Advertisement

Mathknow pp 217-228 | Cite as

Mathematics enters the picture

  • Massimo Fornasier
Part of the MS&A book series (MS&A, volume 3)

Abstract

Can one of the most important Italian Renaissance frescoes reduced to hundreds of thousands of framents by a bombing during the Second World War be re-composed after more than 60 years from its damage? Can we reconstruct the missing parts and can we say something about their original color?

In this short paper we want to exemplify, hopefully effectively by taking advantage of the seduction of art, how mathematics today can be applied to real-life problems which were considered unsolvable only few years ago.

Keywords

Gray Level Rotation Operator Color Fragment Nonlinear Projection Treasure Hunt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing. Partial Differential Equations and the Calculus of Variation. Springer, Heidelberg (2002)Google Scholar
  2. 2.
    Arsenault, H.H., Hsu, Y.N., Chalasinska-Macukow, K.: Rotation-invariant pattern recognition. Opt. Eng. 23, 705–709 (1984)Google Scholar
  3. 3.
    Brandi, C.: Il Mantegna Ricostituito. L’Immagine I, 179–180 (1947)Google Scholar
  4. 4.
    Cazzato, R.: Un Metodo per la Ricolorazione di Immagini e Altri Strumenti per il Restauro. Il Progetto Mantegna e gli Affreschi nella Chiesa degli Eremitani (Italian). Laurea thesis, University of Padua (2007)Google Scholar
  5. 5.
    Cazzato, R., Costa, G. Dal Farra, A., Fornasier, M., Toniolo, D., Tosato, D., Zanuso, C.: Il Progetto Mantegna: storia e risultati. In: Spiazzi, A.M., De Nicolò Salmazo, A., Tiniolo, D. (eds.) Andrea Mantegna. La Cappella Ovetari a Padova. Skira (2006)Google Scholar
  6. 6.
    Daubechies, I.: Ten Lectures on Wavelets. SIAM (1992)Google Scholar
  7. 7.
    De Nicolò Salmazo, A.: Le „Storie dei santi Giacomo e Cristoforo“ nella chiesa degli Eremitani. In: Il soggiorno padovano di Andrea Mantegna, pp. 31–86. Cittadella, Padova (1993)Google Scholar
  8. 8.
    Fornasier, M.: Faithful recovery of vector valued functions from incomplete data. Recolorization and art restoration. In: Sgallari, F., Murli, A., Paragios, N. (eds.) Proceedings of the First International Conference on Scale Space Methods and Variational Methods in Computer Vision. Lecture Notes in Computer Science 4485, 116–127 (2007)Google Scholar
  9. 9.
    Fornasier, M.: Function spaces inclusions and rate of convergence of Riemanntype sums in numerical integration. Numer. Funct. Anal. Opt. 24(1–2), 45–57 (2003)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Fornasier, M.: Nonlinear projection recovery in digital inpainting for color image restoration. J. Math. Imaging Vis. 24(3), 359–373 (2006)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Fornasier, M., March, R.: Restoration of color images by vector valued BV functions and variational calculus. SIAM J. Appl. Math. 68(2) 437–460 (2007)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Fornasier, M., Ramlau, R., Teschke, G.: A comparison of joint sparsity and total variation minimization algorithms in a real-life art restoration problem, to appear in Adv. Comput. Math. (2008) doi:10.1007/s10444-008-9103-6Google Scholar
  13. 13.
    Fornasier, M., Toniolo, D.: Fast, robust, and efficient 2D pattern recognition for re-assembling fragmented images. Pattern Recognition 38, 2074–2087 (2005)CrossRefGoogle Scholar
  14. 14.
    Galeazzi, G., Toniolo, D.: I frammenti della Chiesa degli Eremitani: un approccio matematico alla soluzione del problema, Atti del convengo „Filosofia e Tecnologia del restauro“ gli ‘Emblémata’, Abbazia di Praglia, 89–97 (1994)Google Scholar
  15. 15.
    Galeazzi, G., Toniolo, D.: Il problema della ricostruzione degli affreschi della Chiesa degli Eremitani in Padova. (Italian), Atti del convegno „Il complesso basilicale di San Francesco di Assisi ad un anno dal terremoto“, Assisi (1998)Google Scholar
  16. 16.
    Wolf, K.B.: Integral Transforms in Science and Engineering. Mathematical Concepts and Methods in Science and Engineering. vol. 11, XIII. Plenum Press, New York, London (1979)MATHGoogle Scholar
  17. 17.
    Watson, G.N.: Theory of Bessel Functions. Cambridge University Press, Cambridge (1966)MATHGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milan 2009

Authors and Affiliations

  • Massimo Fornasier
    • 1
  1. 1.Johann Radon Institute for Computational and Applied Mathematics (RICAM)LinzAustria

Personalised recommendations