Skip to main content

Telencefalo: gangli della base

  • Chapter
Il sistema nervoso centrale

Riassunto

Il termine gangli della base si riferisce a un gruppo di nuclei strettamente connessi che formano un continuum che si estende dalla base del telencefalo, attraverso la parte centrale del diencefalo, nel tegmento mesencefalico. Questo complesso, secondo la definizione classica, risulta composto dallo striato (nucleo caudato e putamen), dal globo pallido, dal nucleo subtalamico e dalla substantia nigra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. Albin RL, Aldridge JW, Young AB, Gilman S (1989) Feline subthalamic nucleus neurons contain glutamatelike but not GABA-like or glycine-like immunoreactivity. Brain Res 491:185–188

    CAS  PubMed  Google Scholar 

  2. Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13:266–271

    CAS  PubMed  Google Scholar 

  3. Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    CAS  PubMed  Google Scholar 

  4. Alheid GF, Heimer L (1988) New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: the striatopallidal, amygdaloid, and corticopetal components of substantia innominata. Neuroscience 27:1–39

    CAS  PubMed  Google Scholar 

  5. Amaral DG, Kurz J (1985) An analysis of the origins of the cholinergic and noncholinergic septal projections to the hippocampal formation of the rat. J Comp Neurol 240:37–59

    CAS  PubMed  Google Scholar 

  6. Andén NE, Dahlström A, Fuxe K et al (1966) Ascending monoamine neurons to the telencephalon and diencephalon. Acta Physiol Scand 67:313–326

    Google Scholar 

  7. Arendt T, Arendt A, Tennstedt A (1983) Loss of neurons in the nucleus basalis of Meynert in Alzheimer’s disease, paralysis agitans and Korsakoffs disease. Acta Neuropathol (Berl) 61:101–108

    CAS  Google Scholar 

  8. Arendt T, Bigl V, Arendt A (1984) Neurone loss in the nucleus basalis of Meynert in Creutzfeldt-Jakob Disease. Acta Neuropathol (Berl) 65:85–88

    CAS  Google Scholar 

  9. Arikuni T, Kubota K (1986) The organization of prefrontocaudate projections and their laminar origin in the macaque monkey: a retrograde study using HRPgel. J Comp Neurol 244:492–510

    CAS  PubMed  Google Scholar 

  10. Asanuma C, Thach WT, Jones EG (1983) Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral lateral thalamic region of the monkey. Brain Res 286:237–265

    CAS  PubMed  Google Scholar 

  11. Ashby P, Kim YJ, Kumar R, Lang AE, Lozano AM (1999) Neurophysiological effects of stimulation through electrodes in the human subthalamic nucleus. Brain 122(Pt 10):1919–1931

    PubMed  Google Scholar 

  12. Bamford NS, Robinson S, Palmiter RD et al (2004) Dopamine modulates release from corticostriatal terminals. J Neurosci 24:9541–9552

    CAS  PubMed  Google Scholar 

  13. Beach TG, McGeer EG (1984) The distribution of substance P in the primate basal ganglia: an immunohistochemical study of baboon and human brain. Neuroscience 13:29–52

    CAS  PubMed  Google Scholar 

  14. Beaulieu C, Somogyi P (1991) Enrichment of cholinergic synaptic terminals on GABAergic neurons and coexistence of immunoreactive GABA and choline acetyltransferase in the same synaptic terminals in the striate cortex of the cat. J Comp Neurol 304:666–680

    CAS  PubMed  Google Scholar 

  15. Beckstead RM (1983) A reciprocal axonal connection between the subthalamic nucleus and the neostriatum in the cat. Brain Res 275:137–142

    CAS  PubMed  Google Scholar 

  16. Beckstead RM, Cruz CJ (1986) Striatal axons to the globus pallidus entopeduncular nucleus and substantia nigra come mainly from separate cell populations in the cat. Neuroscience 19:147–158

    CAS  PubMed  Google Scholar 

  17. Beckstead RM, Frankfurter A (1982) The distribution and some morphological features of substantia nigra neurons that project to the thalamus, superior collicuIus and pedunculopontine nucleus in the monkey. Neuroscience 7:2377–2388

    CAS  PubMed  Google Scholar 

  18. Beckstead RM, Domesick VB, Nauta WJH (1979) Efferent connections of the substantia nigra and ventral tegmental area in the rat. Brain Res 175:191–217

    CAS  PubMed  Google Scholar 

  19. Benazzouz A, Boraud T, Feger J et al (1996) Alleviation of experimental hemiparkinsonism by highfrequency stimulation of the subthalamic nucleus in primates: a comparison with L-Dopa treatment. Mov Disord 11:627–632

    CAS  PubMed  Google Scholar 

  20. Bennett BD, Bolam JP (1993) Characterization of calretinin-immunoreactive structures in the striatum of the rat. Brain Res 609:137–148

    CAS  PubMed  Google Scholar 

  21. Berendse HW, Groenewegen HJ (1990) Organization of the thalamostriatal projections in the rat, with special emphasis on the ventral striatum. J Comp Neurol 299:187–228

    CAS  PubMed  Google Scholar 

  22. Berendse HW, Groenewegen HJ (1991) Restricted cortical termination fields of the midline and intralaminar thalamic nuclei in the rat. Neuroscience 42:73–102

    CAS  PubMed  Google Scholar 

  23. Berendse HW, Galis-de Graaf Y, Groenewegen HJ (1992) Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat. J Comp Neurol 316:314–347

    CAS  PubMed  Google Scholar 

  24. Berendse HW, Groenewegen HJ, Lohman AHM (1992) Compartmental distribution of ventral striatal neurons projecting to the mesencephalon in the rat. J Neurosci 12:2079–2103

    CAS  PubMed  Google Scholar 

  25. Bergman H, Wichmann T, Karmon B, DeLong MR (1994) The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J Neurophysiol 72:507–520

    CAS  PubMed  Google Scholar 

  26. Betarbet R, Turner R, Chockkan V et al (1997) Dopaminergic neurons intrinsic to the primate striatum. J Neurosci 17:6761–6768

    CAS  PubMed  Google Scholar 

  27. Bickford ME, Hall WC (1992) The nigral projection to predorsal bundle cells in the superior colliculus of the rat. J Comp Neurol 319:11–33

    CAS  PubMed  Google Scholar 

  28. Bingel U, Glascher J, Weiller C, Buchel C (2004) Somatotopic representation of nociceptive information in the putamen: an event-related fMRI study. Cereb Cortex 14:1340–1345

    CAS  PubMed  Google Scholar 

  29. Blandini F, Nappi G, Tassorelli C, Martignoni E (2000) Functional changes of the basal ganglia circuitry in Parkinson’s disease. Prog Neurobiol 62:63–88

    CAS  PubMed  Google Scholar 

  30. Bobillier R, Seguin S, Petitjean F et al (1976) The raphe nuclei of the cat brain stem: a topographical atlas of their efferent projections as revealed by autoradiography. Brain Res 113:449–486

    CAS  PubMed  Google Scholar 

  31. Bogerts B, Hantsch J, Herzer M (1983) A morphometric study of the dopamine-containing cell groups in the mesencephalon of normals, Parkinson patients, and schizophrenics. Biol Psychiatry 18:951–969

    CAS  PubMed  Google Scholar 

  32. Bolam JP, Izzo PN (1988) The postsynaptic targets of substance P-immunoreactive terminals in the rat neostriatum with particular reference to identified spiny striatonigral neurons. Exp Brain Res 70:361–377

    CAS  PubMed  Google Scholar 

  33. Bolam JP, Smith Y (1990) The GABA and substance P input to dopaminergic neurones in the substantia nigra of the rat. Brain Res 529:57–78

    CAS  PubMed  Google Scholar 

  34. Bolam JP, Izzo PN, Graybiel AM (1988) Cellular substrate of the histochemically defined striosome/matrix system of the caudate nucleus: a combined Golgi and immunocytochemical study in cat and ferret. Neuroscience 24:853–875

    CAS  PubMed  Google Scholar 

  35. Bolam JP, Francis CM, Henderson Z (1991) Cholinergic input to dopaminergic neurons in the substantia nigra: a double immunocytochemical study. Neuroscience 41:483–494

    CAS  PubMed  Google Scholar 

  36. Bondareff W, Mountjoy CQ, Roth M (1982) Loss of neurons of origin of the adrenergic projections to cerebral cortex (nucleus locus coeruleus) in senile dementia. Neurology 32:164–168

    CAS  PubMed  Google Scholar 

  37. Braak H, Braak E (1982) Neuronal types in the striatum of man. Cell Tissue Res 227:319–342

    CAS  PubMed  Google Scholar 

  38. Braak H, Braak E (2000) Pathoanatomy of Parkinson’s disease. J Neurol 247 Suppl 2:113–210

    Google Scholar 

  39. Braak H, Rub U, Sandmann-Keil D et al (2000) Parkinson’s disease: affection of brain stem nuclei controlling premotor and motor neurons of the somatomotor system. Acta Neuropathol (Berl) 99:489–495

    CAS  Google Scholar 

  40. Brooks VB, Thach WT (1981) Cerebellar control of posture and movement. In: Brooks VB (ed) Handbook of physiology. Section I: The nervous system. Vol 2: Motor control. Part II. American Physiological Society, Bethesda, pp 877–946

    Google Scholar 

  41. Buttner-Ennever JA, Buttner U, Cohen B, Baumgartner O (1982) Vertical gaze paralysis and the rostral interstitial nucleus of the medial longitudinal fasciculus. Brain 105:125–149

    CAS  PubMed  Google Scholar 

  42. Calabresi P, Centonze D, Gubellini P et al (2000) Synaptic transmission in the striatum: from plasticity to neurodegeneration. Prog Neurobiol 61:231–265

    CAS  PubMed  Google Scholar 

  43. Canteras NS, Shammah-Lagnado SJ, Silva BA, Ricardo JA (1990) Afferent connections of the subthalamic nucleus: a combined retrograde and anterograde horseradish peroxidase study in the rat. Brain Res 513:43–59

    CAS  PubMed  Google Scholar 

  44. Carman JB, Cowan WM, Powell TPS (1963) The organization of the cortico-striate connexions in the rabbit. Brain 86:525–562

    CAS  PubMed  Google Scholar 

  45. Carman JB, Cowan WM, Powell TP, Webster KE (1965) A bilateral cortico-striate projection. J Neurol Neurosurg Psychiatry 28:71–77

    CAS  PubMed  Google Scholar 

  46. Carmichael ST, Price JL (1995) Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys. J Comp Neurol 363:642–664

    CAS  PubMed  Google Scholar 

  47. Carmichael ST, Price JL (1996) Connectional networks within the orbital and medial prefrontal cortex of macaque monkeys. J Comp Neurol 371:179–207

    CAS  PubMed  Google Scholar 

  48. Carpenter MB, Peter Ph (1972) Nigrostriatal and nigrothalamic fibers in the rhesus monkey. J Comp Neurol 144:93–117

    CAS  PubMed  Google Scholar 

  49. Carpenter MB, Nakano K, Kim R (1976) Nigrothalamic projections in the monkey demonstrated by autoradiographic technics. J Comp Neurol 165:401–416

    CAS  PubMed  Google Scholar 

  50. Carpenter MB, Batton RR, Carleton SC, Keller JT (1981) Interconnections and organization of pallidal and subthalamic nucleus neurons in the monkey. J Comp Neurol 197:579–603

    CAS  PubMed  Google Scholar 

  51. Carpenter MB, Carleton SC, Keller JT, Conte P (1981) Connections of the subthalamic nucleus in the monkey. Brain Res 224:1–29

    CAS  PubMed  Google Scholar 

  52. Ceballos-Baumann AO, Boecker H, Bartenstein P et al (1999) A positron emission tomographic study of subthalamic nucleus stimulation in Parkinson disease: enhanced movement-related activity of motorassociation cortex and decreased motor cortex resting activity. Arch Neurol 56:997–1003

    CAS  PubMed  Google Scholar 

  53. Cepeda C, Levine MS (1998) Dopamine and Nmethyl-D-aspartate receptor interactions in the neostriatum. Dev Neurosci 20:1–18

