Skip to main content

Sistema visivo

  • Chapter
  • 1471 Accesses

Riassunto

Il sistema visivo risulta costituito da un certo numero di vie parallele, ciascuna interessata a una specifica funzione. L’elaborazione parallela dell’informazione visiva è presente già a livello della retina (Figg. 19.1, 19.2). La struttura e la funzione della retina sono state ampiamente analizzate [54, 114, 155, 188, 189, 309].

La retina dei primati e le sue connessioni con il corpo genicolato laterale, i nuclei del sistema ottico accessorio e il nucleo soprachiasmatico. A Strati. LCR, strato dei coni e dei bastoncelli; OLM, membrana limitante esterna; ONL, strato nucleate esterno; OPL, strato plessiforme esterno; INL, strato nucleare interno; OFF, sottostrato OFF dello strato plessiforme interno; ON, sottostrato ON dello strato plessiforme interno; GCL, strato delle cellule gangliari; LON, strato delle fibre del nervo ottico; ILM, membrana limitante interna. B Vie delle cellule gangliari nane e multipolari. I coni per le lunghezze d’onda lunga (coni L, sensibili al rosso, raffigurati in rosso) e i coni per le lunghezze d’onda medie (coni M, sensibili al verde, raffigurati in nero) hanno ciascuno una propria linea privata con gli strati parvocellulari del corpo genicolato laterale (raffigurato in nero). Ciascun cono è connesso, attraverso una cellula bipolare (piatta) OFF (6) e una bipolare (invaginante) ON (8), rispettivamente, con una cellula gangliare nana ON (7) e una cellula gangliare nana OFF (9). Le cellule bipolari diffuse ON (10) e le cellule bipolari diffuse OFF (12) ricevono informazioni da coni organizzati in maniera casuale e sono connesse, rispettivamente, con le cellule gangliari multipolari ON e OFF (11, 13). Le cellule multipolari proiettano agli strati magnocellulari del corpo genicolato laterale. Riquadro (1): la triade sinaptica tra un pedicello di un cono (2) e i dendriti basali piatti delle cellule bipolari OFF (3), i dendriti delle cellule orizzontali (cell oriz) (4), e il dendrite invaginante di una cellula bipolare ON (5). C Sistema dei coni per il blu. I coni per le lunghezze d’onda corte (cono S, sensibile al blu, raffigurato in grigio) sono connessi alle cellule gangliari bistratificate (14), che proiettano agli strati interlaminari (koniocellulari) del corpo genicolato laterale. Le cellule bipolari ON del cono S (15) si collegano ai dendriti delle cellule gangliari nello strato ON dello strato plessiforme interno. I coni L e M, responsabili per la sensibilità al giallo, sono connessi con le cellule bipolari diffuse (12) dello strato OFF. D Vie dei bastoncelli. Le bipolari dei bastoncelli (17) collegano numerosi bastoncelli con le cellule amacrine del tipo AII (18). Queste cellule amacrine stabiliscono gap junctions (16) con l’assone di cellule bipolari ON dei coni (8) e sinapsi inibitorie convenzionali (19) con cellule bipolari OFF dei coni (9). Il segnale dei bastoncelli, pertanto, è trasportato dalle vie dei coni al nucleo genicolato laterale. E Cellule gangliari contenenti melanopsina sensibili alla luce proiettano al nucleo soprachiasmatico. Queste cellule gangliari ricevono afferenze anche dai fotorecettori (20). F Un tipo di cellula gangliare sensibile alla direzione (24) è un neurone bistratificato, che riceve afferenze da cellule amacrine del tipo “starburst” (22). Il corpo cellulare di cellule “starburst” dislocate è disposto nello strato delle cellule gangliari (23). Le precise connessioni con i fotorecettori non sono note (24). Le cellule gangliari sensibili alla direzione proiettano al sistema visivo accessorio. Il riquadro raffigura una proiezione tangenziale di una cellula amacrina. del tipo “starburst

Distribuzione dei bastoncelli e dei coni nella retina umana. Ritratta da Kolb e coll. [155]. 1, Fovea centralis; 2, Disco ottico; 3, Ora serrata

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliograffa

  1. Albright TD, Desimone R, Gross CG (1984) Columnar organization of directionally selective cells in visual area MT of the macaque. J Neurophysiol 51:16–31

    CAS  PubMed  Google Scholar 

  2. Apel PL, O’Brien BJ, Olavaria JF (1997) Distribution of neurons projecting to the superior colliculus correlates with thick stripes in macaque visual area V2. J Comp Neurol 377:313–323

    Google Scholar 

  3. Baizer JS, Ungerleider LG, Desimone R (1991) Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques. J Neurosci 11:168–190

    CAS  PubMed  Google Scholar 

  4. Baizer JS, Desimone R, Ungerleider LG (1993) Comparison of subcortical connections of inferior temporal and posterior parietal cortex in monkeys. Vis Neurosci 10:59–72

    CAS  PubMed  Google Scholar 

  5. Baker J, Gibson A, Mower G, Robinson F, Glickstein M (1983) Cat visual corticopontine cells project to the superior colliculus. Brain Res 265:227–232

    CAS  PubMed  Google Scholar 

  6. Beckstead RM, Frankfurter A (1982) The distribution and some morphological features of substantia nigra neurons that project to the thalamus, superior colliculus and pedunculopontine nucleus in the monkey. Neuroscience 7:2377–2388

    CAS  PubMed  Google Scholar 

  7. Belenky MA, Smeraski CA, Provencio I, Sollars PJ, Pickard GE (2003) Melanopsin retinal ganglion ganglion cells receive bipolar and amacrine cell synapses. J Comp Neurol 460:380–393

    PubMed  Google Scholar 

  8. Belknap DB, McCrea RA (1988) Anatomical connections of the prepositus and abducens nuclei in the squirrel monkey. J Comp Neurol 268:13–28

    CAS  PubMed  Google Scholar 

  9. Berkley KJ, Mash DC (1978) Somatic sensory projections to the pretectum in the cat. Brain Res 158:445–449

    CAS  PubMed  Google Scholar 

  10. Berman N (1977) Connections of the pretectum. J Comp Neurol 174:227–254

    CAS  PubMed  Google Scholar 

  11. Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295:1070–1073

    CAS  PubMed  Google Scholar 

  12. Bickford ME, Hall WC (1989) Collateral projections of predorsal bundle cells of the superior colliculus in the rat. J Comp Neurol 283:86–106

    CAS  PubMed  Google Scholar 

  13. Blanks RH, Clarke RJ, Lui F, Giolli RA, Van Pham S, Torigoe Y (1995) Projections of the lateral terminal accessory optic nucleus of the common marmoset (Callithrix jacchus). J Comp Neurol 354:511–532

    CAS  PubMed  Google Scholar 

  14. Bloomfield SA, Dacheux RF (2001) Rod vision: pathways and processing in the mammalian retina. Prog Retin Eye Res 20:351–384

    CAS  PubMed  Google Scholar 

  15. Borostyankoi-Baldauf Z, Herczeg L (2002) Parcellation of the human pretectal complex: a chemoarchitectonic reappraisal. Neurosci Res 110:527–540

    CAS  Google Scholar 

  16. Boussaoud D, Desimone R, Ungerleider LG (1992) Subcortical connections of visual areas MST and FST in macaques. Vis Neurosci 9:291–302

    CAS  PubMed  Google Scholar 

  17. Boycott BB, Wässle H (1991) Morphological classification of bipolar cells of the primate retina. Eur J Neurosci 3:1069–1088

    PubMed  Google Scholar 

  18. Boyd JD, Mavity-Hudson JA, Casagrande VA (2000) The connections of layer 4 subdivisions in the primary visual cortex (V1) of the owl monkey. Cereb Cortex 10:644–662

    CAS  PubMed  Google Scholar 

  19. Breen LA, Burde RM, Loewy AD (1983) Brainstem connections to the Edinger-Westphal nucleus of the cat: a retrograde tracer study. Brain Res 261:303–306

    CAS  PubMed  Google Scholar 

  20. Brodal P (1978) The corticopontine projection in the rhesus monkey. Origin and principles of organization. Brain 101:251–283

    CAS  PubMed  Google Scholar 

  21. Brodal P (1980) The projection from the nucleus reticularis tegmenti pontis to the cerebellum in the rhesus monkey. Exp Brain Res 38:29–36

    CAS  PubMed  Google Scholar 

  22. Brodal P (1982) Further observations on the cerebellar projections from the pontine nuclei and the nucleus reticularis tegmenti pontis in the rhesus monkey. J Comp Neurol 204:44–55

    CAS  PubMed  Google Scholar 

  23. Bull MS, Mitchell SK, Berkley KJ (1990) Convergent inputs to the inferior olive from the dorsal column nuclei and pretectum in the cat. Brain Res 525:1–10

    CAS  PubMed  Google Scholar 

  24. Bullier J (2004) Communications between cortical areas of the visual system. In: Chalupa LM, Werner JS (eds) The Visual Neurosciences. MIT Press, Cambridge MA, pp 522–540

    Google Scholar 

  25. Burman K, Darian-Smith C, Darian-Smith I (2000) Macaque red nucleus: origins of spinal and olivary projections and terminations of cortical inputs. J Comp Neurol 423:179–196

    CAS  PubMed  Google Scholar 

  26. Busch HFM (1961) An anatomical analysis of the white matter in the brain stem of the cat. Van Gorcum, Assen

    Google Scholar 

  27. Büttner-Ennever JA, Horn AK (1996) Pathways from cell groups of the paramedian tracts to the floccular region. Ann NY Acad Sci 781:532–540

    PubMed  Google Scholar 

  28. Büttner-Ennever JA, Cohen B, Pause M, Fries W (1988) Raphe nucleus of the pons containing omnipause neurons of the oculomotor system in the monkey, and its homologue in man. J Comp Neurol 267:307–321

