Advertisement

Sclerosi multipla e varianti

  • Giancarlo Comi
  • Lucia Moiola

Riassunto

L’eziologia della sclerosi multipla (SM) rimane largamente sconosciuta, ma negli ultimi anni, grazie all’impressionante sviluppo della genetica, si sono fatti progressi importanti, anche se probabilmente solo iniziali, nell’individuazione dei fattori genetici che regolano l’esposizione alla malattia [1]. Un aspetto rilevante sta emergendo: il fenotipo sclerosi multipla è sicuramente il risultato di un’intricata interazione di disfunzioni interessanti diverse vie metaboliche ed immunitarie, per cui è lecito attendersi una certa variabilitá interindividuale della risposta a specifiche terapie. La risposta sará maggiore quando il target dell’intervento è molto selettivo come nelle vaccinazioni, mentre sará minore quando il bersaglio è una via ultima comune, come ad esempio la penetrazione della barriera ematoencefalica.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. 1.
    International Multiple Sclerosis Genetics Consortium, Hafler DA, Compston A, Sawcer S, et al. Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med. 2007; 357(9):851–862.CrossRefGoogle Scholar
  2. 2.
    Gold R, Buttgereit F, Toyka KV. Mechanism of action of glucocorticosteroid hormones: possible implications for therapy of neuroimmunological disorders. J. Neuroimmunol 2001; 117:1–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Rose AS, Kuzma JW et al. Cooperative study in the evaluation of therapy in Multiple Sclerosis: ACTH versus placebo: final report. Neurology 1970; 20:1–19.PubMedGoogle Scholar
  4. 4.
    Thompson AJ, Kennard C, Swash M et al. Relative efficacy of intravenous methylprednisolone and ACTH in the treatment of acute relapse in MS. Neurology 1989; 39:969–971.PubMedGoogle Scholar
  5. 5.
    Durelli L, Cocioto D, Riccio A et al. High-dose intravenous methylprednisolone in the treatment of multiple sclerosis: clinical-immunologic correlations. Neurology 1986; 36:238–243.PubMedGoogle Scholar
  6. 6.
    Sellebjerg F, Frederiksen JL, Nielsen PM and Olesen J. Double-blind, randomized, placebo-controlled study of oral, high-dose intravenous methylprednisolone in attacks of MS. Neurology 1998; 51:529–534.PubMedGoogle Scholar
  7. 7.
    Alam SM, Kyriakides T, Lawden M and Newman PK. Methylprednisolone in multiple sclerosis: a comparison of oral with intravenous therapy at equivalent high dose. J Neurol Neurosurg Psychiatry 1993; 56:1219–1220.PubMedCrossRefGoogle Scholar
  8. 8.
    Wenning GK, Wietholter H, Scnauder G et al. Recovery of the hypothalamic-pituitary-adrenal axis from suppression by short-term, high dose intravenous prednisolone therapy in patients with MS. Acta Neurol Scand 1994; 89:270–273.PubMedGoogle Scholar
  9. 9.
    Oliveri RL, Valentino P, Russo C et al. Randomized trial comparing two different high doses of methylprednisolone in MS: a clincal and MRI study. Neurology 1998; 50:1833–1836.PubMedGoogle Scholar
  10. 10.
    Cerisier A, Dacosta A et al. Accidents coronaires graves et bolus de corticoides. Mise au point a propos de trois nouvelles observations. Archives maladies du coeur et des vaisseaux 1997; 90(suppl. 9):1285–1288.Google Scholar
  11. 11.
    Filippini G, Brusaferri F, Sibley WA et al. Corticosteroids or ACTH for scute exacerbations in multiple sclerosis. Cochrane Database Syst Rev 2000; CD001331.Google Scholar
  12. 12.
    Dhib-Jalbut S. Mechanism of interferon beta action in multiple sclerosis. Mult Scler 1997; 3: 397–401.PubMedCrossRefGoogle Scholar
  13. 13.
    Arnason BG, Dayal A, Qu Z.X et al. Mechanism of action of interferon-beta in multiple sclerosis. Springer Semin Immunopathol 1996; 18:125–148.PubMedCrossRefGoogle Scholar
  14. 14.