    CAS  PubMed  Google Scholar 

  54. Charara A, Parent A (1994) Brainstem dopaminergic, cholinergic and serotoninergic afferents to the pallidum in the squirrel monkey. Brain Res 640:155–170

    CAS  PubMed  Google Scholar 

  55. Chesselet MF, Graybiel AM (1986) Striatal neurons expressing somatostatin-like immunoreactivity: evidence for a peptidergic interneuronal system in the cat. Neuroscience 17:547–571

    CAS  PubMed  Google Scholar 

  56. Chevalier G, Thierry AM, Shibazaki T, Feger J (1981) Evidence for a gabaergic inhibitory nigrotectal pathway in the rat. Neurosci Lett 21:67–70

    CAS  PubMed  Google Scholar 

  57. Chiba T, Kayahara T, Nakano K (2001) Efferent projections of infralimbic and prelimbic areas of the medial prefrontal cortex in the Japanese monkey, Macaca fuscata. Brain Res 888:83–101

    CAS  PubMed  Google Scholar 

  58. Childs JA, Gale K (1983) Neurochemical evidence for a nigrotegmental GABAergic projection. Brain Res 258:109–114

    CAS  Google Scholar 

  59. Choi JS, Kang DH, Kim JJ et al (2004) Left anterior subregion of orbitofrontal cortex volume reduction and impaired organizational strategies in obsessivecompulsive disorder. J Psychiatr Res 38:193–199

    PubMed  Google Scholar 

  60. Collerton D (1986) Cholinergic function and intellectual decline in Alzheimer’s disease. Neuroscience 19:1–28

    CAS  PubMed  Google Scholar 

  61. Cools AR (1980) Role of the neostriatal dopaminergic activity in sequencing and selecting behavioral strategies: facilitation of processes involved in selecting the best strategy in an stressful situation. Behav Brain Res 1:361–378

    CAS  PubMed  Google Scholar 

  62. Cools AR, Jaspers R, Schwartz M et al (1984) Basal ganglia and switching motor programs. In: McKenzie JS, Kemm RE, Wilcock LN (eds) Basal ganglia structure and function. Plenum, New York, pp 513–544

    Google Scholar 

  63. Cossette M, Lecomte F, Parent A (2005) Morphology and distribution of dopaminergic neurons intrinsic to the human striatum. J Chem Neuroanat 29:1–11

    CAS  PubMed  Google Scholar 

  64. Cowan RL, Wilson CJ (1994) Spontaneous firing patterns and axonal projections of single corticostriatal neurons in the rat medial agranular cortex. J Neurophysiol 71:17–32

    CAS  PubMed  Google Scholar 

  65. Coyle JT, Price DL, DeLong MR (1983) Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science 219:1184–1190

    CAS  PubMed  Google Scholar 

  66. Cullinan WE, Zaborszky L (1991) Organization of ascending hypothalamic projections to the rostral forebrain with special reference to the innervation of cholinergic projection neurons. J Comp Neurol 306:631–667

    CAS  PubMed  Google Scholar 

  67. Curcio CA, Kemper T (1984) Nucleus raphe dorsalis in dementia of the Alzheimer type neurofibrillary changes and neuronal packing density. J Neuropathol Exp Neurol 43:359–368

    CAS  PubMed  Google Scholar 

  68. Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand [Suppl] 62(232):1–55

    Google Scholar 

  69. Davies P (1979) Neurotransmitter related enzymes in senile dementia of the Alzheimer type. Brain Res 171:310–327

    Google Scholar 

  70. Davis KD, Taub E, Houle S et al (1997) Globus pallidus stimulation activates the cortical motor system during alleviation of parkinsonian symptoms. Nat Med 3:671–674

    CAS  PubMed  Google Scholar 

  71. DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285

    CAS  PubMed  Google Scholar 

  72. DeLong MR (2000) The basal ganglia. In: Kandel ER, Schwartz JH, Jessel TM (eds) Principles of neural science, 4th edn. McGraw-Hill, New York, pp 853–867

    Google Scholar 

  73. DeLong MR, Georgopoulos AP (1981) Motor function of the basal ganglia. In: Brookhart JM, Mountcastle VB, Brooks VB (eds) Handbook of physiology, sect 1: The nervous system, vol 2: Motor control, part 2. American Physiological Society, Bethesda, pp 1017–1061

    Google Scholar 

  74. Deniau JM, Chevalier G (1985) Disinhibition as a basic process in the expression of striatal functions. II. The striato-nigral influence on thalamocortical cells of the ventromedial thalamic nucleus. Brain Res 334:227–233

    CAS  PubMed  Google Scholar 

  75. Deniau JM, Menetrey A, Thierry AM (1994) Indirect nucleus accumbens input to the prefrontal cortex via the substantia nigra pars reticulata: a combined anatomical and electrophysiological study in the rat. Neuroscience 61:533–545

    CAS  PubMed  Google Scholar 

  76. Desban M, Kemel ML, Glowinski J, Gauchy C (1993) Spatial organization of patch and matrix compartments in the rat striatum. Neuroscience 57:661–671

    CAS  PubMed  Google Scholar 

  77. Desban M, Gauchy C, Glowinski J, Kemel ML (1995) Heterogeneous topographical distribution of the striatonigral and striatopallidal neurons in the matrix compartment of the cat caudate nucleus. J Comp Neurol 352:117–133

    CAS  PubMed  Google Scholar 

  78. Deschênes M, Bourassa J, Doan VD, Parent A (1996) A single-cell study of the axonal projections arising from the posterior intralaminar thalamic nuclei in the rat. Eur J Neurosci 8:329–343

    PubMed  Google Scholar 

  79. Desmond JE, Fiez JA (1998) Neuroimaging studies of the cerebellum: language, learning and memory. Trends Cogn Sci 2:355–362

    Google Scholar 

  80. DeVito JL, Anderson ME (1982) An autoradiographic study of efferent connections of the globus pallidus in macaca mulatta. Exp Brain Res 46:107–117

    CAS  PubMed  Google Scholar 

  81. DiFiglia M, Rafols JA (1988) Synaptic organization of the globus pallidus. J Electron Microsc Tech 10:247–263

    CAS  PubMed  Google Scholar 

  82. DiFiglia M, Pasik P, Pasik T (1976) A Golgi study of neuronal types in the neostriatum of monkeys. Brain Res 114:245–256

    CAS  PubMed  Google Scholar 

  83. Divac I (1975) Magnocellular nuclei of the basal forebrain project to neocortex, brain stem, and olfactory bulb: review of some functional correlates. Brain Res 93:385–398

    CAS  PubMed  Google Scholar 

  84. Donoghue JP, Herkenham M (1986) Neostriatal projections from individual cortical fields conform to histochemically distinct striatal compartments in the rat. Brain Res 365:397–403

    CAS  PubMed  Google Scholar 

  85. Drepper J, Timmann D, Kolb FP, Diener HC (1999) Non-motor associative learning in patients with isolated degenerative cerebellar disease. Brain 122(Pt 1):87–97

    PubMed  Google Scholar 

  86. Dubé L, Smith AD, Bolam JP (1988) Identification of synaptic terminals of thalamic or cortical origin in contact with distinct medium-size spiny neurons in the rat neostriatum. J Comp Neurol 267:455–471

    PubMed  Google Scholar 

  87. Dum RP, Strick PL (2005) Frontal lobe inputs to the digit representations of the motor areas on the lateral surface of the hemisphere. J Neurosci 25:1375–1386

    CAS  PubMed  Google Scholar 

  88. Eblen F, Graybiel AM (1995) Highly restricted origin of prefrontal cortical inputs to striosomes in the macaque monkey. J Neurosci 15:5999–6013

    CAS  PubMed  Google Scholar 

  89. Edley SM, Graybiel AM (1983) The afferent and efferent connections of the feline nucleus tegmenti pedunculopontinus, pars compacta. J Comp Neurol 217:187–215

    CAS  PubMed  Google Scholar 

  90. Eidelberg D, Moeller JR, Dhawan V et al (1994) The metabolic topography of parkinsonism. J Cereb Blood Flow Metab 14:783–801

    CAS  PubMed  Google Scholar 

  91. Elliott R, Rubinsztein JS, Sahakian BJ, Dolan RJ (2002) The neural basis of mood-congruent processing biases in depression. Arch Gen Psychiatry 59:597–604

    PubMed  Google Scholar 

  92. Etienne P, Robitaille Y, Wood P et al (1986) Nucleus basalis neuronal loss, neuritic plaques and choline acetyltransferase activity in advanced Alzheimer’s disease. Neuroscience 19:1279–1291

    CAS  PubMed  Google Scholar 

  93. Evarts EV, Thach WT (1969) Motor mechanisms of the CNS: cerebrocerebellar interrelations. Annu Rev Physiol 31:451–498

    CAS  PubMed  Google Scholar 

  94. Fénelon G, Francois C, Percheron G, Yelnik J (1990) Topographic distribution of pallidal neurons projecting to the thalamus in macaques. Brain Res 520:27–35

    PubMed  Google Scholar 

  95. Ferry AT, OÅNngur D, An X, Price JL (2000) Prefrontal cortical projections to the striatum in macaque monkeys: evidence for an organization related to prefrontal networks. J Comp Neurol 425:447–470

    CAS  PubMed  Google Scholar 

  96. Fisher RS, Buchwald NA, Hull CD, Levine MS (1988) GABAergic basal forebrain neurons project to the neocortex: the localization of glutamic acid decarboxylase and choline acetyltransferase in feline corticopetal neurons. J Comp Neurol 272:489–502

    CAS  PubMed  Google Scholar 

  97. Flaherty AW, Graybiel AM (1993) Output architecture of the primate putamen. J Neurosci 13:3222–3237

    CAS  PubMed  Google Scholar 

  98. Fonnum F, Storm-Mathisen J, Divac I (1981) Biochemical evidence for glutamate as neurotransmitter in corticostriatal and corticothalamic fibres in rat brain. Neuroscience 6:863–873

    CAS  PubMed  Google Scholar 

  99. Foote SL, Morrison JH (1987) Extrathalamic modulation of cortical function. Annu Rev Neurosci 10:67–95

    CAS  PubMed  Google Scholar 

  100. Fox CA, Rafols JA (1975) The radial fibers in the globus pallidus. J Comp Neurol 159:177–200

    CAS  PubMed  Google Scholar 

  101. Fox CA, Rafols JA, Cowan WM (1975) Computer measurements of axis cylinder diameters of radial fibers and “comb” bundle fibers. J Comp Neurol 159:201–224

    CAS  PubMed  Google Scholar 

  102. Francois C, Percheron G, Yelnik J (1984) Localization of nigrostriatal, nigrothalamic and nigrotectal neurons in ventricular coordinates in macaques. Neuroscience 13:61–76

    CAS  PubMed  Google Scholar 

  103. Francois C, Yelnik J, Tande D, Agid Y, Hirsch EC (1999) Dopaminergic cell group A8 in the monkey: anatomical organization and projections to the striatum. J Comp Neurol 414:334–347

    CAS  PubMed  Google Scholar 

  104. Francois C, Savy C, Jan C et al (2000) Dopaminergic innervation of the subthalamic nucleus in the normal state, in MPTP-treated monkeys, and in Parkinson’s disease patients. J Comp Neurol 425:121–129

    CAS  PubMed  Google Scholar 

  105. Francois C, Tande D, Yelnik J, Hirsch EC (2002) Distribution and morphology of nigral axons projecting to the thalamus in primates. J Comp Neurol 447:249–260

    PubMed  Google Scholar 

  106. French SJ, Totterdell S (2002) Hippocampal and prefrontal cortical inputs monosynaptically converge with individual projection neurons of the nucleus accumbens. J Comp Neurol 446:151–165

    PubMed  Google Scholar 

  107. Freund TF, Gulyas AI (1991) GABAergic interneurons containing calbindin D28K or somatostatin are major targets of GABAergic basal forebrain afferents in the rat neocortex. J Comp Neurol 314:187–199

    CAS  PubMed  Google Scholar 

  108. Freund TF, Meskenaite V (1992) gamma-Amino-butyric acid-containing basal forebrain neurons innervate inhibitory interneurons in the neocortex. Proc Natl Acad Sci USA 89:738–742