    PubMed  Google Scholar 

  29. Büttner-Ennever JA, Cohen B, Horn AK, Reisine H (1996) Efferent pathways of the nucleus of the optic tract in monkey and their role in eye movements. J Comp Neurol 373:90–107

    PubMed  Google Scholar 

  30. Büttner-Ennever JA, Cohen B, Horn AK, Reisine H (1996) Pretectal projections to the oculomotor complex of the monkey and their role in eye movements. J Comp Neurol 366:348–359

    PubMed  Google Scholar 

  31. Büttner-Ennever JA, Horn AK, Henn V, Cohen B (1999) Projections from the superior colliculus motor map to omnipause neurons in monkey. J Comp Neurol 413:55–67

    PubMed  Google Scholar 

  32. Büttner U, Büttner-Ennever JA (1988) Present concepts of oculomotor organization. Rev Oculomot Res 2:3–32

    PubMed  Google Scholar 

  33. Cajal RY (1892) The structure of the retina. Thomas, Springfield

    Google Scholar 

  34. Calkins DJ, Tsukamoto Y, Sterling P (1998) Microcircuitry and mosaic of a blue-yellow ganglion cell in the primate retina. J Neurosci 18:3373–3385

    CAS  PubMed  Google Scholar 

  35. Campbell G, Lieberman AR (1985) The olivary pretectal nucleus: experimental anatomical studies in the rat. Philos Trans R Soc Lond B Biol Sci 310:573–609

    CAS  PubMed  Google Scholar 

  36. Carpenter MB, Pereira AB, Guha M (1992) Immunocytochemistry of oculomotor afferents in the squirrel monkey (Saimiri sciureus). J Hirnforsch 33:151–167

    CAS  PubMed  Google Scholar 

  37. Carroll EW, Wong-Riley MT (1984) Quantitative light and electron microscopic analysis of cytochrome oxidase-rich zones in the striate cortex of the squirrel monkey. J Comp Neurol 222:1–17

    CAS  PubMed  Google Scholar 

  38. Catsman-Berrevoets CE, Kuypers HGJM (1981) A search for corticospinal collaterals to thalamus and mesencephalon by means of multiple retrograde fluorescent tracers in cat and rat. Brain Res 218:15–33

    CAS  PubMed  Google Scholar 

  39. Cheng K, Waggoner RA, Tanaka K (2001) Human ocular dominance columns as revealed by highfield functional magnetic resonance imaging. Neuron 25:359–374

    Google Scholar 

  40. Chou IH, Lisberger SG (2004) The role of the frontal pursuit area in learning in smooth pursuit eye movements. J Neurosci 24:4124–4133

    CAS  PubMed  Google Scholar 

  41. Chun MH, Grunert U, Martin PR, Wässle H (1996) The synaptic complex of cones in the fovea fovea and in the periphery of the macaque monkey retina. Vision Res 36:3383–3395

    CAS  PubMed  Google Scholar 

  42. Clarke RJ, Blanks RH, Giolli RA (2003) Midbrain connections of the olivary pretectal nucleus in the marmoset (Callithrix jacchus): implications for the pupil light reflex pathway. Anat Embryol (Berl) 207:149–155

    Google Scholar 

  43. Clarke S, Miklossy J (1990) Occipital cortex in man: organization of callosal connections, related myelo-and cytoarchitecture, and putative boundaries of functional visual areas. J Comp Neurol 298:188–214

    CAS  PubMed  Google Scholar 

  44. Clower DM, Dum RP, Strick PL (2005) Basal ganglia and cerebellar inputs to ‘AIP’. Cereb Cortex 15:913–920

    PubMed  Google Scholar 

  45. Clower DM, West RA, Lynch JC, Strick PL (2001) The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. J Neurosci 21:6283–6291

    CAS  PubMed  Google Scholar 

  46. Colby CL, Duhamel JR (1996) Spatial representation for action in parietal cortex. Brain Res Cogn Brain Res 5:105–115

    CAS  PubMed  Google Scholar 

  47. Colby CL, Duhamel JR, Goldberg ME (1993) Ventral intraparietal area of the macaque: anatomic location and visual response properties. J Neurophysiol 69:902–914

    CAS  PubMed  Google Scholar 

  48. Collins CE, Lyon DC, Kaas JH (2005) Distribution across cortical areas of neurons projecting to the superior colliculus in new world monkeys. Anat Rec 285:619–627

    Google Scholar 

  49. Corvisier JH, Hardy O (1991) Possible excitatory and inhibitory feedback to the superior colliculus: a combined retrograde and immunocytochemical study in the prepositus hypoglossi nucleus of the guinea pig. Neurosci Res 12:486–502

    CAS  PubMed  Google Scholar 

  50. Cowie RJ, Robinson DL (1994) Subcortical contributions to head movements in macaques. I. Contrasting effects of electrical stimulation of a medial pontomedullary region and the superior colliculus. J Neurophysiol 72:2648–2664

    CAS  PubMed  Google Scholar 

  51. Cowie RJ, Smith MK, Robinson DL (1994) Subcortical contributions to head movements in macaques. II. Connections of a medial pontomedullary head-movement region. J Neurophysiol 72:2665–2682

    CAS  PubMed  Google Scholar 

  52. Culham JC, Kanwisher NG (2001) Neuroimaging of cognitive functions in human parietal cortex. Curr Opin Neurobiol 11:157–163

    CAS  PubMed  Google Scholar 

  53. Cynader M, Berman N (1972) Receptive-field organization of monkey superior colliculus. J Neurophysiol 35:187–201

    CAS  PubMed  Google Scholar 

  54. Dacey DM (1996) Circuitry for color coding in the primate retina. Proc Natl Acad Sci USA 93:582–588

    CAS  PubMed  Google Scholar 

  55. Dacey DM, Petersen MR (1992) Dendritic field size and morphology of midget and parasol ganglion cells of the human retina. Proc Natl Acad Sci USA 89:9666–9670

    CAS  PubMed  Google Scholar 

  56. Dacey DM, Lee BB (1994) The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature 367:731–735

    CAS  PubMed  Google Scholar 

  57. Dacey DM, Packer OS (2003) Colour coding in the primate retina: diverse cell types and cone-specific circuitry. Curr Opin Neurobiol 13:421–427

    CAS  PubMed  Google Scholar 

  58. Dai J, Van der Vliet J, Swaab DF, Buijs RM (1998) Human retinohypothalamic tract as revealed by in vitro postmortem tracing. J Comp Neurol 397:357–370

    CAS  PubMed  Google Scholar 

  59. De Vries SH (2000) Bipolar cells use kainate and AMPA receptors to filter visual information into separate channels. Neuron 28:628–629

    Google Scholar 

  60. De Zeeuw CI, Wylie DR, DiGiorgi PL, Simpson JI (1994) Projections of individual Purkinje cells of identified zones in the flocculus to the vestibular and cerebellar nuclei in the rabbit. J Comp Neurol 349:428–447

    PubMed  Google Scholar 

  61. Edwards SB, Ginsburgh CL, Henkel CK, Stein BE (1979) Sources of subcortical projections to the superior colliculus in the cat. J Comp Neurol 184:309–329

    CAS  PubMed  Google Scholar 

  62. Fadiga E, Pupilli GC (1964) Teleceptive Components of the Cerebellar Function. Physiol Rev 44:432–486

    CAS  PubMed  Google Scholar 

  63. Famiglietti EV (1985) Starburst amacrine cells: morphological constancy and systematic variation in the anisotropic field of rabbit retinal neurons. J Neurosci 5:562–577

    CAS  PubMed  Google Scholar 

  64. Famiglietti EV (1991) Synaptic organization of starburst amacrine cells in rabbit retina: analysis of serial thin sections by electron microscopy and graphic reconstruction. J Comp Neurol 309:40–70

    CAS  PubMed  Google Scholar 

  65. Famiglietti EV (1992) Dendritic co-stratification of ON and OFF directionally selective ganglion cells with starburst amacrine cells in rabbit retina. J Comp Neurol 324:322–335

    CAS  PubMed  Google Scholar 

  66. Famiglietti EV, Kolb H (1976) Structural basis for ON-and OFF-center responses in retinal ganglion cells. Science 194:193–195

    PubMed  Google Scholar 

  67. Faugier-Grimaud S, Ventre J (1989) Anatomic connections of inferior parietal cortex (area 7) with subcortical structures related to vestibulo-ocular function in a monkey (Macaca fascicularis). J Comp Neurol 280:1–14

    CAS  PubMed  Google Scholar 

  68. Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    CAS  PubMed  Google Scholar 

  69. Fitzpatrick D, Itoh K, Diamond IT (1983) The laminar organization of the lateral geniculate body and the striate cortex in the squirrel monkey (Saimiri sciureus). J Neurosci 3:673–702

    CAS  PubMed  Google Scholar 

  70. Fitzpatrick D, Lund JS, Blasdel GG (1985) Intrinsic connections of macaque striate cortex: afferent and efferent connections of lamina 4C. J Neurosci 5:3329–3349

    CAS  PubMed  Google Scholar 

  71. Frankfurter A, Weber JT, Harting JK (1977) Brain stem projections to lobule VII of the posterior vermis in the squirrel monkey: as demonstrated by the retrograde axonal transport of tritiated horseradish peroxidase. Brain Res 124:135–139

    CAS  PubMed  Google Scholar 

  72. Fries W (1984) Cortical projections to the superior colliculus in the macaque monkey: a retrograde study using horseradish peroxidase. J Comp Neurol 230:55–76

    CAS  PubMed  Google Scholar 

  73. Fries W (1990) Pontine projection from striate and prestriate visual cortex in the macaque monkey: an anterograde study. Vis Neurosci 4:205–216

