Advertisement

Mathknow pp 119-129 | Cite as

Soap films and soap bubbles: from Plateau to the olympic swimming pool in Beijing

  • Michele Emmer
Part of the MS&A book series (MS&A, volume 3)

Abstract

It is very interesting to study the parallel story of soap bubbles and soap films in art and science. Noting that mathematicians in particular have been intrigued by their complex geometry, the author traces a short story of research in this area from the first experiments by Plateau in the late nineteenth century to more recent works. Looking for the connections with art and architecture, with a special look to the Olympic swimming stadium in Beijing built in 2008

Keywords

Minimal Surface Olympic Game Soap Film Soap Bubble Plateau Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    De Gennes, P.G.: Soft matter. Science 256, 495–497 (1992)CrossRefGoogle Scholar
  2. 2.
    Emmer, M.: Bolle di sapone: un viaggio tra arte, scienza e fantasia. La Nuova Italia, Firenze(1993). New revisited edition, Bolle di sapone, Bollati Boringhieri, Torino, to appearGoogle Scholar
  3. 3.
    Newton, I.: Opticks or a Treatise of the Reflections, Refractions, Inflections and Colour of Light, first edition (1704); second edition, including 7 new queries (1717–1718). Reprinted Dover, New York, 214–224 (1979)Google Scholar
  4. 4.
    Virgilio Marone, P.: Eneide I, 360–368.Google Scholar
  5. 5.
    Newman, J.R. (ed.): The World of Mathematics, pp 882–885. Simon and Schuster, New York (1956)MATHGoogle Scholar
  6. 6.
    Plateau, J.: Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires. Gauthier-Vilars, Paris (1873)Google Scholar
  7. 7.
    Laplace, P. S.: Traité de mécanique céleste: supplément au Livre X (1805–1806). Reprinted in Oeuvres Complétes, Gauthier-Villars, ParisGoogle Scholar
  8. 8.
    Douglas, J.: Solution of the problem of Plateau. Trans. Amer. Math. Soc. 33, 263–321, (1931)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Radó, T.: On the Problem of Plateau, Ergebnisse der Mathematik, pp. 115–125. Springer-Verlag, Berlin (1933)Google Scholar
  10. 10.
    Radó, T.: The problem of Least Area and the problem of Plateau. Math. Zeithschrift 32, 762–796 (1930)Google Scholar
  11. 11.
    De Giorgi, E., Colombini, F., Piccinini, L.C.: Frontiere orientate di misura minima e questioni collegate. Scuola Normale Superiore, Pisa (1972)MATHGoogle Scholar
  12. 12.
    Reifenberg, E.R.: Solution of the Plateau problem. Problem for n-dimensional Surfaces of Varying Topological Type. Acta Math. 104, 1–92 (1960)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Taylor, J.E.: The Structure of Singularities in Soap-Bubbles-Like and Soap-Film-Like Minimal Surfaces. Ann. Math. 103, 489–539 (1976)CrossRefGoogle Scholar
  14. 14.
    Almgren, F., Taylor, J.: The Geometry of Soap Bubbles and Soap Films. Scient. Amer., 82–93 (1976)Google Scholar
  15. 15.
    Emmer, M.: Soap Bubbles. Film in the series Art and Mathematics, DVD, Emmer prod., Rome (1984)Google Scholar
  16. 16.
    Arnez, A., Polthier, K., Steffens M., Teitzel, C.: Touching Soap Films. Springer videoMath, Berlin (1991)Google Scholar
  17. 17.
    D’Arcy Thompson, W.: On Growth and Form. Cambridge University Press, Cambridge (1942)MATHGoogle Scholar
  18. 18.
    Emmer, M.: Dai Radiolari ai vasi di Gallé. In: Emmer, M.(ed.) Matematica e cultura 2007, pp. 31–41, Springer, Milano (2007)CrossRefGoogle Scholar
  19. 19.
    Frei, O.: Tensile Structures: Design, Structure and Calculation of Buildings of Cables, Nets and Membranes. The Mit Press, Boston (1973)Google Scholar
  20. 20.
    Miller, B.: Bubbles Shadows. Anderson Ranch Arts Center, Snowmass Village, Colorado (2006)Google Scholar
  21. 21.
    Miller, B.: Bubbles Shadows. In: Emmer, M. (ed.) Matematica, e cultura 2008, pp. 323–331. Springer, Milano (2008)CrossRefGoogle Scholar
  22. 22.
    Bosse, C.: L’architettura delle bolle di sapone. In: Emmer, M. (ed.) Matematica e cultura 2007, pp. 43–56. Springer, Milano (2007)CrossRefGoogle Scholar
  23. 23.
    Boys, V.: Soap Bubbles: their Colours and the Forces which mould them. (1911) Reprinted Dover, New York, (1959)Google Scholar

Copyright information

© Springer-Verlag Italia, Milan 2009

Authors and Affiliations

  • Michele Emmer
    • 1
  1. 1.Dipartimento di Matematica „G. Castelnuovo“Università degli studi „La Sapienza“RomaItaly

Personalised recommendations