    CAS  PubMed  Google Scholar 

  109. Freund TF, Martin KA, Smith AD, Somogyi P (1983) Glutamate decarboxylase-immunoreactive terminals of Golgi-impregnated axoaxonic cells and of presumed basket cells in synaptic contact with pyramidal neurons of the cat’s visual cortex. J Comp Neurol 221:263–278

    CAS  PubMed  Google Scholar 

  110. Freund TF, Powell JF, Smith AD (1984) Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dentritic spines. Neuroscience 13:1189–1215

    CAS  PubMed  Google Scholar 

  111. Friedman DP, Aggleton JP, Saunders RC (2002) Comparison of hippocampal, amygdala, and perirhinal projections to the nucleus accumbens: combined anterograde and retrograde tracing study in the Macaque brain. J Comp Neurol 450:345–365

    PubMed  Google Scholar 

  112. Fudge JL, Haber SN (2002) Defining the caudal ventral striatum in primates: cellular and histochemical features. J Neurosci 22:10078–10082

    CAS  PubMed  Google Scholar 

  113. Fudge JL, Kunishio K, Walsh P, Richard C, Haber SN (2002) Amygdaloid projections to ventromedial striatal subterritories in the primate. Neuroscience 110:257–275

    CAS  PubMed  Google Scholar 

  114. Fudge JL, Breitbart MA, McClain C (2004) Amygdaloid inputs define a caudal component of the ventral striatum in primates. J Comp Neurol 476:330–347

    PubMed  Google Scholar 

  115. Fuster JM (1997) The prefrontal cortex: anatomy, physiology and neuropsychology of the frontal lobe. Lippincott-Raven, Philadelphia

    Google Scholar 

  116. Garcia-Rill E, Skinner RD (1987) The mesencephalic locomotor region. II. Projections to reticulospinal neurons. Brain Res 411:13–20

    CAS  PubMed  Google Scholar 

  117. Garcia-Rill E, Skinner RD, Miyazato H, Homma Y (2001) Pedunculopontine stimulation induces prolonged activation of pontine reticular neurons. Neuroscience 104:455–465

    CAS  PubMed  Google Scholar 

  118. Garris PA, Ciolkowski EL, Pastore P, Wightman RM (1994) Efflux of dopamine from the synaptic cleft in the nucleus accumbens of the rat brain. J Neurosci 14:6084–6093

    CAS  PubMed  Google Scholar 

  119. Gerardin E, Lehericy S, Pochon JB et al (2003) Foot, hand, face and eye representation in the human striatum. Cereb Cortex 13:162–169

    PubMed  Google Scholar 

  120. Gerfen CR (1984) The neostriatal mosaic: compartmentalization of corticostriatal input and striatonigral output systems. Nature 311:461–464

    CAS  PubMed  Google Scholar 

  121. Gerfen CR (1989) The neostriatal mosaic: striatal patch-matrix organization is related to cortical lamination. Science 246:385–388

    CAS  PubMed  Google Scholar 

  122. Gerfen CR (1992) The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. Annu Rev Neurosci 15:285–320

    CAS  PubMed  Google Scholar 

  123. Gerfen CR, Wilson CJ (1996) The basal ganglia. In: Swanson LW, Björklund A, Hökfelt T (eds) Integrated systems of the CNS, Part III. Elsevier, Amsterdam, pp 371–468

    Google Scholar 

  124. Geyer MA, Puerto A, Dawsey WI et al (1976) Histologic and enzymatic studies of the mesolimbic and mesostriatal serotonergic pathways. Brain Res 106:241–256

    CAS  PubMed  Google Scholar 

  125. Giménez-Amaya J-M, Graybiel AM (1990) Compartmental origins of the striatopallidal projection in the primate. Neuroscience 34:111–126

    PubMed  Google Scholar 

  126. Giménez-Amaya J-M, McFarland NR, De las Heras S, Haber SN (1995) Organization of thalamic projections to the ventral striatum in the primate. J Comp Neurol 354:127–149

    PubMed  Google Scholar 

  127. Goldberg JM, Fernández C (1980) Efferent Vestibular System in the Squirrel Monkey: anatomical Location and Influence on Afferent Activity. J Neurophysiol 43:986–1025

    CAS  PubMed  Google Scholar 

  128. Goldman PS, Nauta WJH (1977) Columnar distribution of cortico-cortical fibers in the frontal as-sociation, limbic and motor cortex of the developing rhesus monkey. Brain Res 122:393–413

    CAS  PubMed  Google Scholar 

  129. Goldman-Rakic PS (1982) Cytoarchitectonic heterogeneity of the primate neostriatum: subdivision into Island and Matrix cellular compartments. J Comp Neurol 205:398–413

    CAS  PubMed  Google Scholar 

  130. Goldstein RZ, Volkow ND (2002) Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry 159:1642–1652

    PubMed  Google Scholar 

  131. Graveland GA, DiFiglia M (1985) The frequency and distribution of medium-sized neurons with indented nuclei in the primate and rodent neostriatum. Brain Res 327:307–311

    CAS  PubMed  Google Scholar 

  132. Graveland GA, Williams RS, DiFiglia M (1985) A golgi study in the human neostriatum: neurons and afferent fibers. J Comp Neurol 234:317–333

    CAS  PubMed  Google Scholar 

  133. Graybiel AM (1978) Organization of the nigrotectal connection: an experimental tracer study in the cat. Brain Res 143:339–348

    CAS  PubMed  Google Scholar 

  134. Graybiel AM (1984) Correspondence between the dopamine islands and striosomes of the mammalian striatum. Neuroscience 13:1157–1187

    CAS  PubMed  Google Scholar 

  135. Graybiel AM (1990) Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci 13:244–254

    CAS  PubMed  Google Scholar 

  136. Graybiel AM, Ragsdale CW (1978) Histochemically distinct compartments in the striatum of human, monkey and cat demonstrated by acetylcholinesterase staining. Proc Natl Acad Sci USA 75:5723–5726

    CAS  PubMed  Google Scholar 

  137. Graybiel AM, Ragsdale Jr CW (1979) Fiber connections of the basal ganglia. In: Bloom RE, Kreutzberg GW, Cuénod M (eds) Development and chemical specificity of neurons. Elsevier, Amsterdam, pp 239–283

    Google Scholar 

  138. Graybiel AM, Ragsdale Jr CW (1983) Biochemical anatomy of the striatum. In: Emson PC (ed) Chemical neuroanatomy. Raven Press, New York, pp 427–504

    Google Scholar 

  139. Graybiel AM, Sciascia TR (1975) Origin and distribution of nigrotectal fibers in the cat. Neurosci Abstr 1:174

    Google Scholar 

  140. Graybiel AM, Ragsdale CW, Yoneoka ES, Elde RH (1981) An immunohistochemical study of enkephalins and other neuropeptide in the striatum of the cat with evidence that the opiate peptides are arranged to form mosaic patterns in register with the striosomal compartments visible by acetylcholinesterase staining. Neuroscience 6:377–397

    CAS  PubMed  Google Scholar 

  141. Graybiel AM, Flaherty AW, Giménez-Amaya J-M (1991) Striosomes and matrisomes. In: Bernardi G, Carpenter MB, di Chiara G, Morelli M, Stanzione P (eds) The basal ganglia, vol 3. Plenum, New York, pp 3–12

    Google Scholar 

  142. Grillner S, Shik MI (1973) On the descending control of the lumbosacral spinal cord from the “mesencephalic locomotor region”. Acta Physiol Scand 87:320–333

    CAS  PubMed  Google Scholar 

  143. Gritti I, Mainville L, Mancia M, Jones BE (1997) GABAergic and other noncholinergic basal forebrain neurons, together with cholinergic neurons, project to the mesocortex and isocortex in the rat. J Comp Neurol 383:163–177

    CAS  PubMed  Google Scholar 

  144. Groenewegen HJ, Berendse HW (1990) Connections of the subthalamic nucleus with ventral striatopallidal parts of the basal ganglia in the rat. J Comp Neurol 294:607–622

    CAS  PubMed  Google Scholar 

  145. Groenewegen HJ, Berendse HW (1994) The specificity of the ‘nonspecific’midline and intralaminar thalamic nuclei. Trends Neurosci 17:52–57

    CAS  PubMed  Google Scholar 

  146. Groenewegen HJ, Russchen FT (1984) Organization of the efferent projections of the nucleus accumbens to pallidal hypothalamic, and mesencephalic structures: a tracing and immunohistochemical study in the cat. J Comp Neurol 223:347–367

    CAS  PubMed  Google Scholar 

  147. Groenewegen HJ, Becker NEK, Lohman AHM (1980) Subcortical afferents of the nucleus accumbens septi in the cat, studied with retrograde axonal transport of horseradish peroxidase and bisbenzimide. Neuroscience 5:1903–1916

    CAS  PubMed  Google Scholar 

  148. Groenewegen HJ, Room P, Witter MP, Lohman AHM (1982) Cortical afferents of the nucleus accumbens in the cat, studied with anterograde and retrograde transport techniques. Neuroscience 7:977–995

    CAS  PubMed  Google Scholar 

  149. Groenewegen HJ, Meredith GE, Berendse HW, Voorn P, Wolters JG (1989) The compartmental organization of the ventral striatum in the rat. In: Crossman AR, Sambrook AM (eds) Neural mechanisms in disorders of movement. Libbey, London, pp 45–52

    Google Scholar 

  150. Groenewegen HJ, Berendse HW, Haber SN (1993) Organization of the output of the ventral striatopallidal system in the rat: ventral pallidal efferents. Neuroscience 57:113–142

    CAS  PubMed  Google Scholar 

  151. Groenewegen HJ, Wright CI, Beijer AV (1996) The nucleus accumbens: gateway for limbic structures to reach the motor system? Prog Brain Res 107:485–511

    CAS  PubMed  Google Scholar 

  152. Grove EA (1988) Neural associations of the substantia innominata in the rat: afferent connections. J Comp Neurol 277:315–346

    CAS  PubMed  Google Scholar 

  153. Grove EA (1988) Efferent connections of the substantia innominata in the rat. J Comp Neurol 277:347–364

    CAS  PubMed  Google Scholar 

  154. Gulyas AI, Gorcs TJ, Freund TF (1990) Innervation of different peptide-containing neurons in the hippocampus by GABAergic septal afferents. Neuroscience 37:31–44

    CAS  PubMed  Google Scholar 

  155. Guridi J, Obeso JA (2001) The subthalamic nucleus, hemiballismus and Parkinson’s disease: reappraisal of a neurosurgical dogma. Brain 124:5–19

    CAS  PubMed  Google Scholar 

  156. Gúzman JN, Hernandez A, Galarraga E et al (2003) Dopaminergic modulation of axon collaterals interconnecting spiny neurons of the rat striatum. J Neurosci 23:8931–8940

    PubMed  Google Scholar 

  157. Haber S, Elde R (1982) The distribution of enkephalin immunoreactive fibers and terminals in the monkey central nervous system: an immunohistochemical study. Neuroscience 7:1049–1095

    CAS  PubMed  Google Scholar 

  158. Haber SN (2003) The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat 26:317–330

    PubMed  Google Scholar 

  159. Haber SN, Johnson Gdowski M (2004) The basal ganglia. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 676–738

    Google Scholar 

  160. Haber SN, Nauta WJH (1983) Ramifications of the globus pallidus in the rat as indicated by patterns of immunohistochemistry. Neuroscience 9:245–260

    CAS  PubMed  Google Scholar 

  161. Haber SN, Watson SJ (1985) The comparative distribution of enkephalin dynorphin and substance P in the human globus pallidus and basal forebrain. Neuroscience 14:1011–1024

    CAS  PubMed  Google Scholar 

  162. Haber SN, Groenewegen HJ, Grove EA, Nauta WJH (1985) Efferent connections of the ventral pallidum: evidence of a dual striato-pallidofugal pathway. J Comp Neurol 235:322–335

    CAS  PubMed  Google Scholar 

  163. Haber SN, Lynd E, Klein C, Groenewegen HJ (1990) Topographic organization of the ventral striatal efferent projections in the rhesus monkey: a anterograde tracing study. J Comp Neurol 293:282–298