    CAS  PubMed  Google Scholar 

  74. Fries W, Distel H (1982) Large layer VI neurons of monkey striate cortex (Meynert cells) project to superior colliculus. Proc R Soc Lond B Biol Sci 219:53–59

    Google Scholar 

  75. Fries W, Keizer K, Kuypers HJGM (1985) Large layer VI cells in macaque striate cortex (Meynert cells) project to both superior colliculus and prestriate area MT. Exp Brain Res 58:613–616

    CAS  PubMed  Google Scholar 

  76. Galletti C, Fattori P, Gamberini M, Kutz DF (1999) The cortical visual area V6: brain location and visual topography. Eur J Neurosci 11:3922–3936

    CAS  PubMed  Google Scholar 

  77. Galletti C, Gamberini M, Kutz DF, Fattori P, Luppino G, Matelli M (2001) The cortical connections of area V6: an occipito-parietal network processing visual information. Eur J Neurosci 13:1572–1588

    CAS  PubMed  Google Scholar 

  78. Gamlin PD (2005) The pretectum: connections and oculomotor-related roles. Prog Brain Res 151:379–405

    Google Scholar 

  79. Gayer NS, Faull RL (1988) Connections of the paraflocculus of the cerebellum with the superior colliculus in the rat brain. Brain Res 449:253–270

    CAS  PubMed  Google Scholar 

  80. Geesaman BJ, Born RT, Andersen RA, Tootell RB (1997) Maps of complex motion selectivity in the superior temporal cortex of the alert macaque monkey: a double-label 2-desoxyglucose study. Cereb Cortex 7:749–757

    CAS  PubMed  Google Scholar 

  81. Gerrits NM, Voogd J (1986) The nucleus reticularis tegmenti pontis and the adjacent rostral paramedian reticular formation: differential projections to the cerebellum and the caudal brain stem. Exp Brain Res 62:29–45

    CAS  PubMed  Google Scholar 

  82. Gerrits NM, Voogd J (1987) The projection of the nucleus reticularis tegmenti pontis and adjacent regions of the pontine nuclei to the central cerebellar nuclei in the cat. J Comp Neurol 258:52–69

    CAS  PubMed  Google Scholar 

  83. Gerrits NM, Epema AH, Voogd J (1984) The mossy fiber projection of the nucleus reticularis tegmenti pontis to the flocculus and adjacent ventral paraflocculus in the cat. Neuroscience 11:627–644

    CAS  PubMed  Google Scholar 

  84. Giolli RA, Towns LC (1980) A review of axon collateralization in the mammalian visual system. Brain Behav Evol 17:364–390

    CAS  PubMed  Google Scholar 

  85. Giolli RA, Blanks RH, Torigoe Y (1984) Pretectal and brain stem projections of the medial terminal nucleus of the accessory optic system of the rabbit and rat as studied by anterograde and retrograde neuronal tracing methods. J Comp Neurol 227:228–251

    CAS  PubMed  Google Scholar 

  86. Giolli RA, Blanks RH, Lui F (2005) The accessory optic system: basic organization with an update on connectivity, neurochemistry, and function. Prog Brain Res 151:407–440

    Google Scholar 

  87. Giolli RA, Peterson GM, Ribak CE, McDonald HM, Blanks RH, Fallon JH (1985) GABAergic neurons comprise a major cell type in rodent visual relay nuclei: an immunocytochemical study of pretectal and accessory optic nuclei. Exp Brain Res 61:194–203

    CAS  PubMed  Google Scholar 

  88. Giolli RA, Torigoe Y, Clarke RJ, Blanks RH, Fallon JH (1992) GABAergic and non-GABAergic projections of accessory optic nuclei, including the visual tegmental relay zone, to the nucleus of the optic tract and dorsal terminal accessory optic nucleus in rat. J Comp Neurol 319:349–358

    CAS  PubMed  Google Scholar 

  89. Giolli RA, Gregory KM, Suzuki DA, Blanks RH, Lui F, Betelak KF (2001) Cortical and subcortical afferents to the nucleus reticularis tegmenti pontis and basal pontine nuclei in the macaque monkey. Vis Neurosci 18:725–740

    CAS  PubMed  Google Scholar 

  90. Glickstein M, Gerrits N, Kralj-Hans I, Mercier B, Stein J, Voogd J (1994) Visual pontocerebellar projections in the macaque. J Comp Neurol 349:51–72

    CAS  PubMed  Google Scholar 

  91. Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25

    CAS  PubMed  Google Scholar 

  92. Goodale MA, Meenan JP, Bulthoff HH, Nicolle DA, Murphy KJ, Racicot CI (1994) Separate neural pathways for the visual analysis of object shape in perception and prehension. Curr Biol 4:604–610

    CAS  PubMed  Google Scholar 

  93. Gouras P (2005) Color vision. In: Kolb H, Fernandez E, Nelson R (eds) Webvision. The organization of the retina and the visual system. http:// webvision. med.utah.edu

    Google Scholar 

  94. Grantyn R, Shapovalov AI, Shiriaev BI (1982) Combined morphological and electrophysiological description of connections between single primary afferent fibres and individual motoneurons in the frog spinal cord. Exp Brain Res 48:459–462

    CAS  PubMed  Google Scholar 

  95. Graybiel AM (1979) Periodic-compartmental distribution of acetylcholinesterase in the superior colliculus of the human brain. Neuroscience 4:643–650

    CAS  PubMed  Google Scholar 

  96. Graybiel AM, Illing RB (1994) Enkephalin-positive and acetylcholinesterase-positive patch systems in the superior colliculus have matching distributions but distinct developmental histories. J Comp Neurol 340:297–310

    CAS  PubMed  Google Scholar 

  97. Graybiel AM, Brecha N, Karten HJ (1984) Clusterand-sheet pattern of enkephalin-like immunoreactivity in the superior colliculus of the cat. Neuroscience 12:191–214

    CAS  PubMed  Google Scholar 

  98. Guitton D (1999) Gaze shifts in three-dimensional space: A closer look at the superior colliculus. J Comp Neurol 413:77–82

    CAS  PubMed  Google Scholar 

  99. Hadjikhani N, Tootell RB (2000) Projection of rods and cones within human visual cortex. Hum Brain Mapp 9:55–63

    CAS  PubMed  Google Scholar 

  100. Hadjikhani N, Liu AK, Dale AM, Cavanagh P, Tootell RB (1998) Retinotopy and color sensitivity in human visual cortical area V8. Nat Neurosci 1:235–241

    CAS  PubMed  Google Scholar 

  101. Hall WC, Fitzpatrick D, Klatt LL, Raczkowski D (1989) Cholinergic innervation of the superior colliculus in the cat. J Comp Neurol 287:495–514

    CAS  PubMed  Google Scholar 

  102. Harting JK (1977) Descending pathways from the superior collicullus: an autoradiographic analysis in the rhesus monkey (Macaca mulatta). J Comp Neurol 173:583–612

    CAS  PubMed  Google Scholar 

  103. Harting JK, Van Lieshout DP (1991) Spatial relationships of axons arising from the substantia nigra, spinal trigeminal nucleus, and pedunculopontine tegmental nucleus within the intermediate gray of the cat superior colliculus. J Comp Neurol 305:543–558

    CAS  PubMed  Google Scholar 

  104. Harting JK, Updyke BV, Van Lieshout DP (1992) Corticotectal projections in the cat: anterograde transport studies of twenty-five cortical areas. J Comp Neurol 324:379–414

    CAS  PubMed  Google Scholar 

  105. Harting JK, Hall WC, Diamond IT, Martin GF (1973) Anterograde degeneration study of the superior colliculus in Tupaia glis: evidence for a subdivision between superficial and deep layers. J Comp Neurol 148:361–386

    CAS  PubMed  Google Scholar 

  106. Harting JK, Huerta MF, Frankfurter AJ, Strominger NL, Royce GJ (1980) Ascending pathways from the monkey superior colliculus: an autoradiographic analysis. J Comp Neurol 192:853–882

    CAS  PubMed  Google Scholar 

  107. Harting JK, Huerta MF, Hashikawa T, Weber JT, Van Lieshout DP (1988) Neuroanatomical studies of the nigrotectal projection in the cat. J Comp Neurol 278:615–631

    CAS  PubMed  Google Scholar 

  108. Hartmann-von Monakow K, Akert K, Künzle H (1981) Projection of precentral, premotor and prefrontal cortex to the basilar pontine grey and to nucleus reticularis tegmenti pontis in the monkey (Macaca fascicularis). Schweiz Arch Neurol Neurochir Psychiatr 129:189–208

    CAS  PubMed  Google Scholar 

  109. Hattar S, Liao HW, Takao M, Berson DM, Yau KW (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065–1070

    CAS  PubMed  Google Scholar 

  110. Hattar S, Kumar M, Park A, Tong P, Tung J, Yau KW, Berson DM (2006) Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol 497:326–349

    PubMed  Google Scholar 

  111. Haxby JV, Horwitz B, Ungerleider LG, Maisog JM, Pietrini P, Grady CL (1994) The functional organization of human extrastriate cortex: a PET-rCBF study of selective attention to faces and locations. J Neurosci 14:6336–6353

    CAS  PubMed  Google Scholar 

  112. Haxby JV, Ungerleider LG, Horwitz B, Maisog JM, Rapoport SI, Grady CL (1996) Face encoding and recognition in the human brain. Proc Natl Acad Sci USA 93:922–927

    CAS  PubMed  Google Scholar 

  113. Hayakawa Y, Nakajima T, Takagi M, Fukuhara N, Abe H (2002) Human cerebellar activation in relation to saccadic eye movements: a functional magnetic resonance imaging study. Ophthalmologica 216:399–405

    PubMed  Google Scholar 

  114. Hendry SH, Calkins DJ (1998) Neuronal chemistry and functional organization in the primate visual system. Trends Neurosci 21:344–349