    Stuve O, Dooley NP, Uhm JH et al. Interferon beta-1b decreases the migration of T lymphocytes in vitro: effects on matrix metalloproteinase-9. Ann Neurol 1996; 40: 853–863.PubMedCrossRefGoogle Scholar
  15. 15.
    Rudick RA, Ransohoff RM, Peppler R et al. Interferon beta induces interleukin 10 expression: relevance to multiple sclerosis. Ann Neurol 1996; 40:618–27.PubMedCrossRefGoogle Scholar
  16. 16.
    The IFNB SM Study Group. Interferon beta 1B is effective in relapsing remitting multiple sclerosis I. Clinical results of a multicenter, randomised, double-blind, placebo-controlled trial. Neurology 1993; 43:655–661.Google Scholar
  17. 17.
    Paty DW, Li DK for the UBC MS/RMI Study Group and the IFNB Multiple Sclerosis Study Group. Interferon beta 1B is effective in relapsing-remitting multiple sclerosis. II. RMI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 1993; 43:662–667.PubMedGoogle Scholar
  18. 18.
    Munafo A, Trinchard-Lugan II, Nguyen TX et al. Comparative pharmacokinetics and pharmacodynamics of recombinant human interferon beta-1a after intramuscular and subcutaneous administration. Eur J Neurol 1998; 5:187–193.PubMedCrossRefGoogle Scholar
  19. 19.
    Munafo A, Spertini F, et al. Pharmacodynamics responses to the IFN beta 1a administered subcutaneously once a week (qw) or three times a week (tiw), over one month. Mult Scler 1997; 3: 226.CrossRefGoogle Scholar
  20. 20.
    Jacobs LD, Cookfair DL, Rudick RA et al. Intramuscular Interferon Beta 1A for disease progression in relapsing multiple sclerosis. Ann Neurol 1996; 39: 285–294.PubMedCrossRefGoogle Scholar
  21. 21.
    PRISMS (Prevention of Relapses and Disability by Interferon B-1a Subcutaneously in Multiple Sclerosis) Study Group Randomised double blind placebocontrolled study of interferon β-1a in relapsing-remitting multiple sclerosis. Lancet 1998; 352:1498–504.CrossRefGoogle Scholar
  22. 22.
    Clanet M, Radue EW, Kappos L et al. A randomized, double-blind, dose-comparison study of weekly interferon β-1a in relapsing MS. Neurology 2002; 59:1507–1517.PubMedGoogle Scholar
  23. 23.
    The PRISMS Study Group and the University of British Columbia MS/RMI Analysis Group PRISMS-4: Long-term efficacy of interferon-beta-1a in relapsing MS. Neurology 2001;.56(12):1620.Google Scholar
  24. 24.
    Durelli L, Verdun E, Barbero P, et al. Every-other-day interferon beta-1b versus once-weekly interferon beta-1a for multiple sclerosis: results of a 2-year prospective randomised multicentre study (INCOMIN). Lancet 2002; 359: 1453–60.PubMedCrossRefGoogle Scholar
  25. 25.
    Panitch H, Goodin DS, Francis G et al. Randomized comparative study of interferon beta-1a treatment regimens in MS: the EVIDENCE trial. Neurology 2002; 59:1496–1506.PubMedGoogle Scholar
  26. 26.
    Witt PL, Storer BE, Bryan GT et al. Pharmacodynamics of biological response in vivo after single and multiple doses of interferon-beta. J Immunother 1993; 13:191–200.CrossRefGoogle Scholar
  27. 27.
    Sturzebecher S, Maibauer R, Heuner A et al. Pharmacodynamic comparison of single doses of IFN-beta1a and IFN-beta1b in healthy volunteers. J IFN Cytokine Res 1999;19:1257–1264.CrossRefGoogle Scholar
  28. 28.
    O’Connor et al. Interferon beta-1b 500mcg, interferon beta-1b 250 mcg and glatiramer acetate: primary outcomes of the Betaferon®/Betaseron® Efficacy Yielding Outcomes of a New Dose) study. Neurology 2008; Suppl: LBS.003.Google Scholar
  29. 29.