    CAS  PubMed  Google Scholar 

  164. Haber SN, Wolfe DP, Groenewegen HJ (1990) The relationship between ventral striatal efferent fibers and the distribution of peptide-positive woolly fibers in the forebrain of the rhesus monkey. Neuroscience 39:323–338

    CAS  PubMed  Google Scholar 

  165. Haber SN, Lynd-Balta E, Mitchell SJ (1993) The organization of the descending ventral pallidal projections in the monkey. J Comp Neurol 329:111–128

    CAS  PubMed  Google Scholar 

  166. Haber SN, Kunishio K, Mizobuchi M, Lynd-Balta E (1995) The orbital and medial prefrontal circuit through the primate basal ganglia. J Neurosci 15:4851–4867

    CAS  PubMed  Google Scholar 

  167. Haber SN, Ryoo H, Cox C, Lu W (1995) Subsets of midbrain dopaminergic neurons in monkeys are distinguished by different levels of mRNA for the dopamine transporter: comparison with the mRNA for the D2 receptor, tyrosine hydroxylase and calbindin immunoreactivity. J Comp Neurol 362:400–410

    CAS  PubMed  Google Scholar 

  168. Haber SN, Fudge JL, McFarland NR (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20:2369–2382

    CAS  PubMed  Google Scholar 

  169. Hallanger AE, Levey AI, Lee HJ, Rye DB, Wainer BH (1987) The origins of cholinergic and other subcortical afferents to the thalamus in the rat. J Comp Neurol 262:105–124

    CAS  PubMed  Google Scholar 

  170. Halliday G (2004) Substantia nigra and locus coeruleus. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 449–463

    Google Scholar 

  171. Hamani C, Saint-Cyr JA, Fraser J, Kaplitt M, Lozano AM (2004) The subthalamic nucleus in the context of movement disorders. Brain 127:4–20

    PubMed  Google Scholar 

  172. Hammond C, Feger J, Bioulac B, Souteyrand JP (1979) Experimental hemiballism in the monkey produced by unilateral kainic acid lesion in corpus Luysii. Brain Res 171:577–580

    CAS  PubMed  Google Scholar 

  173. Hartmann von Monakow K, Akert K, Ku nzle H (1978) Projections of the precentral motor cortex and other cortical areas of the frontal lobe to the subthalamic nucleus in the monkey. Exp Brain Res 33:395–403

    Google Scholar 

  174. Hashimoto T, Elder CM, Okun MS, Patrick SK, Vitek JL (2003) Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J Neurosci 23:1916–1923

    CAS  PubMed  Google Scholar 

  175. Hazrati LN, Parent A (1992) The striatopallidal projection displays a high degree of anatomical specificity in the primate. Brain Res 592:213–227

    CAS  PubMed  Google Scholar 

  176. Hedreen JC (1999) Tyrosine hydroxylaseimmunoreactive elements in the human globus pallidus and subthalamic nucleus. J Comp Neurol 409:400–410

    CAS  PubMed  Google Scholar 

  177. Hedreen JC, DeLong MR (1991) Organization of striatopallidal, striatonigral, and nigrostriatal projections in the macaque. J Comp Neurol 304:569–595

    CAS  PubMed  Google Scholar 

  178. Hedreen JC, Struble RG, Whitehouse PJ, Price DL (1984) Topography of the magnocellular basal forebrain system in the human brain. J Neuropathol Exp Neurol 43:1–21

    CAS  PubMed  Google Scholar 

  179. Heimer L (1978) The olfactory cortex and the ventral striatum. In: Livingston KE, Hornykiewicz O (eds) Limbic mechanisms: the continuing evolution of the limbic system concept. Plenum, New York, pp 95–187

    Google Scholar 

  180. Heimer L (2000) Basal forebrain in the context of schizophrenia. Brain Res Brain Res Rev 31:205–235

    CAS  PubMed  Google Scholar 

  181. Heimer L, Wilson RD (1975) The subcortical projections of the allocortex: similarities in the neural associations of the hippocampus, the piriform cortex, and the neocortex. In: Santini M (ed) Golgi Centennial Symposium proceedings. Raven, New York, pp 177–193

    Google Scholar 

  182. Heimer L, Switzer RD, Van Hoesen GW (1982) Ventral striatum and ventral pallidum.Components of the motor system? Trends Neurosci 5:83–87

    Google Scholar 

  183. Heimer L, Zahm DS, Churchill L, Kalivas PW, Wohltmann C (1991) Specificity in the projection patterns of accumbal core and shell in the rat. Neuroscience 41:89–125

    CAS  PubMed  Google Scholar 

  184. Herkenham M (1986) New perspectives on the organization and evolution of nonspecific thalamocortical projections. In: Jones EG, Peters A (eds) Cerebral cortex, vol 5: Sensory-motor areas and aspects of cortical connectivity. Plenum Press, New York, pp 403–445

    Google Scholar 

  185. Herkenham M, Nauta WJH (1977) Afferent connections of the habenular nuclei in the rat. A horseradish peroxidase study, with a note on the fiber-of-passage problem. J Comp Neurol 173:123–146

    CAS  PubMed  Google Scholar 

  186. Herkenham M, Nauta WJH (1979) Efferent connections of the habenula nuclei in the rat. J Comp Neurol 187:19–48

    CAS  PubMed  Google Scholar 

  187. Hikosaka O, Sakamoto M, Usui S (1989) Functional properties of monkey caudate neurons. I. Activities related to saccadic eye movements. J Neurophysiol 61:780–798

    CAS  PubMed  Google Scholar 

  188. Hikosaka O, Takikawa Y, Kawagoe R (2000) Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev 80:953–978

    CAS  PubMed  Google Scholar 

  189. Hökfelt T, Goldstein M, Fuxe K et al (1980) Histochemical identification of adrenaline containing cells with special reference to neurons. In: Fuxe K, Goldstein M, Hökfelt B, Hökfelt T (eds) Central adrenaline neurons. Basic aspects and their role in cardio-vascular functions. Pergamon, Oxford, pp 19–47

    Google Scholar 

  190. Hökfelt T, Skirboll L, Rehfeld JF et al (1980) A subpopulation of mesencephalic dopamine neurons projecting to limbic areas contains a cholecystokininlike peptide: evidence from immunohistochemistry combined with retrograde tracing. Neuroscience 5:2093–2124

    PubMed  Google Scholar 

  191. Holt DJ, Graybiel AM, Saper CB (1997) Neurochemical architecture of the human striatum. J Comp Neurol 384:1–25

    CAS  PubMed  Google Scholar 

  192. Hooks MS, Kalivas PW (1995) The role of mesoaccumbens-pallidal circuitry in novelty-induced behavioral activation. Neuroscience 64:587–597

    CAS  PubMed  Google Scholar 

  193. Hoover JE, Strick PL (1999) The organization of cerebellar and basal ganglia outputs to primary motor cortex as revealed by retrograde transneuronal transport of herpes simplex virus type 1. J Neurosci 19:1446–1463

    CAS  PubMed  Google Scholar 

  194. Hopkins DA, Niessen LW (1976) Substantia nigra projections to the reticular formation, superior colliculus and central gray in the rat, cat and monkey. Neurosci Lett 2:253–259

    CAS  PubMed  Google Scholar 

  195. Hornykiewicz O (2001) Chemical neuroanatomy of the basal ganglia-normal and in Parkinson’s disease. J Chem Neuroanat 22:3–12

    CAS  PubMed  Google Scholar 

  196. Huerta MF, Kaas JH (1990) Supplementary eye fields as defined by intracortical microstimulation: connections in macaques. J Comp Neurol 293:299–330

    CAS  PubMed  Google Scholar 

  197. Huerta MF, Van Lieshout DP, Harting JK (1991) Nigrotectal projections in the primate Galago crassicaudatus. Exp Brain Res 87:389–401

    CAS  PubMed  Google Scholar 

  198. Ilinsky IA, Jouandet ML, Goldman-Rakic PS (1985) Organization of the nigrothalamocortical system in the rhesus-monkey. J Comp Neurol 236:315–330

    CAS  PubMed  Google Scholar 

  199. Inase M, Tokuno H, Nambu A, Akazawa T, Takada M (1999) Corticostriatal and corticosubthalamic input zones from the presupplementary motor area in the macaque monkey: comparison with the input zones from the supplementary motor area. Brain Res 833:191–201

    CAS  PubMed  Google Scholar 

  200. Inglis WL, Winn P (1995) The pedunculopontine tegmental nucleus: where the striatum meets the reticular formation. Prog Neurobiol 47:1–29

    CAS  PubMed  Google Scholar 

  201. Irle E, Markowitsch HJ (1985) Afferent connections of the substantia innominate/basal nucleus of Meynert in carnivores and primates. J Hirnforsch 27:343–367

    Google Scholar 

  202. Izzo PN, Bolam JP (1988) Cholinergic synaptic input to different parts of spiny striatonigral neurons in the rat. J Comp Neurol 269:219–234

    CAS  PubMed  Google Scholar 

  203. Jackson A, Crossman AR (1981) Subthalamic projections to nucleus tegmenti pedunculopontinus in the rat. Neurosci Lett 22:17–22

    CAS  PubMed  Google Scholar 

  204. Jackson A, Crossman AR (1983) Nucleus tegmenti pedunculopontinus efferent connections with special reference to the basal ganglia, studied in the rat by anterograde and retrograde transport of horseradish peroxidases. Neuroscience 10:725–765

    CAS  PubMed  Google Scholar 

  205. Jaspers R, Schwartz M, Sontag KH, Cools AR (1984) Caudate nucleus and programming behavior in cats: role of dopamine in switching motor patterns. Behav Brain Res 14:17–28

    CAS  PubMed  Google Scholar 

  206. Joel D, Weiner I (1994) The organization of the basal ganglia-thalamocortical circuits: open interconnected rather than closed segregated. Neuroscience 63:363–379

    CAS  PubMed  Google Scholar 

  207. Joel D, Weiner I (1997) The connections of the primate subthalamic nucleus: indirect pathways and the openinterconnected scheme of basal ganglia-thalamocortical circuitry. Brain Res Brain Res Rev 23:62–78

    CAS  PubMed  Google Scholar 

  208. Johannes S, Reif A, Senitz D, Riederer P, Lauer M (2003) NADPH-diaphorase staining reveals new types of interneurons in human putamen. Brain Res 980:92–99

    CAS  PubMed  Google Scholar 

  209. Jones EG (1998) The thalamus of primates. In: Bloom FE, Björklund A, Hökfelt T (eds) The primate nervous system, Part II. Elsevier, Amsterdam, pp 1–298

    Google Scholar 

  210. Jones EG, Burton H, Saper CB, Swanson LW (1976) Midbrain, diencephalic and cortical relationships of the basal nucleus of Meynert and associated structures in primates. J Comp Neurol 167:385–418

    CAS  PubMed  Google Scholar 

  211. Jongen-Relo AL, Groenewegen HJ, Voorn P (1993) Evidence for a multi-compartmental histochemical organization of the nucleus accumbens in the rat. J Comp Neurol 337:267–276

    CAS  PubMed  Google Scholar 

  212. Jongen-Relo AL, Voorn P, Groenewegen HJ (1994) Immunohistochemical characterization of the shell and core territories of the nucleus accumbens in the rat. Eur J Neurosci 6:1255–1264

    CAS  PubMed  Google Scholar 

  213. Joyce JN, Gurevich EV (1999) Dopamine D3 receptor: from anatomy to neuropsychiatry. Neurosci News 2:11–21

    CAS  Google Scholar 

  214. Kalivas PW, Volkow N, Seamans J (2005) Unmanageable motivation in addiction: a pathology in prefrontal-accumbens glutamate transmission. Neuron 45:647–650

    CAS  PubMed  Google Scholar 

  215. Kang DH, Kim JJ, Choi JS et al (2004) Volumetric investigation of the frontal-subcortical circuitry in patients with obsessive-compulsive disorder. J Neuropsychiatry Clin Neurosci 16:342–349