    CAS  PubMed  Google Scholar 

  115. Hendry SH, Reid RC (2000) The koniocellular pathway in primate vision. Annu Rev Neurosci 23:127–153

    CAS  PubMed  Google Scholar 

  116. Higo S, Kawano J, Matsuyama T, Kawamura S (1992) Differential projections to the superior collicular layers from the perihypoglossal nuclei in the cat. Brain Res 599:19–28

    CAS  PubMed  Google Scholar 

  117. Hikosaka O, Takikawa Y, Kawagoe R (2000) Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev 80:953–978

    CAS  PubMed  Google Scholar 

  118. Hoffmann KP, Distler C, Erickson R (1991) Functional projections from striate cortex and superior temporal sulcus to the nucleus of the optic tract (NOT) and dorsal terminal nucleus of the accessory optic tract (DTN) of macaque monkeys. J Comp Neurol 313:707–724

    CAS  PubMed  Google Scholar 

  119. Hoffmann KP, Distler C, Ilg U (1992) Callosal and superior temporal sulcus contributions to receptive field properties in the macaque monkey’s nucleus of the optic tract and dorsal terminal nucleus of the accessory optic tract. J Comp Neurol 321:150–162

    CAS  PubMed  Google Scholar 

  120. Holstege G, Collewijn H (1982) The efferent connections of the nucleus of the optic tract and the superior colliculus in the rabbit. J Comp Neurol 209:139–175

    CAS  PubMed  Google Scholar 

  121. Horn AK, Büttner-Ennever JA (1998) Premotor neurons for vertical eye movements in the rostral mesencephalon of monkey and human: histologic identification by parvalbumin immunostaining. J Comp Neurol 392:413–427

    CAS  PubMed  Google Scholar 

  122. Horn AK, Büttner-Ennever JA, Henn V (1995) Histological identification of premotor neurons for horizontal saccades in monkey and man by parvalbumin immunostaining. J Comp Neurol 359:350–363

    CAS  PubMed  Google Scholar 

  123. Horn AK, Helmchen C, Wahle P (2003) GABAergic neurons in the rostral mesencephalon of the macaque monkey that control vertical movements. Ann NY Acad Sci 1004:19–28

    CAS  PubMed  Google Scholar 

  124. Horn AK, Büttner-Ennever JA, Wahle P, Reichenberger I (1994) Neurotransmitter profile of saccadic omnipause neurons in nucleus raphe interpositus. J Neurosci 14:2032–2046

    CAS  PubMed  Google Scholar 

  125. Hubel DH, Wiesel TN (1963) Shape and arrangement of columns in cat’s striate cortex. J Physiol 165:559–568

    CAS  PubMed  Google Scholar 

  126. Hubel DH, Wiesel TN (1972) Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey. J Comp Neurol 146:421–450

    CAS  PubMed  Google Scholar 

  127. Hubel DH, Wiesel TN (1974) Sequence regularity and geometry of orientation columns in the monkey striate cortex. J Comp Neurol 158:267–293

    CAS  PubMed  Google Scholar 

  128. Hubel DH, LeVay S, Wiesel TN (1975) Mode of termination of retinotectal fibers in macaque monkey: an autoradiographic study. Brain Res 96:25–40

    CAS  PubMed  Google Scholar 

  129. Huerta MF, Harting JK (1984) Connectional organization of the superior colliculus. Trends Neurosci 7:286–289

    Google Scholar 

  130. Huerta MF, Kaas H (1990) Supplementary eye field as defined by intracortical microstimulation: connections in macaques. J Comp Neurol 293:299–330

    CAS  PubMed  Google Scholar 

  131. Huerta MF, Krubitzer LA, Kaas JH (1986) Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque macaque monkeys: I. Subcortical connections. J Comp Neurol 253:415–439

    CAS  Google Scholar 

  132. Huerta MF, Van Lieshout DP, Harting JK (1991) Nigrotectal projections in the primate Galago crassicaudatus. Exp Brain Res 87:389–401

    CAS  PubMed  Google Scholar 

  133. Huk ACD, Dougherty RF, Heeger DJ (2002) Retinotopy and functional subdivision of human areas MT and MST. J Neurosci 22:7195–7205

    CAS  PubMed  Google Scholar 

  134. Hutchins B, Weber JT (1985) The pretectal complex of the monkey: a reinvestigation of the morphology and retinal terminations. J Comp Neurol 232:425–442

    CAS  PubMed  Google Scholar 

  135. Ikeda Y, Noda H, Sugita S (1989) Olivocerebellar and cerebelloolivary connections of the oculomotor region of the fastigial nucleus in the macaque monkey. J Comp Neurol 284:463–488

    CAS  PubMed  Google Scholar 

  136. Inouye T (1909) Die Sehstörungen bei Schussverletzungen der kortikalen Sehsphäre nach Beobachtungen an Verwundeten der letzten Japanischen Kriege. W. Engelmann, Leipzig

    Google Scholar 

  137. Inouye T (2000) Visual disturbances following gunshot wounds of the cortical visual area. Translated by Glickstein M and Fahle M. Oxford University Press, Oxford

    Google Scholar 

  138. Ishai A, Ungerleider LG, Haxby JV (2000) Distributed neural systems for the generation of visual images. Neuron 28:979–990

    CAS  PubMed  Google Scholar 

  139. Ishai A, Ungerleider LG, Martin A, Haxby JV (2000) The representation of objects in the human occipital and temporal cortex. J Cogn Neurosci 12 Suppl 2:35–51

    Google Scholar 

  140. Itaya SK (1980) Retinal efferents from the pretectal area in the rat. Brain Res 201:436–441

    CAS  PubMed  Google Scholar 

  141. Itaya SK (1985) Centrifugal fibers to the cat retina from periaquaductal grey matter. Brain Res 326:362–365

    CAS  PubMed  Google Scholar 

  142. Itoh K, Takada M, Yasui Y, Kudo M, Mizuno N (1983) Direct projections from the anterior pretectal nucleus to the dorsal accessory olive in the cat: an anterograde and retrograde WGA-HRP study. Brain Res 272:350–353

    CAS  PubMed  Google Scholar 

  143. Jacobs GH, Deegan JF, 2nd (1999) Uniformity of colour vision in Old World monkeys. Proc Biol Sci 266:2023–2028

    CAS  PubMed  Google Scholar 

  144. James TW, Culham J, Humphrey GK, Milner AD, Goodale MA (2003) Ventral occipital lesions impair object recognition but not object-directed grasping: an fMRI study. Brain 126:2463–2475

    PubMed  Google Scholar 

  145. Jay MF, Sparks DL (1987) Sensorimotor integration in the primate superior colliculus. II. Coordinates of auditory signals. J Neurophysiol 57:35–55

    CAS  PubMed  Google Scholar 

  146. Jayaraman A, Batton RR, 3rd, Carpenter MB (1977) Nigrotectal projections in the monkey: an autoradiographic study. Brain Res 135:147–152

    CAS  PubMed  Google Scholar 

  147. Kaneko A (1970) Physiological and morphological identification of horizontal, bipolar and amacrine cells in goldfish retina. J Physiol 207:623–633

    CAS  PubMed  Google Scholar 

  148. Kaplan E (2004) The M, P, and K pathways of the primate visual system. In: Chalupa LM, Werner JS (eds) The Visual Neurosciences. MIT Press, Cambridge Mass, pp 481–493

    Google Scholar 

  149. Kawamura K, Brodal A, Hoddevik G (1974) The projection of the superior colliculus onto the reticular formation of the brain stem. An experimental anatomical study in the cat. Exp Brain Res 19:1–19

    CAS  PubMed  Google Scholar 

  150. Keizer K, Kuypers HGJM, Ronday HK (1987) Branching cortical neurons in cat which project to the colliculi and to the pons: a retrograde fluorescent double-labeling study. Exp Brain Res 67:1–15

    CAS  PubMed  Google Scholar 

  151. Kim U, Gregory E, Hall WC (1992) Pathway from the zona incerta to the superior colliculus in the rat. J Comp Neurol 321:555–575

    CAS  PubMed  Google Scholar 

  152. King AJ (2004) The superior colliculus. Curr Biol 14:R335–338

    CAS  PubMed  Google Scholar 

  153. Kitao Y, Nakamura Y, Kudo M, Moriizumi T, Tokuno H (1989) The cerebral and cerebellar connections of pretecto-thalamic and pretecto-olivary neurons in the anterior pretectal nucleus of the cat. Brain Res 484:304–313

    CAS  PubMed  Google Scholar 

  154. Kolb H, Famiglietti EV (1974) Rod and cone pathways in the inner plexiform layer of cat retina. Science 186:47–49

    CAS  PubMed  Google Scholar 

  155. Kolb H, Fernandez E, Nelson R (2005) Webvision. The organization of the retina and visual system. http://webvision.med.utah.edu

    Google Scholar 

  156. Kuffler SW (1953) Discharge patterns and functional organization of mammalian retina. J Neurophysiol 16:37–68

    CAS  PubMed  Google Scholar 

  157. Künzle H (1976) Thalamic projections from the precentral motor cortex in Macaca fascicularis. Brain Res 105:253–267

    PubMed  Google Scholar 

  158. Lachica EA, Casagrande VA (1992) Direct W-like geniculate projections to the cytochrome oxidase (CO) blobs in primate visual cortex: axon morphology. J Comp Neurol 319:141–158

    CAS  PubMed  Google Scholar 

  159. Lachica EA, Beck PD, Casagrande VA (1992) Parallel pathways in macaque monkey striate cortex: anatomically defined columns in layer III. Proc Natl Acad Sci USA 89:3566–3570

    CAS  PubMed  Google Scholar 

  160. Langer T, Fuchs AF, Scudder CA, Chubb MC (1985) Afferents to the flocculus of the cerebellum in the rhesus macaque as revealed by retrograde transport of horseradish peroxidase. J Comp Neurol 235:1–25

