Advertisement

Mathknow pp 201-213 | Cite as

Little Tom Thumb among cells: seeking the cues of life

  • Giacomo Aletti
  • Paola Causin
  • Giovanni Naldi
  • Matteo Semplice
Part of the MS&A book series (MS&A, volume 3)

Abstract

For a living being or a cell in a developing body, recognizing its peers and locating food sources or other targets and moving towards them is of paramount importance. In most cases this is achieved by detecting the presence of chemical substances in the environment and moving towards the areas of their higher concentration, a process known as chemotaxis. Despite its fundamental role for life, this phenomenon is not yet fully understood in all its details and mathematical models are proving very useful in guiding biological research. We address here two examples of chemotaxis occurring in the developing embryo: early formation of the vascular plexus and axon navigation in the wiring of the nervous system.

Keywords

Vascular Endothelial Growth Factor Growth Cone Axon Guidance Autocrine Loop Motor Actuator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aeschlimann, M., Tettoni, L.: Biophysical model of axonal pathfinding. Neurocomputing 38–40, 87–92 (2001)CrossRefGoogle Scholar
  2. 2.
    Aletti, G., Causin, P.: Mathematical characterization of the transduction chain in growth cone pathfinding. IET Sys Biol 2(3), 150–161 (2008)CrossRefGoogle Scholar
  3. 3.
    Aletti, G., Causin, P., Naldi, G.: A model for axon guidance: sensing, transduction and movement. In: Ricciardi, L.M. et al. (ed.) AIP Proceedings 1028, 129–146 (2008)Google Scholar
  4. 4.
    Berg, H., Purcell, E.: Physics of chemoreception. Biophys. J. 20, 193–219 (1977)CrossRefGoogle Scholar
  5. 5.
    Buettner, H.M., Pittman, R.N., Ivins, J.: A model of neurite extension across regions of nonpermissive substrate: simulations based on experimental measurements of growth cone motility and filopodial dynamics. Dev. Biol. 163, 407–422 (1994)CrossRefGoogle Scholar
  6. 6.
    Cavalli, F., Gamba, A., Naldi, G., Oriboni, S., Semplice, M., Valembri, D., Serini, G.: Modelling of 3D early blood vessel formation: simulations and morphological analysis. In: Ricciardi, L.M. et al. (ed.) AIP Proceedings 1028, 311–327 (2008)Google Scholar
  7. 7.
    Cavalli, F., Gamba, A., Naldi, G., Semplice, M., Valdembri, D., Serini, G.: 3D simulations of early blood vessel formation. J. Comput. Phys. 225, 2283–2300 (2007)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Fitzgerald, M., Kwiat, G., Middleton, J., Pini, A.: Ventral spinals cord inhibition of neurite outgrowth from embryonic rat dorsal root ganglia. Development 117, 1377–1384 (1993)Google Scholar
  9. 9.
    Gamba, A., Ambrosi, D., Coniglio, A., de Candia, A., Di Talia, S., Giraudo, E., Serini, G., Preziosi, L., Bussolino, F.: Percolation, morphogenesis, and Burgers dynamics in blood vessels formation. Phys. Rev. Lett. 90(118), 101 (2003)Google Scholar
  10. 10.
    Goodhill, G.J., Gu, M., Urbach, J.S.: Predicting axonal response to molecular gradients with a computational model of filopodial dynamics. Neural Comp. 16, 2221–2223 (2004)MATHCrossRefGoogle Scholar
  11. 11.
    Gordon-Weeks, P.: Neuronal growth cones. Cambridge University Press (2000)Google Scholar
  12. 12.
    Guan, K., Rao, Y.: Signalling mechanisms mediating neuronal responses to guidance cues. Nature Rev. Neurosci 4, 941–956 (2003)CrossRefGoogle Scholar
  13. 13.
    Julius Adler, J., Tso, W.: Decision-making in bacteria: Chemotactic response of Escherichia Coli to conflicting stimuli. Science 184, 1292–1294 (1974)CrossRefGoogle Scholar
  14. 14.
    Kardar, M., Parisi, G., Zhang, Y.: Dynamical scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986)MATHCrossRefGoogle Scholar
  15. 15.
    Luo, L.: Actin cytoskeleton regulation in neuronal morphogenesis and structural plasticity. Annu. Rev. Cell Dev. 18, 601–635 (2002)CrossRefGoogle Scholar
  16. 16.
    Maskery, S.M., Shinbrot, T.: Deterministic and stochastic elements of axonal guidance. Annu. Rev. Biomed. Eng. 7, 187–221 (2005)CrossRefGoogle Scholar
  17. 17.
    Seghezzi, G., Patel, S., Ren, C., Gualandris, A., Pintucci, G., Robbins, E., Shapiro, R., Galloway, A., Rifkin, D., Mignatti, P.: Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J. Cell Biol. 141, 1659–1673 (1998)CrossRefGoogle Scholar
  18. 18.
    Serini, G., Ambrosi, D., Giraudo, E., Gamba, A., Preziosi, L., Bussolino, F.: Modeling the early stages of vascular network assembly. EMBO J. 22, 1771–1779 (2003)CrossRefGoogle Scholar
  19. 19.
    Shandarin, S., Zeldovich, Y.: The large-scale structure of the universe: turbulence, intermittency, structures in a self-gravitating medium. Rev. Mod. Phys. 61, 185–220 (1989)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Song, H., Poo, M.M.: The cell biology of neuronal navigation. Nat. Cell Biol. 3, E81–E88 (2001)CrossRefGoogle Scholar
  21. 21.
    Tessier-Lavigne, M., Goodman, C.: The molecular biology of axon guidance. Science 274, 1123–1133 (1996)CrossRefGoogle Scholar
  22. 22.
    Tessier-Lavigne, M., Placzek, M., Lumsden, A.G., Dodd, J., Jessell, T.M.: Chemotropic guidance of developing axons in the mammalian nervous system. Nature 336, 775–778 (1988)CrossRefGoogle Scholar
  23. 23.
    Xu, J., Rosoff, W., Urbach, J., Goodhill, G.: Adaptation is not required to explain the long-term response of axons to molecular gradients. Development 132, 4545–4562 (2005)CrossRefGoogle Scholar
  24. 24.
    Zheng, J.Q., Felder, M., Connor, J.A., Poo, M.: Turning of nerve growth cone induced by neurotransmitters. Nature 368, 140–144 (1994)CrossRefGoogle Scholar
  25. 25.
    Zheng, J.Q., Wan, J., Poo, M.: Essential of role of filopodia in chemotropic turning of nerve growth cone induced by a glutamate gradient. J. Neurosci. 16(3), 1140–1149 (1996)Google Scholar

Copyright information

© Springer-Verlag Italia, Milan 2009

Authors and Affiliations

  • Giacomo Aletti
    • 1
  • Paola Causin
    • 1
  • Giovanni Naldi
    • 1
  • Matteo Semplice
    • 1
  1. 1.Dipartimento di Matematica „F. Enriques“Università degli Studi di MilanoMilanoItaly

Personalised recommendations