Mathknow pp 167-181 | Cite as

Detecting structural complexity: from visiometrics to genomics and brain research

  • Renzo L. Ricca
Part of the MS&A book series (MS&A, volume 3)


From visual inspection of complex phenomena to modern visiometrics, the quest for relating aspects of structural and morphological complexity to hidden physical and biological laws has accompanied progress in science ever since its origin. By using concepts and methods borrowed from differential and integral geometry, geometric and algebraic topology, and information from dynamical system analysis, there is now an unprecedented chance to develop new powerful diagnostic tools to detect and analyze complexity from both observational and computational data, relating this complexity to fundamental properties of the system. In this paper we briefly review some of the most recent developments and results in the field. We give some examples, taken from studies on vortex entanglement, topological complexity of magnetic fields, DNA knots, by concluding with some comments on morphological analysis of structures present as far afield as in cosmology and brain research.


Morphological Complexity Magnetic Helicity Integral Geometry Vortex Tangle Dynamical System Analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham, R.H., Shaw, C.D.: Dynamics — the Geometry of Behavior. Addison-Wesley (1992)Google Scholar
  2. 2.
    Arns, C.H., Knackstedt, M.A., Pinczewski, W.V., Mecke, K.R.: Euler-Poincaré characteristics of classes of disordered media. Phys. Rev. E 63, 0311121–03111213 (2001)CrossRefGoogle Scholar
  3. 3.
    Arsuaga, J., Vazquez, M.E., McGuirk, P., Sumners, D.W., Roca, J.: DNA knots reveal chiral organization of DNA in phage capsids. Proc. National Academy of Sciences USA 102, 9165–9169 (2005)CrossRefGoogle Scholar
  4. 4.
    Badii, R., Politi, A.: Complexity. Cambridge Nonlinear Science Series 6. Cambridge University Press, Cambridge (1999)Google Scholar
  5. 5.
    Barenghi C.F., Ricca, R.L., Samuels D.C.: How tangled is a tangle? Physica D 157, 197–206 (2001)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bray, R.J., Cram, L.E., Durrant, C.J., Loughhead, R.E.: Plasma Loops in the Solar Corona. Cambridge University Press, Cambridge (1991)Google Scholar
  7. 7.
    Calladine, C.R., Drew, H.R.: Understanding DNA. Academic Press, London (1992)Google Scholar
  8. 8.
    Carmeliet, P., Tessier-Lavigne, M.: Common mechanisms of nerve and blood vessel wiring. Nature 436, 193–200 (2005)CrossRefGoogle Scholar
  9. 9.
    Chong, M.S., Perry, A.E., Cantwell, B.J.: A general classification of three-dimensional flow fields. Phys. Fluids A 2, 765–777 (1990)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Cozzarelli, N.R., Wang, J.C. (eds.): DNA Topology and Its Biological Effects. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1990)Google Scholar
  11. 11.
    Darcy, I.: Solving oriented tangle equations involving 4-plats. J. Knot Theory & Its Ramifications 14, 1007–1027 (2005)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    da Vinci, L.: Water Studies. Inventory of the Royal Library, Windsor Castle (circa 1508). [Also in: A Catalogue of the Drawings of Leonardo da Vinci. Second Edition, London (1968–69)]Google Scholar
  13. 13.
    De Gennes, P.G.: Introduction to Polymer Dynamics. Cambridge University Press, Cambridge (1990)Google Scholar
  14. 14.
    de Leon, M., Snider, D.A., Federoff, H. (eds.): Imaging and the Aging Brain. Annals of the New York Acad. Sci. 1097. Balckwell Publs., Boston, MA (2007)Google Scholar
  15. 15.
    Fabian, A.C., Johnstone, R.M., Sanders J.S., Conselice, C.J., Crawford, C.S., Gallagher III, J.S., Zweibel, E.: Magnetic support of the optical emission line filaments in NGC 1275. Nature 454, 968–970 (2008)CrossRefGoogle Scholar
  16. 16.
    Gareze, L., Harris, J.M., Barenghi, C.F., Tadmor, Y.: Characterising patterns of eye movements in natural images and visual scanning. J. Modern Optics 55, 533–555 (2008)CrossRefGoogle Scholar