    CAS  PubMed  Google Scholar 

  161. Lee BB, Dacey DM, Smith VC, Pokorny J (1999) Horizontal cells reveal cone type-specific adaptation in primate retina. Proc Natl Acad Sci USA 96:14611–14616

    CAS  PubMed  Google Scholar 

  162. Leichnetz GR, Gonzalo-Ruiz A (1996) Prearcuate cortex in the Cebus monkey has cortical and subcortical connections like the macaque frontal eye field and projects to fastigial-recipient oculomotorrelated brainstem nuclei. Brain Res Bull 41:1–29

    CAS  PubMed  Google Scholar 

  163. Leichnetz GR, Spencer RF, Hardy SG, Astruc J (1981) The prefrontal corticotectal projection in the monkey; an anterograde and retrograde horseradish peroxidase study. Neuroscience 6:1023–1041

    CAS  PubMed  Google Scholar 

  164. Lemij HG, Collewijn H (1991) Short-term nonconjugate adaptation of human saccades to anisometropic spectacles. Vision Res 31:1955–1966

    CAS  PubMed  Google Scholar 

  165. Lemij HG, Collewijn H (1991) Long-term nonconjugate adaptation of human saccades to anisometropic spectacles. Vision Res 31:1939–1954

    CAS  PubMed  Google Scholar 

  166. Lemij HG, Collewijn H (1992) Nonconjugate adaptation of human saccades to anisometropic spectacles: meridian-specificity. Vision Res 32:453–464

    CAS  PubMed  Google Scholar 

  167. Lennie P (1980) Parallel visual pathways: a review. Vision Res 20:561–594

    CAS  PubMed  Google Scholar 

  168. Leonard CS, Simpson JI, Graf W (1988) Spatial organization of visual messages of the rabbit’s cerebellar flocculus. I. Typology of inferior olive neurons of the dorsal cap of Kooy. J Neurophysiol 60:2073–2090

    CAS  PubMed  Google Scholar 

  169. LeVay S, Connolly M, Houde J, Van Essen DC (1985) The complete pattern of ocular dominance stripes in the striate cortex and visual field of the macaque monkey. J Neurosci 5:486–501

    CAS  PubMed  Google Scholar 

  170. Leventhal AG, Rodieck RW, Dreher B (1981) Retinal ganglion cell classes in the Old World monkey: morphology and central projections. Science 213:1139–1142

    CAS  PubMed  Google Scholar 

  171. Leventhal AG, Thompson KG, Liu D, Zhou Y, Ault SJ (1995) Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex. J Neurosci 15:1808–1818

    CAS  PubMed  Google Scholar 

  172. Livingstone MS, Hubel DH (1984) Anatomy and physiology of a color system in the primate visual cortex. J Neurosci 4:309–356

    CAS  PubMed  Google Scholar 

  173. Livingstone MS, Hubel DH (1988) Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science 240:740–749

    CAS  PubMed  Google Scholar 

  174. Lock TM, Baizer JS, Bender DB (2003) Distribution of corticotectal cells in macaque. Exp Brain Res 151:455–470

    CAS  PubMed  Google Scholar 

  175. Lucas RJ, Douglas RH, Foster RG (2001) Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nature Neuroscience 4:621–626

    CAS  PubMed  Google Scholar 

  176. Lui F, Gregory KM, Blanks RH, Giolli RA (1995) Projections from visual areas of the cerebral cortex to pretectal nuclear complex, terminal accessory optic nuclei, and superior colliculus in macaque monkey. J Comp Neurol 363:439–460

    CAS  PubMed  Google Scholar 

  177. Luna B, Thulborn KR, Strojwas MH, McCurtain BJ, Berman RA, Genovese CR, Sweeney JA (1998) Dorsal cortical regions subserving visually guided saccades in humans: an fMRI study. Cereb Cortex 8:40–47

    CAS  PubMed  Google Scholar 

  178. Lund JS (1988) Anatomical organization of macaque monkey striate visual cortex. Annu Rev Neurosci 11:253–288

    CAS  PubMed  Google Scholar 

  179. Luppino G, Calzavara R, Rozzi S, Matelli M (2001) Projections from the superior temporal sulcus to the agranular frontal cortex in the macaque. Eur J Neurosci 14:1035–1040

    CAS  PubMed  Google Scholar 

  180. Lynch JC, Tian JR (2005) Cortico-cortical networks and cortico-subcortical loops for the higher control of eye movements. Prog Brain Res 151:461–501

    Google Scholar 

  181. Lynch JC, Graybiel AM, Lobeck LJ (1985) The differential projection of two cytoarchitectonic subregions of the inferior parietal lobule of macaque upon the deep layers of the superior colliculus. J Comp Neurol 235:241–254

    CAS  PubMed  Google Scholar 

  182. Lynch JC, Hoover JE, Strick PL (1994) Input to the primate frontal eye field from the substantia nigra, superior colliculus, and dentate nucleus demonstrated by transneuronal transport. Exp Brain Res 100:181–186

    CAS  PubMed  Google Scholar 

  183. Ma TP, Graybiel AM, Wurtz RH (1991) Location of saccade-related neurons in the macaque superior colliculus. Exp Brain Res 85:21–35

    CAS  PubMed  Google Scholar 

  184. MacNeil MA, Heussy JK, Dacheux RF, Raviola E, Masland RH (1999) The shapes and numbers of amacrine cells: matching of photofilled with Golgistained cells in the rabbit retina and comparison with other mammalian species. J Comp Neurol 413:303–326

    Google Scholar 

  185. Maioli MG, Domeniconi R, Squatrito S, Riva Sanseverino E (1992) Projections from cortical visual areas of the superior temporal sulcus to the superior colliculus, in macaque monkeys. Arch Ital Biol 130:157–166

    CAS  PubMed  Google Scholar 

  186. Malach R, Levy I, Hasson U (2002) The topography of high-order human object areas. Trends Cogn Sci 6:176–184

    PubMed  Google Scholar 

  187. Malach R, Reppas JB, Benson RR, Kwong KK, Jiang H, Kennedy WA, Ledden PJ, Brady TJ, Rosen BR, Tootell RB (1995) Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc Natl Acad Sci USA 92:8135–8139

    CAS  PubMed  Google Scholar 

  188. Masland RH (2001) The fundamental plan of the retina. Nat Neurosci 4:877–886

    CAS  PubMed  Google Scholar 

  189. Masland RH (2001) Neuronal diversity in the retina. Curr Opin Neurobiol 11:431–436

    CAS  PubMed  Google Scholar 

  190. Masland RH, Tauchi M (1985) A possible amacrine cell substrate for the detection of stimulus motion. Neurosci Res Suppl 2:S185–199

    CAS  PubMed  Google Scholar 

  191. May JG, Keller EL, Suzuki DA (1988) Smoothpursuit eye movement deficits with chemical lesions in the dorsolateral pontine nucleus of the monkey. J Neurophysiol 59:952–977

    CAS  PubMed  Google Scholar 

  192. May PJ (2005) The mammalian superior colliculus: laminar structure and connections. Progr Brain Res 151:321–378

    Google Scholar 

  193. May PJ, Hartwich-Young R, Nelson J, Sparks DL, Porter JD (1990) Cerebellotectal pathways in the macaque: implications for collicular generation of saccades. Neuroscience 36:305–324

    CAS  PubMed  Google Scholar 

  194. McCrea RA, Baker R (1985) Anatomical connections of the nucleus prepositus of the cat. J Comp Neurol 237:377–407

    CAS  PubMed  Google Scholar 

  195. Meredith MA, Stein BE (1985) Descending efferents from the superior colliculus relay integrated multisensory information. Science 227:657–659

    CAS  PubMed  Google Scholar 

  196. Meredith MA, Clemo HR, Stein BE (1991) Somatotopic component of the multisensory map in the deep laminae of the cat superior colliculus. J Comp Neurol 312:353–370

    CAS  PubMed  Google Scholar 

  197. Mick G, Cooper H, Magnin M (1993) Retinal projection to the olfactory tubercle and basal telencephalon in primates. J Comp Neurol 327:205–219

    CAS  PubMed  Google Scholar 

  198. Middlebrooks JC, Knudsen EI (1984) A neural code for auditory space in the cat’s superior colliculus. J Neurosci 4:2621–2634

    CAS  PubMed  Google Scholar 

  199. Mihailoff GA, Kosinski RJ, Azizi SA, Border BG (1989) Survey of noncortical afferent projections to the basilar pontine nuclei: a retrograde tracing study in the rat. J Comp Neurol 282:617–643

    CAS  PubMed  Google Scholar 

  200. Morin LP, Blanchard JH, Provencio I (2003) Retinal ganglion cell projections to the hamster suprachiasmatic nucleus, intergeniculate leaflet, and visual midbrain: bifurcation and melanopsin immunoreactivity. J Comp Neurol 465:401–416

    PubMed  Google Scholar 

  201. Moschovakis AK, Karabelas AB (1985) Observations on the somatodendritic morphology and axonal trajectory of intracellularly HRP-labeled efferent neurons located in the deeper layers of the superior colliculus of the cat. J Comp Neurol 239:276–308

    CAS  PubMed  Google Scholar 

  202. Moschovakis AK, Karabelas AB, Highstein SM (1988) Structure-function relationships in the primate superior colliculus. I. Morphological classification of efferent neurons. J Neurophysiol 60:232–262

    CAS  PubMed  Google Scholar 

  203. Moschovakis AK, Karabelas AB, Highstein SM (1988) Structure-function relationships in the primate superior colliculus. II. Morphological identity of presaccadic neurons. J Neurophysiol 60:263–302

    CAS  PubMed  Google Scholar 

  204. Moschovakis AK, Gregoriou GG, Savaki HE (2001) Functional imaging of the primate superior colliculus during saccades to visual targets. Nat Neurosci 4:1026–1031

