick PL (2005) The cerebellum communicates with the basal ganglia. Nat Neurosci 8:1491–1493

    Article  CAS  PubMed  Google Scholar 

  82. Humphrey DR, Gold R, Reed DJ (1984) Sites, laminar and topographical origins of cortical projections to the major divisions of the red nucleus in the monkey. J Comp Neurol 225:75–94

    Article  CAS  PubMed  Google Scholar 

  83. Ito M (1972) Neural design of the cerebellar motor control system. Brain Res 40:81–84

    Article  CAS  PubMed  Google Scholar 

  84. Ito M (1982) Cerebellar control of the cerebellar vestibulo-ocular reflex-around the floccular hypothesis. Ann Rev Neurosci 5:275–296

    Article  CAS  PubMed  Google Scholar 

  85. Ito M (2001) Cerebellar long term depression: characterization, signal transduction, and functional roles. Physiol Rev 81:1143–1195

    CAS  PubMed  Google Scholar 

  86. Ito M, Yoshida M, Obata K (1964) Monosynaptic inhibition of the cerebellar nuclei induced from the cerebellar cortex. Experientia 20:575–576

    Article  CAS  PubMed  Google Scholar 

  87. Ivarsson M, Svensson P, Hesslow G (1997) Bilateral disruption of conditioned responses after unilateral blockade of cerebellar output in the decerebrate ferret. J Physiol 502:189–201

    Article  CAS  PubMed  Google Scholar 

  88. Jaarsma D, Ruigrok TJ, Caffé R, Cozzari C, Levey AI, Mugnaini E, Voogd J (1997) Cholinergic innervation and receptors in the cerebellum. Prog Brain Res 114:67–96

    Article  CAS  PubMed  Google Scholar 

  89. Jansen J, Brodal A (1940) Experimental studies on the intrinsic fibers of the cerebellum. II. The corticonuclear projection. J Comp Neurol 73:267–321

    Article  Google Scholar 

  90. Jansen J, Brodal A (1942) Experimental studies on the intrinsic fibers of the cerebellum. III. Corticonuclear projection in the rabbit and the monkey. Norsk Vid Akad Avh I Math Nat Kl 3:1–50

    Google Scholar 

  91. Ji Z, Hawkes R (1994) Topography of Purkinje cell compartments and mossy fiber terminal fields in lobules II and III of the rat cerebellar cortex: spinocerebellar and cuneocerebellar projections. Neuroscience 61:935–954

    Article  CAS  PubMed  Google Scholar 

  92. Jinno S, Jeromin A, Roder J, Kosaka T (2003) Compartmentation of the mouse cerebellar cortex by neuronal calcium sensor-1. J Comp Neurol 458:412–424

    Article  CAS  PubMed  Google Scholar 

  93. Jörntell H, Ekerot CF (1999) Topographical organization of projections to cat motor cortex from nucleus interpositus anterior and forelimb skin. J Physiol 514:551–566

    Article  PubMed  Google Scholar 

  94. Jörntell H, Garwicz M, Ekerot CF (1996) Relation between cutaneous receptive fields and muscle afferent input to climbing fibres projecting to the cerebellar C3 zone in the cat. Eur J Neurosci 8:1769–1779

    Article  PubMed  Google Scholar 

  95. Kappel RM (1981) The development of the cerebellum in Macaca mulatta. A study of regional differences during corticogenesis. Thesis, Leiden

    Google Scholar 

  96. Kievit J (1979) Cerebello-thalamische projecties en de afferente verbindingen naar de frontaalschors in de rhesus aap. Thesis, Rotterdam

    Google Scholar 

  97. Korneliussen HK (1968) Comments on the cerebellum and its division. Brain Res 8:229–236

    Article  CAS  PubMed  Google Scholar 

  98. Kuypers HG, Lawrence DG (1967) Cortical projections to the red nucleus and the brain stem in the Rhesus monkey. Brain Res 4:151–188

    Article  CAS  PubMed  Google Scholar 

  99. Larsell O (1952) The morphogenesis and adult pattern of the lobules and tissues of the cerebellum of the white rat. J Comp Neurol 97:281–356