    PubMed  Google Scholar 

  216. Kawaguchi Y, Wilson CJ, Augood SJ, Emson PC (1995) Striatal interneurones: chemical, physiological and morphological characterization. Trends Neurosci 18:527–535

    CAS  PubMed  Google Scholar 

  217. Kayahara T, Nakano K (1996) Pallido-thalamomotor cortical connections: an electron microscopic study in the macaque monkey. Brain Res 706:337–342

    CAS  PubMed  Google Scholar 

  218. Kelley AE, Domesick VB, Nauta WJH (1982) The amygdalostriatal projection in the rat-an anatomical study by anterograde and retrograde tracing methods. Neuroscience 7:615–630

    CAS  PubMed  Google Scholar 

  219. Kemp JM, Powell TPS (1970) The cortico-striate projection in the monkey. Brain 93:525–547

    CAS  PubMed  Google Scholar 

  220. Kemp JM, Powell TPS (1971) The structure of the caudate nucleus of the cat: light and electron microscopy. Philos Trans R Soc Lond [Biol] 262:383–401

    CAS  Google Scholar 

  221. Kemp JM, Powell TPS (1971) The site of the termination of afferent fibers in the caudate nucleus. Philos Trans R Soc Lond [Biol] 262:413–427

    CAS  Google Scholar 

  222. Kievit J, Kuypers HGJM (1975) Basal forebrain and hypothalamic connections to frontal and parietal cortex in the rhesus monkey. Science 187:660–662

    CAS  PubMed  Google Scholar 

  223. Kincaid AE, Wilson CJ (1996) Corticostriatal innervation of the patch and matrix in the rat neostriatum. J Comp Neurol 374:578–592

    CAS  PubMed  Google Scholar 

  224. Kita H, Kosaka T, Heizmann CW (1990) Parvalbumin-immunoreactive neurons in the rat neostriatum: a light and electron microscopic study. Brain Res 536:1–15

    CAS  PubMed  Google Scholar 

  225. Kitt CA, Mitchell SJ, DeLong MR, Wainer BH, Price DL (1987) Fiber pathways of basal forebrain cholinergic neurons in monkeys. Brain Res 406:192–206

    CAS  PubMed  Google Scholar 

  226. Kornhuber J, Kornhuber ME (1986) Presynaptic dopaminergic modulation of cortical input to the striatum. Life Sci 39:669–674

    CAS  Google Scholar 

  227. Koutcherov Y, Huang X-F, Halliday G, Paxinos G (2004) Organization of human brain stem nuclei. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 267–320

    Google Scholar 

  228. Krack P, Benazzouz A, Pollak P et al (1998) Treatment of tremor in Parkinson’s disease by subthalamic nucleus stimulation. Mov Disord 13:907–914

    CAS  PubMed  Google Scholar 

  229. Krack P, Pollak P, Limousin P et al (1998) Subthalamic nucleus or internal pallidal stimulation in young onset Parkinson’s disease. Brain 121(Pt 3):451–457

    PubMed  Google Scholar 

  230. Krettek JE, Price JL (1977) Projections from the amygdaloid complex to the cerebral cortex and thalamus in the rat and cat. J Comp Neurol 172:687–722

    CAS  PubMed  Google Scholar 

  231. Kringelbach ML (2004) Food for thought: hedonic experience beyond homeostasis in the human brain. Neuroscience 126:807–819

    CAS  PubMed  Google Scholar 

  232. Kubota Y, Kawaguchi Y (1993) Spatial distributions of chemically identified intrinsic neurons in relation to patch and matrix compartments of rat neostriatum. J Comp Neurol 332:499–513

    CAS  PubMed  Google Scholar 

  233. Kubota Y, Inagaki S, Kito S (1986) Innervation of substance P neurons by catecholaminergic terminals in the neostriatum. Brain Res 375:163–167

    CAS  PubMed  Google Scholar 

  234. Kumar R, Lozano AM, Kim YJ et al (1998) Doubleblind evaluation of subthalamic nucleus deep brain stimulation in advanced Parkinson’s disease. Neurology 51:850–855

    CAS  PubMed  Google Scholar 

  235. Ku nzle H (1975) Bilateral projections from precentral motor cortex to the putamen and other parts of the basal ganglia. An autoradiographic study in the macace fascilcularis. Brain Res 88:195–209

    CAS  PubMed  Google Scholar 

  236. Kuroda M, Price JL (1991) Synaptic organization of projections from basal forebrain structures to the mediodorsal thalamic nucleus of the rat. J Comp Neurol 303:513–533

    CAS  PubMed  Google Scholar 

  237. Kuypers HGJM (1966) Discussion. In: Purpura DP, Yahr MD (eds) The thalamus. Columbia University Press, New York, pp 122–126

    Google Scholar 

  238. Kuypers HGJM, Lawrence DG (1967) Cortical projections to the red nucleus and the brain stem in the rhesus monkey. Brain Res 4:151–188

    CAS  PubMed  Google Scholar 

  239. Kwon JS, Kim JJ, Lee DW et al (2003) Neural correlates of clinical symptoms and cognitive dysfunctions in obsessive-compulsive disorder. Psychiatry Res 122:37–47

    PubMed  Google Scholar 

  240. Lacerda AL, Dalgalarrondo P, Caetano D et al (2003) Elevated thalamic and prefrontal regional cerebral blood flow in obsessive-compulsive disorder: a SPECT study. Psychiatry Res 123:125–134

    PubMed  Google Scholar 

  241. Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980

    CAS  PubMed  Google Scholar 

  242. Lapper SR, Bolam JP (1992) Input from the frontal cortex and the parafascicular nucleus to cholinergic interneurons in the dorsal striatum of the rat. Neuroscience 51:533–545

    CAS  PubMed  Google Scholar 

  243. Lavoie B, Parent A (1990) Immunohistochemical study of the serotoninergic innervation of the basal ganglia in the squirrel monkey. J Comp Neurol 299:1–16

    CAS  PubMed  Google Scholar 

  244. Lavoie B, Parent A (1994) Pedunculopontine nucleus in the squirrel monkey: projections to the basal ganglia as revealed by anterograde tracttracing methods. J Comp Neurol 344:210–231

    CAS  PubMed  Google Scholar 

  245. Lavoie B, Parent A (1994) Pedunculopontine nucleus in the squirrel monkey: cholinergic and glutamatergic projections to the substantia nigra. J Comp Neurol 344:232–241

    CAS  PubMed  Google Scholar 

  246. Lee HJ, Rye DB, Hallanger AE, Levey AI, Wainer BH (1988) Cholinergic vs. noncholinergic efferents from the mesopontine tegmentum to the ex-trapyramidal motor system nuclei. J Comp Neurol 275:469–492

    CAS  PubMed  Google Scholar 

  247. Lees AJ, Smith E (1983) Cognitive deficits in the early stages of Parkinson’s disease. Brain 106:257–270

    PubMed  Google Scholar 

  248. Lehman J, Nagy IJ, Atmadja S, Fibiger HC (1980) The nucleus basalis magnocellularis: the origin of a cholinergic projection to the neocortex to the rat. Neuroscience 5:1161–1174

    Google Scholar 

  249. Leichnetz GR, Astruc J (1977) The course of some prefrontal corticofugals to the pallidum, substantia innominata, and amygdaloid complex in monkeys. Exp Neurol 54:104–109

    CAS  PubMed  Google Scholar 

  250. Leiner HC, Leiner AL, Dow SR (1995) The underestimated cerebellum. Hum Brain Map 2:244–254

    Google Scholar 

  251. Lévesque M, Bedard A, Cossette M, Parent A (2003) Novel aspects of the chemical anatomy of the striatum and its efferents projections. J Chem Neuroanat 26:271–281

    PubMed  Google Scholar 

  252. Lindvall O, Björklund A (1983) Dopamine-and norepinephrine-containing neuron systems: their anatomy in the rat brain. In: Emson PC (ed) Clinical neuroanatomy. Raven, New York, pp 229–255

    Google Scholar 

  253. Lynd-Balta E, Haber SN (1994) The organization of midbrain projections to the ventral striatum in the primate. Neuroscience 59:609–623

    CAS  PubMed  Google Scholar 

  254. Lynd-Balta E, Haber SN (1994) The organization of midbrain projections to the striatum in the primate: sensorimotor-related striatum versus ventral striatum. Neuroscience 59:625–640

    CAS  PubMed  Google Scholar 

  255. Lynd-Balta E, Haber SN (1994) Primate striatonigral projections: a comparison of the sensorimotor-related striatum and the ventral striatum. J Comp Neurol 345:562–578

    CAS  PubMed  Google Scholar 

  256. Maillard L, Ishii K, Bushara K et al (2000) Mapping the basal ganglia: fMRI evidence for somatotopic representation of face, hand, and foot. Neurology 55:377–383

    CAS  PubMed  Google Scholar 

  257. Mann DMA, Yates PO, Marcyniuk B (1984) A comparison of changes in the nucleus basalis and locus coeruleus in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 47:201–203

    CAS  PubMed  Google Scholar 

  258. Marcyniuk B, Mann DMA, Yates PO (1986) Loss of nerve cells from locus coeruleus in Alzheimer’s disease is topographically arranged. Neurosci Lett 64:247–252

    CAS  PubMed  Google Scholar 

  259. Matthysse S (1973) Antipsychotic drug actions: a clue to the neuropathology of schizophrenia? Fed Proc 32:200–205

    CAS  PubMed  Google Scholar 

  260. McBride RL, Larsen KD (1980) Projections of the feline globus pallidus. Brain Res 189:3–14

    CAS  PubMed  Google Scholar 

  261. McCormick DA, Prince DA (1985) Two types of muscarinic response to acetylcholine in mammalian cortical neurons. Proc Natl Acad Sci USA 82:6344–6348

    CAS  PubMed  Google Scholar 

  262. McCormick DA, Prince DA (1986) Mechanisms of action of acetylcholine in the guinea-pig cerebral cortex in vitro. J Physiol 375:169–194

    CAS  PubMed  Google Scholar 

  263. McFarland NR, Haber SN (2000) Convergent inputs from thalamic motor nuclei and frontal cortical areas to the dorsal striatum in the primate. J Neurosci 20:3798–3813

    CAS  PubMed  Google Scholar 

  264. McFarland NR, Haber SN (2001) Organization of thalamostriatal terminals from the ventral motor nuclei in the macaque. J Comp Neurol 429:321–336

    CAS  PubMed  Google Scholar 

  265. McFarland NR, Haber SN (2002) Thalamic relay nuclei of the basal ganglia form both reciprocal and nonreciprocal cortical connections, linking multiple frontal cortical areas. J Neurosci 22:8117–8132

    CAS  PubMed  Google Scholar 

  266. McGeer PL (1984) The 12th JAF Stevenson memorial lecture. Aging, Alzheimer’s disease, and the cholinergic system. Can J Physiol Pharmacol 62:741–754

    CAS  PubMed  Google Scholar 

  267. McGeer PL, McGeer EG, Suzuki J, Dolman CE, Nagai T (1984) Aging, Alzheimer’s disease and the cholinergic system of the basal forebrain. Neurol 34:741–745

    CAS  Google Scholar 

  268. McGeorge AJ, Faull RLM (1989) The organization of the projection from the cerebral cortex to the striatum in the rat. Neuroscience 29:503–537

    CAS  PubMed  Google Scholar 

  269. Mehler WR (1981) The basal ganglia-circa 1982: a review and commentary. Appl Neurophysiol 44:261–290

    CAS  PubMed  Google Scholar 

  270. Mesulam MM, Geula C (1988) Nucleus basalis (Ch4) and cortical cholinergic innervation in the human brain: observations based on the distribution of acetylcholinesterase and choline acetyltransferase. J Comp Neurol 275:216–240

    CAS  PubMed  Google Scholar 

  271. Mesulam MM, Mufson EJ (1984) Neural inputs into the nucleus basalis of the substantia innominata (CH4) in the rhesus monkey. Brain 107:253–274

    PubMed  Google Scholar 

  272. Mesulam MM, Mufson EJ, Wainer BH, Levey AI (1983) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature. Neuroscience 10:1185–1201