    CAS  PubMed  Google Scholar 

  205. Moschovakis AK, Scudder CA, Highstein SM, Warren JD (1991) Structure of the primate oculomotor burst generator. II. Medium-lead burst neurons with downward on-directions. J Neurophysiol 65:218–229

    CAS  PubMed  Google Scholar 

  206. Mower G, Gibson A, Glickstein M (1979) Tectopontine pathway in the cat: laminar distribution of cells of origin and visual properties of target cells in dorsolateral pontine nucleus. J Neurophysiol 42:1–15

    CAS  PubMed  Google Scholar 

  207. Münzer E, Wiener H (1902) Das Zwischen-und Mittelhirn des Kaninchen und die Beziehungen dieser Teile zum übrigen Centralnervensystem, mit besonderer Berücksichtigung des Pyramidenbahn und Schleife. Mschr f Psychiat u Neurol 12:241–279

    Google Scholar 

  208. Mustari MJ, Fuchs AF, Wallman J (1988) Response properties of dorsolateral pontine units during smooth pursuit in the rhesus macaque. J Neurophysiol 60:664–686

    CAS  PubMed  Google Scholar 

  209. Mustari MJ, Fuchs AF, Kaneko CR, Robinson FR (1994) Anatomical connections of the primate pretectal nucleus of the optic tract. J Comp Neurol 349:111–128

    CAS  PubMed  Google Scholar 

  210. Nagao S (1992) Different roles of flocculus and ventral paraflocculus for oculomotor control in the primate. Neuroreport 3:13–16

    CAS  PubMed  Google Scholar 

  211. Nagao S, Kitamura T, Nakamura N, Hiramatsu T, Yamada J (1997) Differences of the primate flocculus and ventral paraflocculus in the mossy and climbing fiber input organization. J Comp Neurol 382:480–498

    CAS  PubMed  Google Scholar 

  212. Nikundiwe AM, Bjaalie JG, Brodal P (1994) Lamellar organization of pontocerebellar neuronal populations. A multi-tracer and 3-D computer reconstruction study in the cat. Eur J Neurosci 6:173–186

    CAS  PubMed  Google Scholar 

  213. O’Keefe LP, Levitt JB, Kiper DC, Shapley RM, Movshon JA (1998) Functional organization of owl monkey lateral geniculate nucleus and visual cortex. J Neurophysiol 80:594–609

    PubMed  Google Scholar 

  214. Onodera S (1984) Olivary projections from the mesodiencephalic structures in the cat studied by means of axonal transport of horseradish peroxidase and tritiated amino acids. J Comp Neurol 227:37–49

    CAS  PubMed  Google Scholar 

  215. Optican LM, Robinson DA (1980) Cerebellardependent adaptive control of primate saccadic system. J Neurophysiol 44:1058–1076

    CAS  PubMed  Google Scholar 

  216. Osanai R, Nagao S, Kitamura T, Kawabata I, Yamada J (1999) Differences in mossy and climbing afferent sources between flocculus and ventral and dorsal paraflocculus in the rat. Exp Brain Res 124:248–264

    CAS  PubMed  Google Scholar 

  217. Osborne LC, Bialek W, Lisberger SG (2004) Time course of information about motion direction in visual area MT of macaque monkeys. J Neurosci 24:3210–3222

    CAS  PubMed  Google Scholar 

  218. Peck CK, Baro JA, Warder SM (1993) Sensory integration in the deep layers of superior colliculus. Prog Brain Res 95:91–102

    CAS  PubMed  Google Scholar 

  219. Perry VH, Cowey A (1984) Retinal ganglion cells that project to the superior colliculus and pretectum in the macaque monkey. Neuroscience 12:1125–1137

    CAS  PubMed  Google Scholar 

  220. Perry VH, Oehler R, Cowey A (1984) Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey. Neuroscience 12:1101–1123

    CAS  PubMed  Google Scholar 

  221. Petit L, Haxby JV (1999) Functional anatomy of pursuit eye movements in humans as revealed by fMRI. J Neurophysiol 82:463–471

    CAS  PubMed  Google Scholar 

  222. Pierrot-Deseilligny CH, Chain F, Gray F, Serdaru M, Escourolle R, Lhermitte F (1982) Parinaud‘d syndrome: electro-oculographic and anatomical analyss of six vascular cases with deductions about vertical gaze organization in the premotor structures. Brain 105:667–696

    PubMed  Google Scholar 

  223. Pitzalis S, Galletti C, Huang RS, Patria F, Committeri G, Galati G, Fattori P, Sereno MI (2006) Wide-field retinotopy defines human cortical visual area V6. J Neurosci 26:7962–7973

    CAS  PubMed  Google Scholar 

  224. Pollack JG, Hickey TL (1979) The distribution of retino-collicular axon terminals in rhesus monkey. J Comp Neurol 185:587–602

    CAS  PubMed  Google Scholar 

  225. Polyak SL (1941) The retina. University of Chicago Press, Chicago IL

    Google Scholar 

  226. Priebe NJ, Lisberger SG (2004) Estimating target speed from the population response in visual area MT. J Neurosci 24:1907–1916

    CAS  PubMed  Google Scholar 

  227. Provencio I, Rollag MD, Castrucci AM (2002) Photoreceptive net in the mammalian retina. This mesh of cells may explain how some blind mice can still tell day from night. Nature 415:493

    CAS  PubMed  Google Scholar 

  228. Rambold H, Churchland A, Selig Y, Jasmin L, Lisberger SG (2002) Partial ablations of the flocculus and ventral paraflocculus in monkeys cause linked deficits in smooth pursuit eye movements and adaptive modification of the VOR. J Neurophysiol 87:912–924

    CAS  PubMed  Google Scholar 

  229. Redgrave P, Odekunle A, Dean P (1986) Tectal cells of origin of predorsal bundle in rat: location and segregation from ipsilateral descending pathway. Exp Brain Res 63:279–293

    CAS  PubMed  Google Scholar 

  230. Reese BE, Guillery RW (1987) Distribution of axons according to diameter in the monkey’s optic tract. J Comp Neurol 260:453–460

    CAS  PubMed  Google Scholar 

  231. Reese BE, Cowey A (1990) Fibre organization of the monkey’s optic tract: I. Segregation of functionally distinct optic axons. J Comp Neurol 295:385–400

    CAS  PubMed  Google Scholar 

  232. Ringach DL, Shapley RM, Hawken MJ (2002) Orientation selectivity in macaque V1: diversity and laminar dependence. J Neurosci 22:5639–5651

    CAS  PubMed  Google Scholar 

  233. Rizzolatti G, Matelli M (2003) Two different streams form the dorsal visual system: anatomy and functions. Exp Brain Res 153:146–157

    PubMed  Google Scholar 

  234. Robertson RT (1983) Efferents of the pretectal complex: separate populations of neurons project to lateral thalamus and to inferior olive. Brain Res 258:91–95

    Google Scholar 

  235. Robinson FR, Fuchs AF (2001) The role of the cerebellum in voluntary eye movements. Annu Rev Neurosci 24:981–1004

    CAS  PubMed  Google Scholar 

  236. Robinson FR, Phillips JO, Fuchs AF (1994) Coordination of gaze shifts in primates: brainstem inputs to neck and extraocular motoneuron pools. J Comp Neurol 346:43–62

    CAS  PubMed  Google Scholar 

  237. Rockhill RL, Daly FJ, MacNeil MA, Brown SP, Masland RH (2002) The diversity of ganglion cells in a mammalian retina. J Neurosci 22:3831–3843

    CAS  PubMed  Google Scholar 

  238. Rodieck RW, Watanabe M (1993) Survey of the morphology of macaque retinal ganglion cells that project to the pretectum, superior colliculus, and parvocellular laminae of the lateral geniculate nucleus. J Comp Neurol 338:289–303

    CAS  PubMed  Google Scholar 

  239. Rosano C, Sweeney JA, Melchitzky DS, Lewis DA (2003) The human precentral sulcus: chemoarchitecture of a region corresponding to the frontal eye fields. Brain Res 972:16–30

    CAS  PubMed  Google Scholar 

  240. Rosano C, Krisky CM, Welling JS, Eddy WF, Luna B, Thulborn KR, Sweeney JA (2002) Pursuit and saccadic eye movement subregions in human frontal eye field: a high-resolution fMRI investigation. Cereb Cortex 12:107–115

    PubMed  Google Scholar 

  241. Rozzi S, Calzavara R, Belmalih A, Borra E, Gregoriou GG, Matelli M, Luppino G (2006) Cortical connections of the inferior parietal cortical convexity of the macaque monkey. Cereb Cortex 16:1389–1417

    PubMed  Google Scholar 

  242. Ruby NF, Brennan TJ, Xie X, Cao V, Franken P, Heller HC, O’Hara BF (2002) Role of melanopsin in circadian responses to light. Science 298:2211–2213

    CAS  PubMed  Google Scholar 

  243. Ruigrok TJ (2003) Collateralization of climbing and mossy fibers projecting to the nodulus and flocculus of the rat cerebellum. J Comp Neurol 466:278–298

    PubMed  Google Scholar 

  244. Ruigrok TJ, Cella F, Voogd J (1995) Connections of the lateral reticular nucleus to the lateral vestibular nucleus in the rat. An anterograde tracing study with Phaseolus vulgaris leucoagglutinin. Eur J Neurosci 7:1410–1413

    CAS  PubMed  Google Scholar 

  245. Saleem KS, Suzuki W, Tanaka K, Hashikawa T (2000) Connections between anterior inferotemporal cortex and superior temporal sulcus regions in the macaque monkey. J Neurosci 20:5083–5101