    Article  CAS  PubMed  Google Scholar 

  100. Larsell O, Jansen J (1972) The comparative anatomy and histology of the cerebellum. III. The human cerebellum, cerebellar connections, and cerebellar cortex. University of Minnesota Press, Minneapolis

    Google Scholar 

  101. Leclerc N, Schwarting GA, Herrup K, Hawkes R, Yamamoto M (1992) Compartmentation in mammalian cerebellum: Zebrin II and P-path antibodies define three classes of sagittally organized bands of Purkinje cells. Proc Natl Acad Sci USA 89:5006–5010

    Article  CAS  PubMed  Google Scholar 

  102. Legg CR, Mercier B, Glickstein M (1989) Corticopontine projection in the rat: the distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. J Comp Neurol 286:427–441

    Article  CAS  PubMed  Google Scholar 

  103. Leiner HC, Leiner AL, Dow RS (1986) Does the cerebellum contribute to mental skills? Behav Neurosci 100:443–454

    Article  CAS  PubMed  Google Scholar 

  104. Lisberger SG (1998) Physiologic basis for motor learning in the vestibulo-ocular reflex. Otolaryngol Head Neck Surg 119:43–48

    Article  CAS  PubMed  Google Scholar 

  105. Llinas R, Sotelo C (1992) The cerebellum revisited. Springer, Heidelberg

    Google Scholar 

  106. Llinas R, Baker R, Sotelo C (1974) Electrotonic coupling between neurons in cat inferior olive. J Neurophysiol 37:560–571

    CAS  PubMed  Google Scholar 

  107. Maklad A, Fritzsch B (2003) Partial segregation of posterior crista and saccular fibers to the nodulus and uvula of the cerebellum in mice, and its development. Brain Res Dev Brain Res 140:223–236

    Article  CAS  PubMed  Google Scholar 

  108. Marani E (1986) Topographic histochemistry of the cerebellum. Prog Histol Cytochem 16:1–169

    CAS  Google Scholar 

  109. Marie P, Alajouanine A (1922) L’atrophie cérébelleuse tardive à prédominance corticale. Rev Neurol 38:849–885, 1082–1111

    Google Scholar 

  110. Marr D (1969) A theory of the cerebellar cortex. J Physiol 202:437–470

    CAS  PubMed  Google Scholar 

  111. Martinez-Murillo R, Bentura ML, Fernandez AM, Nieto-Sampedro M, Rodrigo J (1995) Chemical heterogeneity in adult rat cerebellar Purkinje cells as revealed by zebrin I and low-affinity nerve growth factor receptor immunocytochemical expression following injury. J Neurocytol 24:807–817

    Article  CAS  PubMed  Google Scholar 

  112. Marzban H, Khanzada U, Shabir S, Hawkes R, Langnaese K, Smalla KH, Bockers TM, Gundelfinger ED, Gordon-Weeks PR, Beesley PW (2003) Expression of the immunoglobulin superfamily neuroplastin adhesion molecules in adult and developing mouse cerebellum and their localisation to parasagittal stripes. J Comp Neurol 462:286–301

    Article  CAS  PubMed  Google Scholar 

  113. Matsushita M, Hosoya Y (1978) The location of spinal projection neurons in the cerebellar nuclei (cerebellospinal tract neurons) of the cat. A study with the horseradish peroxidase technique. Brain Res 142:237–248

    Article  CAS  PubMed  Google Scholar 

  114. Matsushita M, Wang CL (1987) Projection pattern of vestibulocerebellar fibers in the anterior vermis of the cat: an anterograde wheat germ agglutininhorseradish peroxidase study. Neurosci Lett 74:25–30

    Article  CAS  PubMed  Google Scholar 

  115. Matsushita M, Tanami T (1987) Spinocerebellar projections from the central cervical nucleus in the cat, as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase. J Comp Neurol 266:376–397

    Article  CAS  PubMed  Google Scholar 

  116. Matsushita M, Yaginuma H (1989) Spinocerebellar projections from spinal border cells in the cat as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase. J Comp Neurol 288:19–38

    Article  CAS  PubMed  Google Scholar 

  117. May PJ, Hartwich-Young R, Nelson J, Sparks DL, Porter JD (1990) Cerebellotectal pathways in the macaque: implications for collicular generation of saccades. Neuroscience 36:305–324