    CAS  PubMed  Google Scholar 

  273. Mesulam MM, Mufson EJ, Levey AI, Wainer BH (1983) Cholinergic innervation of cortex by the basal forebrain: Cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J Comp Neurol 214:170–197

    CAS  PubMed  Google Scholar 

  274. Mesulam MM, Mufson EJ, Levey AI, Wainer BH (1984) Atlas of cholinergic neurons in the forebrain and upper brainstem of the macaque based on monoclonal choline acetyltransferase immunohistochemistry and acetylcholinesterase histochemistry. Neuroscience 12:669–686

    CAS  PubMed  Google Scholar 

  275. Mesulam MM, Mufson EJ, Wainer BH (1986) Threedimensional representation and cortical projection topography of the nucleus basalis (Ch4) in the macaque: concurrent demonstration of choline acetyltransferase and retrograde transport with a stabilized tetramethylbenzidine method for horseradish peroxidase. Brain Res 367:301–308

    CAS  PubMed  Google Scholar 

  276. Mesulam MM, Hersh LB, Mash DC, Geula C (1992) Differential cholinergic innervation within functional subdivisions of the human cerebral cortex: a choline acetyltransferase study. J Comp Neurol 318:316–328

    CAS  PubMed  Google Scholar 

  277. Mesulam MM, Mash D, Hersh L, Bothwell M, Geula C (1992) Cholinergic innervation of the human striatum, globus pallidus, subthalamic nucleus, substantia nigra, and red nucleus. J Comp Neurol 323:252–268

    CAS  PubMed  Google Scholar 

  278. Middleton FA, Strick PL (1994) Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science 266:458–461

    CAS  PubMed  Google Scholar 

  279. Middleton FA, Strick PL (1998) Cerebellar output: motor and cognitive channels. Trends Cogn Sci 2:348–354

    Google Scholar 

  280. Middleton FA, Strick PL (2000) Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev 31:236–250

    CAS  PubMed  Google Scholar 

  281. Middleton FA, Strick PL (2001) Cerebellar projections to the prefrontal cortex of the primate. J Neurosci 21:700–712

    CAS  PubMed  Google Scholar 

  282. Middleton FA, Strick PL (2002) Basal-ganglia ‘projections’ to the prefrontal cortex of the primate. Cereb Cortex 12:926–935

    PubMed  Google Scholar 

  283. Miyachi S, Lu X, Inoue S et al (2005) Organization of multisynaptic inputs from prefrontal cortex to primary motor cortex as revealed by retrograde transneuronal transport of rabies virus. J Neurosci 25:2547–2556

    CAS  PubMed  Google Scholar 

  284. Mogenson GJ (1984) Limbic-motor integration-with emphasis on initiation of exploratory and goaldirected locomotion. In: Bandler R (ed) Modulation of sensorimotor activity during alterations in behavioral states. Liss, New York, pp 121–137

    Google Scholar 

  285. Mogenson GJ, Nielsen MA (1983) Evidence that an accumbens to subpallidal GABAergic projection contributes to Locomotor activity. Brain Res Bull 11:309–314

    CAS  PubMed  Google Scholar 

  286. Mogenson GJ, Jones DL, Yim CY (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14:69–97

    CAS  PubMed  Google Scholar 

  287. Mogenson GJ, Swanson LW, Wu M (1984) Evidence that projections from substantia innominata to zona incerta mesencephalic locomotor region contribute to locomotor activity. Brain Res 334:65–76

    Google Scholar 

  288. Moore RY, Bloom FE (1978) Central catecholamine neuron systems: anatomy and physiology of the dopamine systems. Annu Rev Neurosci 1:129–169

    CAS  PubMed  Google Scholar 

  289. Naito A, Kita H (1994) The cortico-nigral projection in the rat: an anterograde tracing study with biotinylated dextran amine. Brain Res 637:317–322

    CAS  PubMed  Google Scholar 

  290. Nakamura Y, Tokuno H, Moriizumi T, Kitao Y, Kudo M (1989) Monosynaptic nigral inputs to the pedunculopontine tegmental nucleus neurons which send their axons to the medial reticular formation in the medulla oblongata. An electron microscopic study in the cat. Neurosci Lett 103:145–150

    CAS  PubMed  Google Scholar 

  291. Nakano I, Hirano A (1983) Neuron loss in the nucleus basalis of Meynert in Parkinsonism-dementia complex of Guam. Ann Neurol 13:87–91

    CAS  PubMed  Google Scholar 

  292. Nakano I, Hirano A (1984) Parkinson’s disease: neuron loss in the nucleus basalis without concomitant Alzheimer’s disease. Ann Neurol 15:415–418

    CAS  PubMed  Google Scholar 

  293. Nakano K, Hasegawa Y, Tokushige A et al (1990) Topographical projections from the thalamus, subthalamic nucleus and pedunculopontine tegmental nucleus to the striatum in the Japanese monkey, Macaca fuscata. Brain Res 537:54–68

    CAS  PubMed  Google Scholar 

  294. Nambu A, Tokuno H, Inase M, Takada M (1997) Corticosubthalamic input zones from forelimb representations of the dorsal and ventral divisions of the premotor cortex in the macaque monkey: comparison with the input zones from the primary motor cortex and the supplementary motor area. Neurosci Lett 239:13–16

    CAS  PubMed  Google Scholar 

  295. Nambu A, Tokuno H, Hamada I et al (2000) Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. J Neurophysiol 84:289–300

    CAS  PubMed  Google Scholar 

  296. Nambu A, Tokuno H, Takada M (2002) Functional significance of the cortico-subthalamo-pallidal ‘hyperdirect’ pathway. Neurosci Res 43:111–117

    PubMed  Google Scholar 

  297. Nauta HJW (1972) Neural associations of the frontal cortex. Acta Neurobiol Expl 32:125–140

    CAS  Google Scholar 

  298. Nauta HJW (1974) Evidence of a pallidohabenular pathway in the cat. J Comp Neurol 156:19–27

    CAS  PubMed  Google Scholar 

  299. Nauta HJW, Cole M (1978) Efferent projections of the subthalamic nucleus: an autoradiographic study in monkey and cat. J Comp Neurol 180:1–16

    CAS  PubMed  Google Scholar 

  300. Nauta HJW, Mehler WR (1966) Projections of the lentiform nucleus in the monkey. Brain Res 1:3–42

    CAS  PubMed  Google Scholar 

  301. Nieuwenhuys R (2000) Comparative aspects of volume transmission, with sidelight on other forms of intercellular communication. Prog Brain Res 125:49–126

    CAS  PubMed  Google Scholar 

  302. Oertel WH, Mugnaini E (1984) Immunocytochemical studies of gaba-ergic neurons in the rat basal ganglia and their relations to other neuronal systems. Neurosci Lett 15:159–164

    Google Scholar 

  303. Olazabal UE, Moore JK (1989) Nigrotectal projection to the inferior colliculus: horseradish peroxidase transport and tyrosine hydroxylase immunohistochemical studies in rats, cats, and bats. J Comp Neurol 282:98–118

    CAS  PubMed  Google Scholar 

  304. OÅNngur D, Price JL (2000) The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 10:206–219

    Google Scholar 

  305. OÅNngur D, Ferry AT, Price JL (2003) Architectonic subdivision of the human orbital and medial prefrontal cortex. J Comp Neurol 460:425–449

    Google Scholar 

  306. Packard MG, Knowlton BJ (2002) Learning and memory functions of the Basal Ganglia. Annu Rev Neurosci 25:563–593

    CAS  PubMed  Google Scholar 

  307. Paré D, Smith Y (1994) GABAergic projection from the intercalated cell masses of the amygdala to the basal forebrain in cats. J Comp Neurol 344:33–49

    PubMed  Google Scholar 

  308. Paré D, Smith Y, Parent A, Steriade M (1988) Projections of brainstem core cholinergic and noncholinergic neurons of cat to intralaminar and reticular thalamic nuclei. Neuroscience 25:69–86

    PubMed  Google Scholar 

  309. Parent A (1979) Identification of the pallidal and peri pallidal cells projecting to the habenula in monkey. Neurosci Lett 15:159–164

    CAS  PubMed  Google Scholar 

  310. Parent A (2002) Chemical anatomy of the human striatum in health and disease. In: The human brain 2002. Abstracts of an ICRCCS meeting; Rome, Oct 5–10, 2002, p 45

    Google Scholar 

  311. Parent A, DeBellefeuille L (1982) Organization of efferent projections from the internal segment of globus pallidus in primate as revealed by fluorescence retrograde labeling method. Brain Res 245:201–213

    CAS  PubMed  Google Scholar 

  312. Parent A, DeBellefeuille L (1983) The pallidointralaminar and pallidonigral projections in primate as studied by retrograde double-labeling method. Brain Res 278:11–28

    CAS  PubMed  Google Scholar 

  313. Parent A, Hazrati L-N (1995) Functional anatomy of the basal ganglia. I. The cortico-basal gangliathalamo-cortical loop. Brain Res Rev 20:91–127

    CAS  PubMed  Google Scholar 

  314. Parent A, Hazrati L-N (1995) Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res Rev 20:128–154

    CAS  PubMed  Google Scholar 

  315. Parent M, Parent A (2005) Single-axon tracing and three-dimensional reconstruction of centre medianparafascicular thalamic neurons in primates. J Comp Neurol 481:127–144

    PubMed  Google Scholar 

  316. Parent A, Sato F, Wu Y et al (2000) Organization of the basal ganglia: the importance of axonal collateralization. Trends Neurosci 23:S20–S27

    CAS  PubMed  Google Scholar 

  317. Parent M, Lévesque M, Parent A (2001) Two types of projection neurons in the internal pallidum of primates: single-axon tracing and threedimensional reconstruction. J Comp Neurol 439:162–175

    CAS  PubMed  Google Scholar 

  318. Parthasarathy HB, Schall JD, Graybiel AM (1992) Distributed but convergent ordering of corticostriatal projections: analysis of the frontal eye field and the supplementary eye field in the macaque monkey. J Neurosci 12:4468–4488

    CAS  PubMed  Google Scholar 

  319. Pasik P, Pasik T, Pecci Saavedra J, Holstein GR (1981) Light and electron microscopic immunocytochemical localization of serotonin in the basal ganglia of cats and monkeys. Anat Rec 199:194

    Google Scholar 

  320. Pasupathy A, Miller EK (2005) Different time courses of learning-related activity in the prefrontal cortex and striatum. Nature 433:873–876

    CAS  PubMed  Google Scholar 

  321. Patel NK, Heywood P, O’Sullivan K et al (2003) Unilateral subthalamotomy in the treatment of Parkinson’s disease. Brain 126:1136–1145

    PubMed  Google Scholar 

  322. Patterson JC, Ungerleider LG, Bandettini PA (2002) Task-independent functional brain activity correlation with skin conductance changes: an fMRI study. Neuroimage 17:1797–1806

    PubMed  Google Scholar 

  323. Pearson RCA, Gatter KC, Brodal P, Powell TSP (1982) The projection of the basal nucleus of Meynert upon the neocortex in the monkey. Brain Res 259:132–136

    Google Scholar 

  324. Pennartz CMA, Groenewegen HJ, Lopes da Silva FH (1994) The nucleus accumbens as a complex of functionally distinct neuronal ensembles: an integration of behavioural, electrophysiological and anatomical data. Prog Neurobiol 42:719–761

    CAS  PubMed  Google Scholar 

  325. Penney JB Jr, Young AB (1983) Speculations on the functional anatomy of basal ganglia disorders. Annu Rev Neurosci 6:73–94

    PubMed  Google Scholar 

  326. Penney JB Jr, Young AB (1986) Striatal inhomogeneities and basal ganglia function. Mov Disord 1:3–15

    PubMed  Google Scholar 

  327. Penny GR, Wilson CJ, Kitai ST (1988) Relationship of the axonal and dendritic geometry of spiny projection neurons to the compartmental organization of the neostriatum. J Comp Neurol 269:275–289

    CAS  PubMed  Google Scholar 

  328. Percheron G (2004) Thalamus. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 592–675

    Google Scholar 

  329. Percheron G, Yelnik J, Francois C (1984) A Golgi analysis of the primate globus pallidus. III. Spatial organization of the striato-pallidal complex. J Comp Neurol 227:214–227