  17. 17.
    Hauser, H., Hagen, H., Theisel, H. (eds.): Topology-based Methods in Visualization. Springer-Verlag, Heidelberg (2007)MATHGoogle Scholar
  18. 18.
    Hirsch, M.W., Smale, S., Devaney, R.L.: Differential Equations, Dynamical Systems & An Introduction to Chaos. Elsevier Academic Press, Amsterdam (2004)MATHGoogle Scholar
  19. 19.
    Jensen, H.J.: Self-Organized Criticality. Cambridge Lecture Notes in Physics 10. Cambridge University Press, Cambridge (1998)MATHGoogle Scholar
  20. 20.
    Kauffman, L.H., Lambropoulou, S.: Tangles, Rational Knots and DNA. In: Ricca, R.L. (ed.) Lectures on Topological Fluid Mechanics, pp. 101–147. Springer-CIME Lecture Notes in Mathematics. Springer-Verlag, Heidelberg (2009)Google Scholar
  21. 21.
    Ma, T., Wang, S.: Geometric Theory of Incompressible Flows with Applications to Fluid Dynamics. Mathematical Surveys and Monographs 119, American Mathematical Society (2005)Google Scholar
  22. 22.
    Mecke, K.R., Buchert, T., Wagner, H.: Robust morphological measures for large-scale structure in the Universe. Astron. & Astrophys. 288, 697–704 (1994)Google Scholar
  23. 23.
    Mecke, K.R., Stoyan, D. (eds.): Statistical Physics and Spatial Statistics. Lecture Notes in Physics, 554. Springer-Verlag, Heidelberg (2000)MATHGoogle Scholar
  24. 24.
    Nicolis, G., Prigogine, I.: Exploring Complexity. W.H. Freeman & Co., New York (1989)Google Scholar
  25. 25.
    Ricca, R.L. (ed.): An Introduction to the Geometry and Topology of Fluid Flows. NATO ASI Series II, 47. Kluwer, Dordrecht (2001)MATHGoogle Scholar
  26. 26.
    Ricca, R.L.: Structural complexity. In: Scott, A. (ed.) Encyclopedia of Nonlinear Science, 885–887. Routledge, New York and London (2005)Google Scholar
  27. 27.
    Ricca, R.L.: Momenta of a vortex tangle by structural complexity analysis. Physica D 237, 2223–2227 (2008)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Ricca, R.L.: Topology bounds energy of knots and links. Proc. R. Soc. A 464, 293–300 (2008)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Ricca, R.L.: Structural complexity and dynamical systems. In: Ricca, R.L. (ed.) Lectures on Topological Fluid Mechanics, pp. 179–199. Springer-CIME Lecture Notes in Mathematics. Springer-Verlag, Heidelberg (2009)Google Scholar
  30. 30.
    Sahni, V., Sathyaprakash, B.S., Shandarin, S.F.: Shapefinders: a new shape diagnostic for large-scale structure. Astrophysical J. 495, L5–8 (1998)CrossRefGoogle Scholar
  31. 31.
    Scott, Alwyn: Nonlinear Science. Oxford University Press, Oxford (2003)MATHGoogle Scholar
  32. 32.
    Song, C., Havlin, S., Makse, H.A.: Self-similarity of complex networks. Nature 433, 392–395 (2005)CrossRefGoogle Scholar
  33. 33.
    Sumners, D.W.: Random Knotting: Theorems, Simulations and Applications In: Ricca, R.L. (ed.) Lectures on Topological Fluid Mechanics, pp. 201–231. Springer-CIME Lecture Notes in Mathematics. Springer-Verlag, Heidelberg (2009)CrossRefGoogle Scholar
  34. 34.
    Van Dyke, M.: An Album of Fluid Motion. The Parabolic Press, Stanford (1982)Google Scholar
  35. 35.
    Vilanova, A., Zhang, S., Kindlmann, G., and Laidlaw, D.: An introduction to visualization of diffusion tensor imaging and its application. In: Weickert, J., Hagen, H. (eds.) Visualization and Processing of Tensor Fields, pp. 121–153. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  36. 36.
    Weickert, J., Hagen, H. (eds.): Visualization and Processing of Tensor Fields. Springer-Verlag, Heidelberg (2006)MATHGoogle Scholar
  37. 37.
    Wilkin, S.L., Barenghi, C.F., Shukurov, A.: Magnetic structures produced by small-scale dynamo. Phys. Rev. Lett. 99, 134501–134504 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milan 2009

Authors and Affiliations

  • Renzo L. Ricca
    • 1
    • 2
  1. 1.Dipartimento di Matematica ApplicataUniversità Milano-BicoccaMilanoItaly
  2. 2.Institute for Scientific InterchangeTorinoItaly

Personalised recommendations