Mathknow pp 113-118 | Cite as

Soft matter: mathematical models of smart materials

  • Paolo Biscari
Part of the MS&A book series (MS&A, volume 3)


The chapter reviews some of the mathematical theories involved in the study of soft matter systems: variational models describe the equilibrium configurations of complex hyperelastic materials, differential geometry is essential to understand the properties of two-dimensional membranes.


Liquid Crystal Soft Matter Nematic Liquid Crystal Molecular Orientation Homotopy Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bethuel, F., Brezis, H., Hélein, F.: Ginzburg-Landau vortices. Birkhäuser, Boston (1994).MATHGoogle Scholar
  2. 2.
    Biscari, P., Guidone Peroli, G.: A Hierarchy of Defects in Biaxial Nematics. Commun. Math. Phys. 186, 381–392 (1997)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    de Gennes, P.-G.: Isotropic Phase of Nematics and Cholesterics. Mol. Cryst. Liq. Cryst. 12, 193–201 (1971)CrossRefGoogle Scholar
  4. 4.
    de Giorgi, E.: Gamma-convergenza e G-convergenza. Boll. Un. Mat. Ital. 14-A, 213–220 (1977)Google Scholar
  5. 5.
    Frank, F.C.: On the theory of liquid crystals. Discuss. Faraday Soc. 28, 19–28 (1958)CrossRefGoogle Scholar
  6. 6.
    Helfrich, W.: Elastic properties of lipid bilayers: Theory and possible experiments, Z. Naturforsch. C 28, 693–703 (1973)Google Scholar
  7. 7.
    Toulouse, G., and Kleman, M.: Principles of Classification of Defects in Ordered Media. J. Phys. Lett. 37, 149–151 (1976)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milan 2009

Authors and Affiliations

  • Paolo Biscari
    • 1
  1. 1.Dipartimento di MatematicaPolitechnico di MilanoMilanoItaly

Personalised recommendations