    CAS  PubMed  Google Scholar 

  330. Perry EK (1986) The cholinergic hypothesis-ten years on. Br Med Bull 42:63–69

    CAS  PubMed  Google Scholar 

  331. Perry RH, Candy JM, Perry EK, Thompson J, Oakley AE (1984) The substantia innominata and adjacent regions in the human brain: histochemical and biochemical observations. I Anat 138:713–732

    Google Scholar 

  332. Pert CB, Kuhar MI, Snyder SH (1976) Opiate receptor: Autoradiographic localization in rat brain. Proc Natl Acad Sci USA 73:3729–3733

    CAS  PubMed  Google Scholar 

  333. Petras JM (1969) Some efferent connections of the motor and somatosensory cortex of simian primates and felid, canid and procyonid carnivores. Ann NY Acad Sci 167:469–505

    Google Scholar 

  334. Petrides M, Pandya DN (1999) Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur J Neurosci 11:1011–1036

    CAS  PubMed  Google Scholar 

  335. Pijnenburg AJJ, Honig WMM, Van der Heyden JAM, Van Rossum JM (1976) Effects of chemical stimulation of the mesolimbic dopamine system upon locomotor activity. Eur J Pharmacol 35:45–58

    CAS  PubMed  Google Scholar 

  336. Porrino LJ, Crane AM, Goldman-Rakic PS (1981) Direct and indirect pathways from the amygdala to the frontal lobe in rhesus monkeys. J Comp Neurol 198:121–136

    CAS  PubMed  Google Scholar 

  337. Prensa L, Giménez-Amaya J-M, Parent A (1999) Chemical heterogeneity of the striosomal compartment in the human striatum. J Comp Neurol 413:603–618

    CAS  PubMed  Google Scholar 

  338. Rafols JA, Fox CA (1976) The neurons in the primate subthalamic nucleus: a Golgi and electron microscopic study. J Comp Neurol 168:75–111

    CAS  PubMed  Google Scholar 

  339. Ragsdale CW Jr, Graybiel AM (1988) Fibers from the basolateral nucleus of the amygdala selectively innervate striosomes in the caudate nucleus of the cat. J Comp Neurol 269:506–522

    PubMed  Google Scholar 

  340. Ray JP, Price JL (1993) The organization of projections from the mediodorsal nucleus of the thalamus to orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol 337:1–31

    CAS  PubMed  Google Scholar 

  341. Reiner A, Medina L, Haber SN (1999) The distribution of dynorphinergic terminals in striatal target regions in comparison to the distribution of substance Pcontaining and enkephalinergic terminals in monkeys and humans. Neuroscience 88:775–793

    CAS  PubMed  Google Scholar 

  342. Ricardo JA (1980) Efferent connections of the subthalamic region in the rat. I. The subthalamic nucleus of Luys. Brain Res 202:257–271

    CAS  PubMed  Google Scholar 

  343. Rinvik E, Ottersen OP (1993) Terminals of subthalamonigral fibres are enriched with glutamatelike immunoreactivity: an electron microscopic, immunogold analysis in the cat. J Chem Neuroanat 6:19–30

    CAS  PubMed  Google Scholar 

  344. Rinvik E, Grofova I, Ottersen OP (1976) Demonstration of nigrotectal and nigroreticular projections in the cat by axonal transport of proteins. Brain Res 112:388–394

    CAS  PubMed  Google Scholar 

  345. Roberts RC, Knickman JK (2002) The ultrastructural organization of the patch matrix compartments in the human striatum. J Comp Neurol 452:128–138

    PubMed  Google Scholar 

  346. Rodriguez MC, Guridi OJ, Alvarez L et al (1998) The subthalamic nucleus and tremor in Parkinson’s disease. Mov Disord 13 Suppl 3:111–118

    Google Scholar 

  347. Rogers JD, Brogan D, Mirra SS (1985) The nucleus basalis of Meynert in neurological disease: a quantitative morphological study. Ann Neurol 17:162–170

    Google Scholar 

  348. Rolls ET (2000) The orbitofrontal cortex and reward. Cereb Cortex 10:284–294

    CAS  PubMed  Google Scholar 

  349. Rolls ET, Baylis LL (1994) Gustatory, olfactory, and visual convergence within the primate orbitofrontal cortex. J Neurosci 14:5437–5452

    CAS  PubMed  Google Scholar 

  350. Romanelli P, Esposito V, Schaal DW, Heit G (2005) Somatotopy in the basal ganglia: experimental and clinical evidence for segregated sensorimotor channels. Brain Res Brain Res Rev 48:112–128

    PubMed  Google Scholar 

  351. Royce GJ (1987) Recent research on the centromedian and parafascicular nuclei. In: The basal ganglia II: Structure and function-current concepts. Plenum, New York, pp 293–319 (Advances in behavioral biology, vol 32)

    Google Scholar 

  352. Russchen FT, Price JL (1984) Amygdalostriatal projections projections in the rat, topographical organization and fiber morphology shown using the lectin PHA-L as an anterograde tracer. Neurosci Lett 47:15–22

    CAS  PubMed  Google Scholar 

  353. Russchen FT, Amaral DG, Price JL (1985) The afferent connections of the substantia innominata in the monkey, Macaca fascicularis. J Comp Neurol 242:1–27

    CAS  PubMed  Google Scholar 

  354. Russchen FT, Bakst I, Amaral DG, Price JL (1985) The amygdalostriatal projections in the monkey. An anterograde tracing study. Brain Res 329:241–257

    CAS  PubMed  Google Scholar 

  355. Rye DB, Saper CB, Lee HJ, Wainer BH (1987) Pedunculopontine tegmental nucleus of the rat: cytoarchitecture, cytochemistry, and some extrapyramidal connections of the mesopontine tegmentum. J Comp Neurol 259:483–528

    CAS  PubMed  Google Scholar 

  356. Sadikot AF, Parent A, Francois C (1992) Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: a PHA-L study of subcortical projections. J Comp Neurol 315:137–159

    CAS  PubMed  Google Scholar 

  357. Sadikot AF, Parent A, Smith Y, Bolam JP (1992) Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: a light and electron microscopic study of the thalamostriatal projection in relation to striatal heterogeneity. J Comp Neurol 320:228–242

    CAS  PubMed  Google Scholar 

  358. Sakai ST (1988) Corticonigral projections from area 6 in the raccoon. Exp Brain Res 73:498–504

    CAS  PubMed  Google Scholar 

  359. Sakai ST, Inase M, Tanji J (1999) Pallidal and cerebellar inputs to thalamocortical neurons projecting in the supplementary motor area in Macaca fuscata: a triple-labeling light microscopic study. Anat Embryol 199:9–19

    CAS  PubMed  Google Scholar 

  360. Saper CB, Chelimski TC (1984) A cytoarchitectonic and histochemical study of nucleus basalis and associated cell groups in the normal human brain. Neuroscience 13:1023–1037

    CAS  PubMed  Google Scholar 

  361. Sarter M, Bruno JP (2002) The neglected constituent of the basal forebrain corticopetal projection system: GABAergic projections. Eur J Neurosci 15:1867–1873

    PubMed  Google Scholar 

  362. Sato F, Lavallee P, Lévesque M, Parent A (2000) Singleaxon tracing study of neurons of the external segment of the globus pallidus in primate. J Comp Neurol 417:17–31

    CAS  PubMed  Google Scholar 

  363. Sato F, Parent M, Lévesque M, Parent A (2000) Axonal branching pattern of neurons of the subthalamic nucleus in primates. J Comp Neurol 424:142–152

    CAS  PubMed  Google Scholar 

  364. Schlag J, Schlag-Rey M (1987) Evidence for a supplementary eye field. J Neurophysiol 57:179–200

    CAS  PubMed  Google Scholar 

  365. Schmahmann JD (1996) From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Map 4:174–198

    Google Scholar 

  366. Schmahmann JD (1998) Dysmetria of thought: clinical consequences of cerebellar dysfunction on cognition and affect. Trends Cogn Sci 2:362–371

    Google Scholar 

  367. Schmahmann JD (2004) Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci 16:367–378

    PubMed  Google Scholar 

  368. Schmahmann JD, Sherman JC (1998) The cerebellar cognitive affective syndrome. Brain 121(Pt 4):561–579

    PubMed  Google Scholar 

  369. Schröder KF, Hopf A, Lange H, Thörner G (1975) Morphometrisch-statistische Strukturanalysen des Striatum, Pallidum und Nucleus subthalamicus beim Menschen. I. Striatum. J Hirnforschung 16:333–350

    Google Scholar 

  370. Schultz W, Tremblay L, Hollerman JR (2000) Reward processing in primate orbitofrontal cortex and basal ganglia. Cereb Cortex 10:272–284

    CAS  PubMed  Google Scholar 

  371. Selden NR, Gitelman DR, Salamon-Murayama N, Parrish TB, Mesulam MM (1998) Trajectories of cholinergic pathways within the cerebral hemispheres of the human brain. Brain 121(Pt 12): 2249–2257

    PubMed  Google Scholar 

  372. Selemon LD, Goldman-Rakic PS (1985) Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci 5:776–794

    CAS  PubMed  Google Scholar 

  373. Selemon LD, Goldman-Rakic PS (1990) Topographic intermingling of striatonigral and striatopallidal neurons in the rhesus monkey. J Comp Neurol 297:359–376

    CAS  PubMed  Google Scholar 

  374. Semba K (2000) Multiple output pathways of the basal forebrain: organization, chemical heterogeneity, and roles in vigilance. Behav Brain Res 115:117–141

    CAS  PubMed  Google Scholar 

  375. Semba K, Reiner PB, McGeer EG, Fibiger HC (1988) Brainstem afferents to the magnocellular basal forebrain studied by axonal transport, immunohistochemistry, and electrophysiology in the rat. J Comp Neurol 267:433–453

    CAS  PubMed  Google Scholar 

  376. Sherman SM, Guillery RW (2001) Exploring the thalamus. Academic Press, San Diego

    Google Scholar 

  377. Sherman SM, Guillery RW (2002) The role of the thalamus in the flow of information to the cortex. Phil Trans R Soc Lond B 357:1695–1708

    Google Scholar 

  378. Sherman SM, Koch C (1998) Thalamus. In: Shepherd GM (ed) The synaptic organization of the brain, 4th edn. Oxford University Press, Oxford, pp 289–328

    Google Scholar 

  379. Shink E, Bevan MD, Bolam JP, Smith Y (1996) The subthalamic nucleus and the external pallidum: two tightly interconnected structures that control the output of the basal ganglia in the monkey. Neuroscience 73:335–357

    CAS  PubMed  Google Scholar 

  380. Shinonaga Y, Takada M, Mizuno N (1994) Topographic organization of collateral projections from the basolateral amygdaloid nucleus to both the prefrontal cortex and nucleus accumbens in the rat. Neuroscience 58:389–397

    CAS  PubMed  Google Scholar 

  381. Shook BL, Schlag-Rey M, Schlag J (1990) Primate supplementary eye field: I. Comparative aspects of mesencephalic and pontine connections. J Comp Neurol 301:618–642

    CAS  PubMed  Google Scholar 

  382. Shook BL, Schlag-Rey M, Schlag J (1991) Primate supplementary eye field. II. Comparative aspects of connections with the thalamus, corpus striatum, and related forebrain nuclei. J Comp Neurol 307:562–583

    CAS  PubMed  Google Scholar 

  383. Siegel KL, Metman LV (2000) Effects of bilateral posteroventral pallidotomy on gait of subjects with Parkinson disease. Arch Neurol 57:198–204

    CAS  PubMed  Google Scholar 

  384. Skinner RD, Garcia-Rill E (1984) The mesencephalic locomotor region (MLR) in the rat. Brain Res 323:385–389

    CAS  PubMed  Google Scholar 

  385. Smith ML, Hale BD, Booze RM (1994) Calbindin-D28k immunoreactivity within the cholinergic and GABAergic projection neurons of the basal forebrain. Exp Neurol 130:230–236

    CAS  PubMed  Google Scholar 

  386. Smith Y, Parent A (1986) Differential connections of caudate nucleus and putamen in the squirrel monkey (Saimiri sciureus). Neuroscience 18:347–371

