Mathknow pp 229-239 | Cite as

Multi-physics models for bio-hybrid device simulation

  • Riccardo Sacco
Part of the MS&A book series (MS&A, volume 3)


In this paper, we illustrate a set of multi-physics computational models for the simulation of bio-hybrid devices. The mathematical formulation includes electrochemical and fluid-mechanical transport of substances, chemical reactions and electrical transduction of biological signals, cell growth and cell membrane gating phenomena. The proposed models are validated in the study of realistic problems in neuroelectronics and tissue engineering.


Tissue Engineering Porous Matrix Hybrid Device Articular Cartilage Repair Functional Iteration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rubinstein, I.: Electrodiffusion of Ions, SIAM, Philadelphia, PA (1990)Google Scholar
  2. 2.
    Jerome, J.W.: Analysis of Charge Transport. Springer-Verlag, Berlin Heidelberg (1996)Google Scholar
  3. 3.
    Keener, J., Sneyd, J.: Mathematical Physiology, Springer-Verlag, New York (1998)MATHGoogle Scholar
  4. 4.
    Hille, B.: Ionic Channels of Excitable Membranes. Sinauer Associates, Inc., Sunderland, MA (2001)Google Scholar
  5. 5.
    Nield, D.A., Bejan, A.: Convection in Porous Media. Springer-Verlag, New York (1998)Google Scholar
  6. 6.
    Neher, E.: Molecular biology meets microelectronics. Nature Biotechnology 19, 114 (2001)CrossRefGoogle Scholar
  7. 7.
    Hsu, C.T., Cheng, P.: Thermal dispersion in a porous medium. Int. J. Heat Mass Transfer 33(8), 1587–1597 (1990)MATHCrossRefGoogle Scholar
  8. 8.
    Taur, Y., Ning, T.H.: Fundamentals of modern VLSI devices. Cambridge University Press, New York, NY, USA (1998)Google Scholar
  9. 9.
    Freed, L.E., Vunjak-Novakovic, G.: Tissue engineering bioreactors. In: Lanza, R.P., Langer, R., Vacanti, J. (eds.) Principles of tissue engineering. Academic Press, San Diego (2000)Google Scholar
  10. 10.
    Jerome, J.W.: Analytical approaches to charge transport in a moving medium. Transp. Theo. Stat. Phys. 31(4–6), 333 (2002)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Martin, I., Wendt, D., Heberer, M.: The role of bioreactors in tissue engineering. Trends Biotechnol. 22(2), 80–86 (2004)CrossRefGoogle Scholar
  12. 12.
    Fromherz, P.: Neuroelectronics interfacing: Semiconductor chips with ion channels, cells and brain. In: Weise, R. (ed.) Nanoelectronics and Information Technology, pp. 781–810. Wiley-VCH, Berlin (2003)Google Scholar
  13. 13.
    Raimondi, M.T., Boschetti, F., Migliavacca, F., Cioffi, M., Dubini, G.: Micro fluid dynamics in three-dimensional engineered cell systems in bioreactors. In: Ashammakhi, N., Reis, R.L. (eds.) Topics in Tissue Engineering, vol. 2, chap. 9 (2005)Google Scholar
  14. 14.
    Ho, S.T., Hutmacher, D.W.: A comparison of micro CT with other techniques used in the characterization of scaffolds. Biomaterials 27, 1362–1376 (2006)CrossRefGoogle Scholar
  15. 15.
    Jerome, J.W., Chini, B., Longaretti, M., Sacco, R.: Computational modeling and simulation of complex systems in bio-electronics. Journal of Computational Electronics 7(1), 10–13 (2008)CrossRefGoogle Scholar
  16. 16.
    Park, J.H., Jerome, J.W.: Qualitative properties of steady-state Poisson-Nernst-Planck systems: mathematical study. SIAM J. Appl. Math. 57(3), 609–630 (1997)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Barcilon, V., Chen, D., Eisenberg, R., Jerome, J.W.: Qualitative properties of steady-state Poisson-Nernst-Planck systems: perturbation and simulation study. SIAM J. Appl. Math. 57(3), 631–648 (1997)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Jerome, J.W., Sacco, R.: Global weak solutions for an incompressible charged fluid with multi-scale couplings: Initial-boundary value problem. Submitted to Nonlinear Analysis (2008)Google Scholar
  19. 19.
    Longaretti, M., Marino, G.: Coupling of electrochemical and fluid-mechanical models for the simulation of charge flow in ionic channels. Master’s thesis, Politecnico di Milano, Milan (2006)Google Scholar
  20. 20.
    Longaretti, M., Marino, G., Chini, B., Jerome, J.W., Sacco, R.: Computational models in nano-bio-electronics: simulation of ionic transport in voltage operated channels. Journal of Nanoscience and Nanotechnology 8, 1–9 (2007)Google Scholar
  21. 21.
    Hodgkin, A.L., Huxley, A.F.: Currents carried by sodium and potassium ions through the membrane of the giant axon of loligo. Journal of Physiology 116, 449–472 (1952)Google Scholar
  22. 22.
    Brezzi, F., Marini, L.D., Micheletti, S., Pietra, P., Sacco, R.: Stability and error analysis of mixed finite volume methods for advective-diffusive problems. Comput. Math. Appl. 51, 681–696 (2006)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Chung, C.A., Chen, C.W., Chen, C.P., Tseng, C.S.: Enhancement of cell growth in tissue-engineering constructs under direct perfusion: Modeling and simulation. Biotechnology and Bioengineering 97(6), 1603–1616 (2007)CrossRefGoogle Scholar
  24. 24.
    Galbusera, F., Cioffi, M., Raimondi, M.T.: An in silico bioreactor for simulating laboratory experiments in tissue engineering. Biomedical Microdevices 10(4), 547–554 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milan 2009

Authors and Affiliations

  • Riccardo Sacco
    • 1
  1. 1.Dipartimento di Matematica „F. Brioschi“Politecnico di MilanoMilanoItaly

Personalised recommendations