    CAS  PubMed  Google Scholar 

  246. Sato Y, Kawasaki T, Ikarashi K (1983) Afferent projections from the brain stem to the three floccular zones in cats. II Mossy fiber projections. Brain Res 272:37–48

    CAS  PubMed  Google Scholar 

  247. Schmahmann JD, Pandya DN (1989) Anatomical investigation of projections to the basis pontis from posterior parietal association cortices in rhesus monkey. J Comp Neurol 289:53–73

    CAS  PubMed  Google Scholar 

  248. Schmahmann JD, Pandya DN (1991) Projections to the basis pontis from the superior temporal sulcus and superior temporal region in the rhesus monkey. J Comp Neurol 308:224–248

    CAS  PubMed  Google Scholar 

  249. Schmahmann JD, Pandya DN (1993) Prelunate, occipitotemporal, and parahippocampal projections to the basis pontis in rhesus monkey. J Comp Neurol 337:94–112

    CAS  PubMed  Google Scholar 

  250. Scudder CA, Kaneko CS, Fuchs AF (2002) The brainstem burst generator for saccadic eye movements: a modern synthesis. Exp Brain Res 142:439–462

    PubMed  Google Scholar 

  251. Scudder CA, Moschovakis AK, Karabelas AB, Highstein SM (1996) Anatomy and physiology of saccadic long-lead burst neurons recorded in the alert squirrel monkey. I. Descending projections from the mesencephalon. J Neurophysiol 76:332–352

    CAS  PubMed  Google Scholar 

  252. Scudder CA, Moschovakis AK, Karabelas AB, Highstein SM (1996) Anatomy and physiology of saccadic long-lead burst neurons recorded in the alert squirrel monkey. II. Pontine neurons. J Neurophysiol 76:353–370

    CAS  PubMed  Google Scholar 

  253. Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RB (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268:889–893

    CAS  PubMed  Google Scholar 

  254. Shapley R, Perry VH (1986) Cat and monkey retinal ganglion cells and their visual functional roles. Trends Neurosci 9:229–235

    Google Scholar 

  255. Shinoda Y, Sugiuchi Y, Izawa Y, Hata Y (2005) Long descending motor tract axons and their control control of neck and axial muscles. Prog Brain Res 151:527–563

    Google Scholar 

  256. Shipp S, Blanton M, Zeki S (1998) A visuosomatomotor pathway through superior parietal cortex in the macaque monkey: cortical connections of areas V6 and V6A. Eur J Neurosci 10:3171–3193

    CAS  PubMed  Google Scholar 

  257. Shook BL, Schlag-Rey M, Schlag J (1990) Primate supplementary eye field: I. Comparative aspects of mesencephalic and pontine connections. J Comp Neurol 301:618–642

    CAS  PubMed  Google Scholar 

  258. Simpson JI (1984) The accessory optic system. Annu Rev Neurosci 7:13–41

    CAS  PubMed  Google Scholar 

  259. Simpson JI, Leonard CS, Soodak RE (1988) The accessory optic system of rabbit. II. Spatial organization of direction selectivity. J Neurophysiol 60:2055–2072

    CAS  PubMed  Google Scholar 

  260. Sincich LC, Horton JC (2002) Divided by cytochrome oxidase: a map of the projections from V1 to V2 in macaques. Science 295:1734–1737

    CAS  PubMed  Google Scholar 

  261. Sincich LC, Horton JC (2003) Independent projection streams from macaque striate cortex to the second visual area and middle temporal area. J Neurosci 23:5684–5692

    CAS  PubMed  Google Scholar 

  262. Sincich LC, Horton JC (2005) Input to V2 thin stripes arises from V1 cytochrome oxidase patches. J Neurosci 25:10087–10093

    CAS  PubMed  Google Scholar 

  263. Sincich LC, Park KF, Wohlgemuth MJ, Horton JC (2004) Bypassing V1: a direct geniculate input to area MT. Nat Neurosci 7:1123–1128

    CAS  PubMed  Google Scholar 

  264. Sommer MA, Wurtz RH (2000) Composition and topographic organization of signals sent from the frontal eye field to the superior colliculus. J Neurophysiol 83:1979–2001

    CAS  PubMed  Google Scholar 

  265. Soucy E, Wang Y, Nirenberg S, Nathans J, Meister M (1998) A novel signaling pathway from rod photoreceptors to ganglion cells in mammalian retina. Neuron 21:481–493

    CAS  PubMed  Google Scholar 

  266. Sparks DL (1988) Neural cartography: sensory and motor maps in the superior colliculus. Brain Behav Evol 31:49–56

    CAS  PubMed  Google Scholar 

  267. Sparks DL, Holland R, Guthrie BL (1976) Size and distribution of movement fields in the monkey superior colliculus. Brain Res 113:21–34

    CAS  PubMed  Google Scholar 

  268. Spencer RF, Wang SF (1996) Immunohistochemical localization of neurotransmitters utilized by neurons in the rostral interstitial nucleus of the medial longitudinal fasciculus (riMLF) that project to the oculomotor and trochlear nuclei in the cat. J Comp Neurol 366:134–148

    CAS  PubMed  Google Scholar 

  269. Spencer RF, Wenthold RJ, Baker R (1989) Evidence for glycine as an inhibitory neurotransmitter of vestibular, reticular, and prepositus hypoglossi neurons that project to the cat abducens nucleus. J Neurosci 9:2718–2736

    CAS  PubMed  Google Scholar 

  270. Stanton GB, Goldberg ME, Bruce CJ (1988) Frontal eye field efferents in the macaque monkey: I. Subcortical pathways and topography of striatal and thalamic terminal fields. J Comp Neurol 271:473–492

    CAS  PubMed  Google Scholar 

  271. Steele GE, Weller RE (1993) Subcortical connections of subdivisions of inferior temporal cortex in squirrel monkeys. Vis Neurosci 10:563–583

    CAS  PubMed  Google Scholar 

  272. Stone J, Dreher B (1982) Parallel processing of information in the visual pathways. A general principle of sensory coding. Trends Neurosci 5:441–446

    Google Scholar 

  273. Sugita S, Noda H (1991) Pathways and terminations of axons arising in the fastigial oculomotor region of macaque monkeys. Neurosci Res 10:118–136

    CAS  PubMed  Google Scholar 

  274. Suzuki DA, Yamada T, Hoedema R, Yee RD (1999) Smooth-pursuit eye-movement deficits with chemical lesions in macaque nucleus reticularis tegmenti pontis. J Neurophysiol 82:1178–1186

    CAS  PubMed  Google Scholar 

  275. Takada M, Tokuno H, Ikai Y, Mizuno N (1994) Direct projections from the entopeduncular nucleus to the lower brainstem in the rat. J Comp Neurol 342:409–429

    CAS  PubMed  Google Scholar 

  276. Tanaka M, Lisberger SG (2002) Role of arcuate frontal cortex of monkeys in smooth pursuit eye movements. I. Basic response properties to retinal image motion and position. J Neurophysiol 87:2684–2699

    PubMed  Google Scholar 

  277. Thielert CD, Thier P (1993) Patterns of projections from the pontine nuclei and the nucleus reticularis tegmenti pontis to the posterior vermis in the rhesus monkey: a study using retrograde tracers. J Comp Neurol 337:113–126

    CAS  PubMed  Google Scholar 

  278. Tian JR, Lynch JC (1997) Subcortical input to the smooth and saccadic eye movement subregions of the frontal eye field in Cebus monkey. J Neurosci 17:9233–9247

    CAS  PubMed  Google Scholar 

  279. Tigges J, Tigges M (1981) Distribution of retinofugal and corticofugal axon terminals in the superior colliculus of squirrel monkey. Invest Ophthalmol Vis Sci 20:149–158

    CAS  PubMed  Google Scholar 

  280. Tokuno H, Takada M, Kondo Y, Mizuno N (1993) Laminar organization of the substantia nigra pars reticulata in the macaque monkey, with special reference to the caudato-nigrotectal link. Exp Brain Res 92:545–548

    CAS  PubMed  Google Scholar 

  281. Tootell RB, Hamilton SL (1989) Functional anatomy of the second visual area (V2) in the macaque. J Neurosci 9:2620–2644

    CAS  PubMed  Google Scholar 

  282. Tootell RB, Hadjikhani N (2001) Where is ‘dorsal V4’ in human visual cortex? Retinotopic, topographic and functional evidence. Cereb Cortex 11:298–311

    CAS  PubMed  Google Scholar 

  283. Tootell RB, Tsao D, Vanduffel W (2003) Neuroimaging weighs in: humans meet macaques in “primate“ visual cortex. J Neurosci 23:3981–3989

    CAS  PubMed  Google Scholar 

  284. Tootell RB, Dale AM, Sereno MI, Malach R (1996) New images from human visual cortex. Trends Neurosci 19:481–489

    CAS  PubMed  Google Scholar 

  285. Tootell RB, Nelissen K, Vanduffel W, Orban GA (2004) Search for color ‘center(s)’ in macaque visual cortex. Cereb Cortex 14:353–363

    PubMed  Google Scholar 

  286. Tootell RB, Mendola JD, Hadjikhani NK, Ledden PJ, Liu AK, Reppas JB, Sereno MI, Dale AM (1997) Functional analysis of V3A and related areas in human visual cortex. J Neurosci 17:7060–7078

    CAS  PubMed  Google Scholar 

  287. Torigoe Y, Blanks RH, Precht W (1986) Anatomical studies on the nucleus reticularis tegmenti pontis in the pigmented rat. II. Subcortical afferents demonstrated by the retrograde transport of horseradish peroxidase. J Comp Neurol 243:88–105

    CAS  PubMed  Google Scholar 

  288. Trejo LJ, Cicerone CM (1984) Cells in the pretectal olivary nucleus are in the pathway for the direct light reflex of the pupil in the rat. Brain Res 300:49–62