    Article  CAS  PubMed  Google Scholar 

  118. Middleton FA, Strick PL (1997) Cerebellar output channels. Int Rev Neurobiol 41:61–82

    Article  CAS  PubMed  Google Scholar 

  119. Middleton FA, Strick PL (2001) Cerebellar projections to the prefrontal cortex of the primate. J Neurosci 21:700–712

    CAS  PubMed  Google Scholar 

  120. Miles FA (1987) The role of the cerebellum in adaptive regulation of the vestibulo-ocular reflex. In: Glickstein M, Yeo C, Stein J (eds) Cerebellum and neuronal plasticity. Plenum, London

    Google Scholar 

  121. Mower G, Gibson A, Robinson F, Stein J, Glickstein M (1980) Visual pontocerebellar projections in the cat. J Neurophysiol 43:355–366

    CAS  PubMed  Google Scholar 

  122. Nelson BJ, Mugnaini E (1989) Origin of GABAergic inputs to the inferior olive. Exp Brain Res Series 17:86–107

    Google Scholar 

  123. Noda H, Sugita S, Ikeda Y (1990) Afferent and efferent connections of the oculomotor region of the fastigial nucleus in the macaque monkey. J Comp Neurol 302:330–348

    Article  CAS  PubMed  Google Scholar 

  124. Ogawa T (1935) Beiträge zur vergleichenden Anatomie des Zentralnervensystems der Wassersäugetiere: Über die Kleinhirnkerne der Pinnepedien und Cetaceen. Arb Anat Inst Sendai 17:63–136

    Google Scholar 

  125. Ogawa T (1935) Über den Nucleus ellipticus und den Nucleus ruber beim Delphin. Arb Anat Inst Sendai 17:55–61

    Google Scholar 

  126. Ogawa T (1939) The tractus tegmenti medialis and its connections with the inferior olive in the cat. J Comp Neurol 70:181–191

    Article  Google Scholar 

  127. Ogawa T (1939) Experimentelle Untersuchungen über die mediale und zentrale Haubenbahnen bei der Katze. Arch Psychiatr Nervenkrankh 110:365–444

    Article  Google Scholar 

  128. Orioli PJ, Strick PL (1989) Cerebellar connections with the motor cortex and the arcuate premotor area: an analysis employing retrograde transneuronal transport of WGA-HRP. J Comp Neurol 288:612–626

    Article  CAS  PubMed  Google Scholar 

  129. Palay SL, Chan-Palay V (1974) Cerebellar cortex. Cytology and organization. Springer, Berlin Heidelberg New York

    Google Scholar 

  130. Perales M, Winer JA, Prieto JJ (2006) Focal projections of cat auditory cortex to the pontine nuclei. J Comp Neurol 497:959–980

    Article  PubMed  Google Scholar 

  131. Pijpers A, Voogd J, Ruigrok TJ (2005) Topography of olivo-cortico-nuclear modules in the intermediate cerebellum of the rat. J Comp Neurol 492:193–213

    Article  PubMed  Google Scholar 

  132. Provini L, Redman S, Strata P (1967) Somatotopic organization of mossy and climbing fibres to the anterior lobe of cerebellum activated by the sensorimotor cortex. Brain Res 6:378–381

    Article  CAS  PubMed  Google Scholar 

  133. Provini L, Redman S, Strata P (1968) Mossy and climbing fibre organization of the anterior lobe of the cerebellum activated by forelimb and hindlimb areas of the sensorimotor cortex. Exp Brain Res 6:216–233

    Article  CAS  PubMed  Google Scholar 

  134. Robinson FR, Fuchs AF (2001) The role of the cerebellum in voluntary eye movements. Annu Rev Neurosci 24:981–1004

    Article  CAS  PubMed  Google Scholar 

  135. Ruigrok TJ, Voogd J (1990) Cerebellar nucleo-olivary projections in the rat: an anterograde tracing study with Phaseolus vulgaris-leucoagglutinin (PHA-L). J Comp Neurol 298:315–333