    CAS  PubMed  Google Scholar 

  387. Smith Y, Parent A (1988) Neurons of the subthalamic nucleus in primates display glutamate but not GABA immunoreactivity. Brain Res 453:353–356

    CAS  PubMed  Google Scholar 

  388. Smith Y, Hazrati LN, Parent A (1990) Efferent projections of the subthalamic nucleus in the squirrel monkey as studied by the PHA-L anterograde tracing method. J Comp Neurol 294:306–323

    CAS  PubMed  Google Scholar 

  389. Smith Y, Bevan MD, Shink E, Bolam JP (1998) Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience 86:353–387

    CAS  PubMed  Google Scholar 

  390. Sokoloff P, Giros B, Martres MP, Bouthenet ML, Schwartz JC (1990) Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347:146–151

    CAS  PubMed  Google Scholar 

  391. Somogyi P, Bolam JP, Smith AD (1981) Monosynaptic cortical input and local axon collaterals of identified striatonigral neurons. A light and electron microscopic study in using the Golgi-peroxidase transport degeneration procedure. J Comp Neurol 195:567–584

    CAS  PubMed  Google Scholar 

  392. Spangler EM, Henkel CK, Miller IJ Jr (1982) Localization of the motor neurons to the tensor tympani muscle. Neurosci Lett 32:23–27

    CAS  PubMed  Google Scholar 

  393. Spann BM, Grofova I (1989) Origin of ascending and spinal pathways from the nucleus tegmenti pedunculopontinus in the rat. J Comp Neurol 283:13–27

    CAS  PubMed  Google Scholar 

  394. Spann BM, Grofova I (1991) Nigropedunculopontine projection in the rat: an anterograde tracing study with phaseolus vulgaris-leucoagglutinin (PHA-L). J Comp Neurol 311:375–388

    CAS  PubMed  Google Scholar 

  395. Spatz WB (1975) An efferent connection of the solitary cells of Meynert. A study with horseradish peroxidase in the marmoset Callithrix. Brain Res 92:450–455

    CAS  PubMed  Google Scholar 

  396. Spooren WPJM, Veening JG, Groenewegen HJ, Cools AR (1991) Efferent connections of the striatopallidal and amygdaloid components of the substantia innominata in the cat: projections to the nucleus accumbens and caudate nucleus. Neuroscience 44:431–447

    CAS  PubMed  Google Scholar 

  397. Spooren WPJM, Veening JG, Cools AR (1993) Descending efferent connections of the sub-pallidal areas in the cat: projections to the subthalamic nucleus, the hypothalamus, and the midbrain. Synapse 15:104–123

    CAS  PubMed  Google Scholar 

  398. Steininger TL, Rye DB, Wainer BH (1992) Afferent projections to the cholinergic pedunculopontine tegmental nucleus and adjacent midbrain extrapyramidal area in the albino rat. I. Retrograde tracing studies. J Comp Neurol 321:515–543

    CAS  PubMed  Google Scholar 

  399. Stephan H (1975) Handbuch der mikroskopischen Anatomie des Menschen. Band 4, Teil 9 Allocortex. Springer, Berlin Heidelberg New York

    Google Scholar 

  400. Stephens B, Mueller AJ, Shering AF et al (2005) Evidence of a breakdown of corticostriatal connections in Parkinson’s disease. Neuroscience 132:741–754

    CAS  PubMed  Google Scholar 

  401. Steriade M, Jones EG, McCormick DA (1997) Thalamus, vol I: Organisation and function. Elsevier, Amsterdam

    Google Scholar 

  402. Stevens JR (1973) An anatomy of schizophrenia? Arch Gen Psychiatry 29:177–189

    CAS  PubMed  Google Scholar 

  403. Surmeier DJ, Song WJ, Yan Z (1996) Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J Neurosci 16:6579–6591

    CAS  PubMed  Google Scholar 

  404. Szabo J (1980) Distribution of striatal afferents from the mesencephalon in the cat. Brain Res 188:3–21

    CAS  PubMed  Google Scholar 

  405. Szabo J (1980) Organization of the ascending striatal afferents in monkeys. J Comp Neurol 189:307–321

    CAS  PubMed  Google Scholar 

  406. Takada M, Tokuno H, Nambu A, Inase M (1998) Corticostriatal projections from the somatic motor areas of the frontal cortex in the macaque monkey: segregation versus overlap of input zones from the primary motor cortex, the supplementary motor area, and the premotor cortex. Exp Brain Res 120:114–128

    CAS  PubMed  Google Scholar 

  407. Takakusaki K, Habaguchi T, Ohtinata-Sugimoto J, Saitoh K, Sakamoto T (2003) Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: a new concept for understanding motor disorders in basal ganglia dysfunction. Neuroscience 119:293–308

    CAS  PubMed  Google Scholar 

  408. Tanaka C, Ishikawa M, Shimada S (1982) Histochemical mapping of catecholaminergic neurons and their ascending fiber pathways in the rhesus monkey brain. Brain Res Bull 9:255–270

    CAS  PubMed  Google Scholar 

  409. Thörner G, Lange H, Hopf A (1975) Morphometrischstatistische Strukturanalysen des Striatum, Pallidum und Nucleus subthalamicus beim Menschen. II. Pallidum. J Hirnforschung 16:404–413

    Google Scholar 

  410. Tong CK, Hamel E (2000) Basal forebrain nitric oxide synthase (NOS)-containing neurons project to microvessels and NOS neurons in the rat neocortex: cellular basis for cortical blood flow regulation. Eur J Neurosci 12:2769–2780

    CAS  PubMed  Google Scholar 

  411. Ungerstedt U (1971) Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol Scand [Suppl] 367:1–49

    CAS  Google Scholar 

  412. Usunoff KO, Romansky KY, Malinov OB et al (1982) Electron microscopic evidence for the existence of a cortical tract in the rat. J Hirnforschung 23:23–29

    CAS  Google Scholar 

  413. Vandecasteele M, Glowinski J, Venance L (2005) Electrical synapses between dopaminergic neurons of the substantia nigra pars compacta. J Neurosci 25:291–298

    CAS  PubMed  Google Scholar 

  414. Vaughan GM, Pelham RW, Pang SF et al (1976) Nocturnal elevation of plasma melatonin and urinary 5-hydroxyindoleacetic acid in young men: attempts at modification by brief changes in environmental lighting and sleep and by autonomic drugs. J Clin Endocr Metab 42:752–764

    CAS  PubMed  Google Scholar 

  415. Vogels OJM (1990) The nucleus basalis of Meynert complex and adjacent structures in normal aging and Alzheimer’s disease. Thesis, University of Nijmegen, The Netherlands

    Google Scholar 

  416. Vogels OJM, Broere CA, ter Laak HJ et al (1990) Cell loss and shrinkage in the nucleus basalis Meynert complex in Alzheimer’s disease. Neurobiol Aging 11:3–13

    CAS  PubMed  Google Scholar 

  417. Volkow ND, Fowler JS, Wang GJ (2004) The addicted human brain viewed in the light of imaging studies: brain circuits and treatment strategies. Neuropharmacology 47 Suppl 1:3–13

    Google Scholar 

  418. Voorn P, Jorritsma-Byham B, Van Dijk C, Buijs RM (1986) The dopaminergic innervation of the ventral striatum in the rat: a light-and electronmicroscopical study with antibodies against dopamine. J Comp Neurol 251:84–99

    CAS  PubMed  Google Scholar 

  419. Walker LC, Price DL, Young WS III (1989) GABAergic neurons in the primate basal forebrain magnocellular complex. Brain Res 499:188–192

    CAS  PubMed  Google Scholar 

  420. Walker RH, Arbuthnott GW, Baughman RW, Graybiel AM (1993) Dendritic domains of medium spiny neurons in the primate striatum: relationships to striosomal borders. J Comp Neurol 337:614–628

    CAS  PubMed  Google Scholar 

  421. Wassef M, Berod A, Sotelo C (1981) Dopaminergic dendrites in the pars reticulata of the rat substantia nigra and their striatal input: combined immunocytochemical localization of tyrosine hydroxylase and anterograde degeneration. Neuroscience 6:2125–2139

    CAS  PubMed  Google Scholar 

  422. Whitehouse PJ, Price DL, Clark WA, Coyle TJ, De Long MR (1981) Alzheimer’s disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 10:122–126

    CAS  PubMed  Google Scholar 

  423. Whitehouse PJ, Price DL, Struble RG, Aark AW, Coyle JT (1982) Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215:1237–1239

    CAS  PubMed  Google Scholar 

  424. Whitehouse PJ, Hedreen JC, White CL (1983) Basal forebrain neurons in the dementia of Parkinson disease. Ann Neurol 13:243–248

    CAS  PubMed  Google Scholar 

  425. Whittier JR (1947) Ballism and the subthalamic nucleus (nucleus hypothalamicus; corpus Luysii). Arch Neurol Psychiatr 58:672–692

    CAS  Google Scholar 

  426. Wichmann T, DeLong MR (1996) Functional and pathophysiological models of the basal ganglia. Curr Opin Neurobiol 6:751–758

    CAS  PubMed  Google Scholar 

  427. Wichmann T, Vitek J, DeLong MR (1995) Parkinson’s disease and the basal ganglia: lessons from the laboratory and from neurosurgery. Neuroscientist 1:236–244

    Google Scholar 

  428. Wilson CJ (1998) Basal ganglia. In: Shepherd GM (ed) The synaptic organization of the brain, 4th edn. Oxford University Press, Oxford, pp 329–375

    Google Scholar 

  429. Wilson CJ (2004) Basal ganglia. In: Shepherd GM (ed) The synaptic organization of the brain. Oxford University Press, Oxford, pp 361–413

    Google Scholar 

  430. Yamamoto T, Hirano A (1985) Nucleus raphe dorsalis in Alzheimer’s disease: neurofibrillary tangles and loss of large neurons. Ann Neurol 17:573–577

    CAS  PubMed  Google Scholar 

  431. Yang CR, Mogenson GJ (1985) An electrophysiological study of the neural projections from the hippocampus to the ventral pallidum and the subpallidal areas by way of the nucleus accumbens. Neuroscience 15:1015–1024

    CAS  PubMed  Google Scholar 

  432. Yelnik J, Francois C, Percheron G, Heyner S (1987) Golgi study of the primate substantia nigra. I. Quantitative morphology and typology of nigral neurons. J Comp Neurol 265:455–472

    CAS  PubMed  Google Scholar 

  433. Yeterian EH, Pandya DN (1991) Prefrontostriatal connections in relation to cortical architectonic organization in rhesus monkeys. J Comp Neurol 312:43–67

    CAS  PubMed  Google Scholar 

  434. Yung KK, Smith AD, Levey AI, Bolam JP (1996) Synaptic connections between spiny neurons of the direct and indirect pathways in the neostriatum of the rat: evidence from dopamine receptor and neuropeptide immunostaining. Eur J Neurosci 8:861–869

    CAS  PubMed  Google Scholar 

  435. Yung KKL, Bolam JP, Smith AD et al (1995) Immunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: light and electron microscopy. Neuroscience 65:709–730

    CAS  PubMed  Google Scholar 

  436. Záborszky L, Alheid GF, Beinfeld MC et al (1985) Cholecystokinin innervation of the ventral striatum: a morphological and radioimmunological study. Neuroscience 14:427–453

    PubMed  Google Scholar 

  437. Zaborszky L, Gaykema RP, Swanson DJ, Cullinan WE (1997) Cortical input to the basal forebrain. Neuroscience 79:1051–1078

    CAS  PubMed  Google Scholar 

  438. Zahm DS, Brog JS (1992) On the significance of subterritories in the “accumbens” part of the rat ventral striatum. Neuroscience 50:751–767

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Italia

About this chapter

Cite this chapter

Nieuwenhuys, R., Voogd, J., van Huijzen, C., Papa, M. (2010). Telencefalo: gangli della base. In: Il sistema nervoso centrale. Springer, Milano. https://doi.org/10.1007/978-88-470-1140-3_14

Download citation

Publish with us

Policies and ethics