    CAS  PubMed  Google Scholar 

  289. Tsao DY, Freiwald WA, Knutsen TA, Mandeville JB, Tootell RB (2003) Faces and objects in macaque cerebral cortex. Nat Neurosci 6:989–995

    CAS  PubMed  Google Scholar 

  290. Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of visual behaviour. MIT Press, Cambridge MA, pp 549–586

    Google Scholar 

  291. Ungerleider LG, Haxby JV (1994) ‘What ‘and ‘where’ in the human brain. Curr Opin Neurobiol 4:157–165

    CAS  PubMed  Google Scholar 

  292. Ungerleider LG, Pasternak T (2004) Ventral and dorsal cortical processing streams. In: Chalupa LM, Werner JS (eds) The visual neurosciences. MIT Press, Cambridge MA, pp 541–561

    Google Scholar 

  293. Van der Steen J, Simpson JI, Tan J (1994) Functional and anatomic organization of three-dimensional eye movements in rabbit cerebellar flocculus. J Neurophysiol 72, 31–46

    PubMed  Google Scholar 

  294. Van der Want JJ, Nunes Cardozo JJ, Van der Togt C (1992) GABAergic neurons and circuits in the pretectal nuclei and the accessory optic system of mammals. Prog Brain Res 90:283–305

    PubMed  Google Scholar 

  295. Van Essen DC (2004) Organization of visual areas in macaque and human cerebral cortex. In: Chalupa LC, Werner JS (eds) The visual Neurosciences. MIT Press, Cambridge MA, pp 507–521

    Google Scholar 

  296. Van Essen DC, Newsome WT, Maunsell JH (1984) The visual field representation in striate cortex of the macaque monkey: asymmetries, anisotropies, and individual variability. Vision Res 24:429–448

    PubMed  Google Scholar 

  297. van Kan PL, Houk JC, Gibson AR (1993) Output organization of intermediate cerebellum of the monkey. J Neurophysiol 69:57–73

    PubMed  Google Scholar 

  298. Vanduffel W, Tootell RB, Schoups AA, Orban GA (2002) The organization of orientation selectivity throughout macaque visual cortex. Cereb Cortex 12:647–662

    PubMed  Google Scholar 

  299. Vaney DI (1997) Neuronal coupling in rod-signal pathways of the retina. Invest Ophthalmol Vis Sci 38:267–273

    CAS  PubMed  Google Scholar 

  300. Vincent SR, Hattori T, McGeer EG (1978) The nigrotectal projection: a biochemical and ultrastructural characterization. Brain Res 151:159–164

    CAS  PubMed  Google Scholar 

  301. Von Gudden B (1870) Über einen bisher nicht beschriebenen Nervenfaserstrang im Gehirne der Saugerthiere und des Menschen. Arch Psychiat u Nerv Krankh 2:364–366

    Google Scholar 

  302. Voogd J (2004) Cerebellum and precerebellar nuclei. In: Paxinos G, Mai JK (eds) The human nervous system. Elsevier, Amsterdam, pp 322–392

    Google Scholar 

  303. Voogd J, Barmack NH (2005) Oculomotor cerebellum. Prog Brain Res 151:231–268

    Google Scholar 

  304. Voogd J, Nieuwenhuys R, Van Dongen PAM, Ten Donkelaar HJ (1998) Mammals. In: Nieuwenhuys R, Ten Donkelaar HJ, Nicholson V (eds) The central nervous system of vertebrates, vol 3. Springer, Heidelberg, pp 1637–2097

    Google Scholar 

  305. Wallace MN (1988) Lattices of high histochemical activity occur in the human, monkey, and cat superior colliculus. Neuroscience 25:569–583

    CAS  PubMed  Google Scholar 

  306. Wallace MN, Fredens K (1989) Relationship of afferent inputs to the lattice of high NADPHdiaphorase activity in the mouse superior colliculus. Exp Brain Res 78:435–445

    CAS  PubMed  Google Scholar 

  307. Wang SF, Spencer RF (1996) Spatial organization of premotor neurons related to vertical upward and downward saccadic eye movements in the rostral interstitial nucleus of the medial longitudinal fasciculus (riMLF) in the cat. J Comp Neurol 366:163–180

    CAS  PubMed  Google Scholar 

  308. Wang SF, Spencer RF (1996) Morphology and soma-dendritic distribution of synaptic endings from the rostral interstitial nucleus of the medial longitudinal fasciculus (riMLF) on motoneurons in the oculomotor and trochlear nuclei in the cat. J Comp Neurol 366:149–162

    CAS  PubMed  Google Scholar 

  309. Wässle H (2004) Parallel processing in the mammalian retina. Nat Rev Neurosci 5:747–757

    PubMed  Google Scholar 

  310. Wässle H, Grunert U, Chun MH, Boycott BB (1995) The rod pathway of the macaque monkey retina: identification of AII-amacrine cells with antibodies against calretinin. J Comp Neurol 361:537–551

    PubMed  Google Scholar 

  311. Watanabe M, Rodieck RW (1989) Parasol and midget ganglion cells of the primate retina. J Comp Neurol 289:434–454

    CAS  PubMed  Google Scholar 

  312. Weber JT, Harting JK (1980) The efferent projections of the pretectal complex: an autoradiographic and horseradish peroxidase analysis. Brain Res 194:1–28

    CAS  PubMed  Google Scholar 

  313. Weber JT, Young R, Hutchins B (1981) Morphologic and autoradiographic evidence for a laminated pretectal olivary nucleus in the squirrel monkey. Brain Res 224:153–159

    CAS  PubMed  Google Scholar 

  314. Werblin FS, Dowling JE (1969) Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. J Neurophysiol 32:339–355

    CAS  PubMed  Google Scholar 

  315. Wiberg M, Blomqvist A (1984) The projection to the mesencephalon from the dorsal column nuclei. An anatomical study in the cat. Brain Res 311:225–244

    CAS  PubMed  Google Scholar 

  316. Wiberg M, Westman J, Blomqvist A (1987) Somatosensory projection to the mesencephalon: an anatomical study in the monkey. J Comp Neurol 264:92–117

    CAS  PubMed  Google Scholar 

  317. Wiesel TN, Hubel DH, Lam DM (1974) Autoradiographic demonstration of ocular-dominance columns in the monkey striate cortex by means of transneuronal transport. Brain Res 79:273–279

    CAS  PubMed  Google Scholar 

  318. Wilson ME, Toyne MJ (1970) Retino-tectal and cortico-tectal projections in Macaca mulatta. Brain Res 24:395–406

    CAS  PubMed  Google Scholar 

  319. Wu CW, Bichot NP, Kaas JH (2005) Somatosensory areas S2 and PV project to the superior colliculus of a prosimian primate, Galago garnetti. Somatosens Mot Res 22:221–231

    PubMed  Google Scholar 

  320. Wu SM, Gao F, Maple BR (2000) Functional architecture of synapses in the inner retina: segregation of visual signals by stratification of bipolar cell axon terminals. J Neurosci 20:4462–4470

    CAS  PubMed  Google Scholar 

  321. Xiao Y, Felleman DJ (2004) Projections from primary visual cortex to cytochrome oxidase thin stripes and interstripes of macaque visual area 2. Proc Natl Acad Sci USA 101:7147–7151

    CAS  PubMed  Google Scholar 

  322. Xiong G, Nagao S (2002) The lobulus petrosus of the paraflocculus relays cortical visual inputs to the posterior interposed and lateral cerebellar nuclei: an anterograde and retrograde tracing study in the monkey. Exp Brain Res 147:252–263

    PubMed  Google Scholar 

  323. Xiong G, Hiramatsu T, Nagao S (2002) Corticopontocerebellar pathway from the prearcuate region to hemispheric lobule VII of the cerebellum: an anterograde and retrograde tracing study in the monkey. Neurosci Lett 322:173–176

    CAS  PubMed  Google Scholar 

  324. Xu X, Bosking WH, White LE, Fitzpatrick D, Casagrande VA (2005) Functional organization of visual cortex in the prosimian bush baby revealed by optical imaging of intrinsic signals. J Neurophysiol 94:2748–2762

    PubMed  Google Scholar 

  325. Yabuta NH, Callaway EM (1998) Functional streams and local connections of layer 4C neurons in primary visual cortex of the macaque monkey. J Neurosci 18:9489–9499

    CAS  PubMed  Google Scholar 

  326. Yamada T, Suzuki DA, Yee RD (1996) Smooth pursuit-like eye movements evoked by microstimulation in macaque nucleus reticularis tegmenti pontis. J Neurophysiol 76:3313–3324

    CAS  PubMed  Google Scholar 

  327. Yoshida KW, Watanabe D, Ishikane H, Tachibana M, Pastan I, Nakanishi S (2001) A key role of starburst amacrine cells in originating retinal directional selectivity and optokinetic eye movements. Neuron 30:771–780

    CAS  PubMed  Google Scholar 

  328. Yoshioka T, Levitt JB, Lund JS (1994) Independence and merger of thalamocortical channels within macaque monkey primary visual cortex: anatomy of interlaminar projections. Vis Neurosci 11:467–489

    CAS  PubMed  Google Scholar 

  329. Young MJ, Lund RD (1994) The anatomical substrates subserving the pupillary light reflex in rats: origin of the consensual pupillary response. Neurosci Res 62:481–496

    CAS  Google Scholar 

  330. Zeki S, Watson JD, Lueck CJ, Friston KJ, Kennard C, Frackowiak RS (1991) A direct demonstration of functional specialization in human visual cortex. J Neurosci 11:641–649

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Italia

About this chapter

Cite this chapter

Nieuwenhuys, R., Voogd, J., van Huijzen, C., Papa, M. (2010). Sistema visivo. In: Il sistema nervoso centrale. Springer, Milano. https://doi.org/10.1007/978-88-470-1140-3_19

Download citation

Publish with us

Policies and ethics