    Article  CAS  PubMed  Google Scholar 

  136. Ruigrok TJ, Voogd J (1995) Cerebellar influence on olivary excitability in the cat. Eur J Neurosci 7:679–693

    Article  CAS  PubMed  Google Scholar 

  137. Ruigrok TJ, Voogd J (2000) Organization of projections from the inferior olive to the cerebellar nuclei in the rat. J Comp Neurol 426:209–228

    Article  CAS  PubMed  Google Scholar 

  138. Ruigrok TJ, Cella F (2004) Precerebellar nuclei and red nucleus. In: Paxinos G (ed) The rat nervous system. Elsevier, Amsterdam, pp 167–204

    Chapter  Google Scholar 

  139. Ruigrok TJ, Cella F, Voogd J (1995) Connections of the lateral reticular nucleus to the lateral vestibular nucleus in the rat. An anterograde tracing study with Phaseolus vulgaris leucoagglutinin. Eur J Neurosci 7:1410–1413

    Article  CAS  PubMed  Google Scholar 

  140. Sarna JR, Marzban H, Watanabe M, Hawkes R (2006) Complementary stripes of phospholipase Cbeta3 and Cbeta4 expression by Purkinje cell subsets in the mouse cerebellum. J Comp Neurol 496:303–313

    Article  CAS  PubMed  Google Scholar 

  141. Scheibel AB (1977) Sagittal organization of mossy fiber terminal systems in the cerebellum of the rat. Exp Neurol 57:1067–1070

    Article  CAS  PubMed  Google Scholar 

  142. Schmahmann JD (1997) The cerebellum and cognition. Academic Press, San Diego

    Google Scholar 

  143. Schmahmann JD, Pandya DN (1997) Anatomic organization of the basilar pontine projections from prefrontal cortices in rhesus monkey. J Neurosci 17:438–458

    CAS  PubMed  Google Scholar 

  144. Schmahmann JD, Doyon J, Toga AW, Petrides M, Evans AC (2000) MRI atlas of the human cerebellum. Academic Press, San Diego

    Google Scholar 

  145. Schmahmann JD, Rosene DL, Pandya DN (2004) Motor projections to the basis pontis in rhesus monkey. J Comp Neurol 478:248–268

    Article  PubMed  Google Scholar 

  146. Schmahmann JD, Doyon J, McDonald D, Holmes C, Lavoie K, Hurwitz AS, Kabani N, Toga A, Evans A, Petrides M (1999) Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. Neuroimage 10:233–260

    Article  CAS  PubMed  Google Scholar 

  147. Scott TG (1964) A unique pattern of localization within the cerebellum of the mouse. J Comp Neurol 22:1–8

    Article  Google Scholar 

  148. Serapide MF, Cicirata F, Sotelo C, Panto MR, Parenti R (1994) The pontocerebellar projection: longitudinal zonal distribution of fibers from discrete regions of the pontine nuclei to vermal and parafloccular cortices in the rat. Brain Res 644:175–180

    Article  CAS  PubMed  Google Scholar 

  149. Serapide MF, Panto MR, Parenti R, Zappala A, Cicirata F (2001) Multiple zonal projections of the basilar pontine nuclei to the cerebellar cortex of the rat. J Comp Neurol 430:471–484

    Article  CAS  PubMed  Google Scholar 

  150. Serapide MF, Parenti R, Panto MR, Zappala A, Cicirata F (2002) Multiple zonal projections of the nucleus reticularis tegmenti pontis to the cerebellar cortex of the rat. Eur J Neurosci 15:1854–1848

    Article  CAS  PubMed  Google Scholar 

  151. Sillevis Smitt P, Kinoshita A, De Leeuw B, Moll W, Coesmans M, Jaarsma D, Henzen-Logmans S, Vecht C, De Zeeuw C, Sekiyama N, Nakanishi S, Shigemoto R (2000) Paraneoplastic cerebellar ataxia due to autoantibodies against a glutamate receptor. N Engl J Med 342:21–27

    Article  CAS  PubMed  Google Scholar 

  152. Sillitoe RV, Marzban H, Larouche M, Zahedi S, Affanni J, Hawkes R (2005) Conservation of the architecture of the anterior lobe vermis of the cerebellum across mammalian species. Prog Brain Res 148:283–297

    Article  PubMed  Google Scholar 

  153. Snider RS, Stowell A (1944) Receiving areas of the tactile, auditory and visual systems in the cerebellum. J Neurophysiol 7:331–357

    Google Scholar 

  154. Sotelo C (2004) Cellular and genetic regulation of the development of the cerebellar system. Prog Neurobiol 72:295–339

    Article  CAS  PubMed  Google Scholar 

  155. Sotelo C, Wassef M (1991) Cerebellar development: afferent organization and Purkinje cell heterogeneity. Philos Trans R Soc Lond B Biol Sci 331:307–313

    Article  CAS  PubMed  Google Scholar 

  156. Sotelo C, Llinas R, Baker R (1974) Structural study of inferior olivary nucleus of the cat: morphological correlates of electrotonic coupling. J Neurophysiol 37:541–569

    CAS  PubMed  Google Scholar 

  157. Stainier DY, Gilbert W (1989) The monoclonal antibody B30 recognizes a specific neuronal cell surface antigen in the developing mesencephalic trigeminal nucleus of the mouse. J Neurosci 9:2468–2485

    CAS  PubMed  Google Scholar 

  158. Stein JF, Glickstein M (1992) Role of the cerebellum in visual guidance of movement. Physiol Rev 72:967–1017

    CAS  PubMed  Google Scholar 

  159. Stilling B (1864) Untersuchungen über den Bau des kleinen Gehirns des Menschen. Fischer, Cassel

    Google Scholar 

  160. Strominger NL, Truscott TC, Miller RA, Royce GJ (1979) An autoradiographic study of the rubroolivary tract in the rhesus monkey. J Comp Neurol 183:33–45

    Article  CAS  PubMed  Google Scholar 

  161. Sugihara I, Shinoda Y (2004) Molecular, topographic, and functional organization of the cerebellar cortex: a study with combined aldolase C and olivocerebellar labeling. J Neurosci 24:8771–8785

    Article  CAS  PubMed  Google Scholar 

  162. Sugihara I, Wu HS, Shinoda Y (1999) Morphology of single olivocerebellar axons labeled with biotinylated dextran amine in the rat. J Comp Neurol 414:131–148

    Article  CAS  PubMed  Google Scholar 

  163. Sugihara I, Wu HS, Shinoda Y (2001) The entire trajectories of single olivocerebellar axons in the cerebellar cortex and their contribution to cerebellar compartmentalization. J Neurosci 21:7715–7723

    CAS  PubMed  Google Scholar 

  164. Sultan F, Braitenberg V (1993) Shapes and sizes of different mammalian cerebella. A study in quantitative comparative neuroanatomy. J Hirnforsch 34:79–92

    CAS  PubMed  Google Scholar 

  165. Svensson P, Ivarsson M, Hesslow G (2000) Involvement of the cerebellum in a new temporal property of the conditioned eyeblink response. Prog Brain Res 124:317–323

    Article  CAS  PubMed  Google Scholar 

  166. Tan J, Gerrits NM, Nanhoe R, Simpson JI, Voogd J (1995) Zonal organization of the climbing fiber projection to the flocculus and nodulus of the rabbit: a combined axonal tracing and acetylcholinesterase histochemical study. J Comp Neurol 356:23–50

    Article  CAS  PubMed  Google Scholar 

  167. Thunnissen IE, Epema AH, Gerrits NM (1989) Secondary vestibulocerebellar mossy fiber projection to the caudal vermis in the rabbit. J Comp Neurol 290:262–277

    Article  CAS  PubMed  Google Scholar 

  168. Tokuno H, Takada M, Nambu A, Inase M (1995) Somatotopical projections from the supplementary motor area to the red nucleus in the macaque monkey. Exp Brain Res 106:351–355

    Article  CAS  PubMed  Google Scholar 

  169. Touri F, Hawkes R, Riederer BM (1996) Differential distribution of MAP1a and aldolase c in adult mouse cerebellum. Eur J Neurosci 8:61–68

    Article  CAS  PubMed  Google Scholar 

  170. Trott JR, Armstrong DM (1987) The cerebellar corticonuclear projection from lobule Vb/c of the cat anterior lobe: a combined electrophysiological and autoradiographic study. II. Projections from the vermis. Exp Brain Res 68:339–354

    Article  CAS  PubMed  Google Scholar 

  171. Van Kan PL, Houk JC, Gibson AR (1993) Output organization of intermediate cerebellum of the monkey. J Neurophysiol 69:57–73

    PubMed  Google Scholar 

  172. Voogd J (1969) The importance of fiber connections in the comparative anatomy of the mammalian cerebellum. In: Llinas R (ed) Neurobiology of cerebellar evolution and development. AMA, Chicago, pp 493–514

    Google Scholar 

  173. Voogd J (2003) The human cerebellum. J Chem Neuroanat 26:243–252

    Article  PubMed  Google Scholar 

  174. Voogd J (2004) Cerebellum and precerebellar nuclei. In: Paxinos G, Mai JK (eds) The Human Nervous System. Elsevier, Amsterdam, pp 321–392

    Chapter  Google Scholar 

  175. Voogd J, Bigaré F (1980) Topographical distribution of olivary and cortico-nuclear fibres in the cerebellum: a review. In: Courville J (ed) The olivary nucleus. Anatomy and physiology. Raven, New York, pp 207–234

    Google Scholar 

  176. Voogd J, Glickstein M (1998) The anatomy of the cerebellum. Trends Neurosci 21:370–375

    Article  CAS  PubMed  Google Scholar 

  177. Voogd J, Ruigrok TJ (2004) The organization of the corticonuclear and olivocerebellar climbing fiber projections to the rat cerebellar vermis: the congruence of projection zones and the zebrin pattern. J Neurocytol 33:5–21

    Article  PubMed  Google Scholar 

  178. Voogd J, Barmack NH (2005) Oculomotor cerebellum. Prog Brain Res 151:231–268

    Article  Google Scholar 

  179. Voogd J, Hess DT, Marani E (1987) The parasagittal zonation of the cerebellar cortex in cat and monkey. Topography, distribution of acetylcholinesterase and development. In: King JS (ed) New concepts in cerebellar neurobiology. Liss, New York, pp 183–220

    Google Scholar 

  180. Voogd J, Gerrits NM, Hess DT (1987) Parasagittal zonation of the cerebellum in macaques: an analysis based on acetylcholinesterase histochemistry. In: Glickstein M, Yeo C, Stein J (eds) Cerebellum and neuronal plasticity. Plenum, London, pp 15–39

    Google Scholar 

  181. Voogd J, Jaarsma D, Marani E (1996) The cerebellum. Chemoarchitecture and anatomy. In: Swanson LW, Bjorklund A, Hokfelt T (eds) Handbook of chemical neuroanatomy, vol 12 III. Elsevier, Amsterdam, pp 1–369

    Google Scholar 

  182. Voogd J, Pardoe J, Ruigrok TJ, Apps R (2003) The distribution of climbing and mossy fiber collateral branches from the copula pyramidis and the paramedian lobule: congruence of climbing fiber cortical zones and the pattern of zebrin banding within the rat cerebellum. J Neurosci 23:4645–4656

    CAS  PubMed  Google Scholar 

  183. Weidenreich F (1899) Zur Anatomie der zentralen Kleinhirnkerne der Säuger. Z Morphol Anthropol 1:259–312

    Google Scholar 

  184. Wu HS, Sugihara I, Shinoda Y (1999) Projection patterns of single mossy fibers originating from the lateral reticular nucleus in the rat cerebellar cortex and nuclei. J Comp Neurol 411:97–118

    Article  CAS  PubMed  Google Scholar 

  185. Yaginuma H, Matsushita M (1989) Spinocerebellar projections from the upper lumbar segments in the cat, as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase. J Comp Neurol 281:298–319

    Article  CAS  PubMed  Google Scholar 

  186. Yeo CH (1991) Cerebellum and classical conditioning of motor responses. Ann NY Acad Sci 627:292–304

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Italia

About this chapter

Cite this chapter

Nieuwenhuys, R., Voogd, J., van Huijzen, C., Papa, M. (2010). Cervelletto. In: Il sistema nervoso centrale. Springer, Milano. https://doi.org/10.1007/978-88-470-1140-3_20

Download citation

Publish with us

Policies and ethics