    Jacobs LD, Beck RW, Simon JH et al. Intramuscular interferon beta-1a therapy initiated during a first demyelinating event in multiple sclerosis. N Engl J Med 2000; 343:898–904.PubMedCrossRefGoogle Scholar
  30. 30.
    Comi G, Filippi M, Barkhof F. Effect of early interferon treatment on conversion to definite multiple sclerosis: a randomized study. Lancet 2001; 357:1576–1582.PubMedCrossRefGoogle Scholar
  31. 31.
    Comi G, Inglese M, De Stefano N et al. Brain volume changes in patients at presentation with suspected multiple sclerosis: results of the ETOMS study. Mult Scler 2002; 8 suppl 1: S10.Google Scholar
  32. 32.
    Kappos L, Freedman MS, Polman CH, et al and BENEFIT Study Group Effect of early versus delayed interferon beta-1b treatment on disability after a first clinical event suggestive of multiple sclerosis: a 3-year follow-up analysis of the BENEFIT study. Lancet 2007; 370(9585):389–397.PubMedCrossRefGoogle Scholar
  33. 33.
    Filippini G, Munari L, Incorvaia B et al. Interferons in relapsing remitting multiple sclerosis: a systematic review. Lancet 2003; 361:545–552.PubMedCrossRefGoogle Scholar
  34. 34.
    European study Group on interferon beta 1b in secondary progressive MS (1998) Placebo-controlled multicenter randomized trial of interferon beta 1b in the treatment of secondary progressive multiple sclerosis. Lancet 352:1491–1497.CrossRefGoogle Scholar
  35. 35.
    Miller DH, Molyneux PD, Barker GJ et al. Effect of interferon beta 1b on magnetic resonance imaging outcomes in secondary progressive multiple sclerosis: results of a European multicenter randomised, double-blind, placebo-controlled trial. Ann Neurol 1999; 46:850–859.PubMedCrossRefGoogle Scholar
  36. 36.
    Panitch H, Miller A, Paty D et al. and North American Study Group on Interferon beta-1b in Secondary Progressive MS Interferon beta-1b in secondary progressive MS: results from a 3-year controlled study. Neurology 2004; 63(10):1788–795.PubMedGoogle Scholar
  37. 37.
    Secondary Progressive Efficacy Clinical Trial of Recombinant Interferon beta-1a in MS (SPECTRISM) Study Group Randomized, controlled trial of Interferon beta-1a in Secondary Progressive MS: Clinical Results. Neurology 2001; 56:1496–504.Google Scholar
  38. 38.
    Cohen JA, Cutter GR, Fischer JS et al. Benefit of interferon beta-1a on MSFC progression in secondary progressive MS. Neurology 2002; 10, 59(5):679–687.PubMedGoogle Scholar
  39. 39.
    Leary SM, Miller DH, Stevenson VL et al. Interferon beta-1a in primary progressive MS: an exploratory, randomized, controlled trial. Neurology 2003; 60(1):44–51.PubMedGoogle Scholar
  40. 40.
    Montalban X. Overview of European pilot study of interferon beta-Ib in primary progressive multiple sclerosis. Mult Scler 2004; 10 Suppl 1:S62.CrossRefGoogle Scholar
  41. 41.
    Kivisäkk P, Alm GV, Fredrikson S, et al. Neutralizing and binding anti-interferon-beta (IFN-beta) antibodies. A comparison between IFN-beta-1a and IFNbeta-1b treatment in multiple sclerosis. Eur J Neurol 2000; 7(1):27–34.PubMedCrossRefGoogle Scholar
  42. 42.
    Malucchi S, Sala A, Gilli F et al. Neutralizing antibodies reduce the efficacy of betaIFN during treatment of multiple sclerosis. Neurology 2004; 62(11):2031–2037.PubMedGoogle Scholar
  43. 43.
    McKeage K, Wagstaff AJ. Subcutaneous interferon-beta-1a: new formulation. CNS Drugs 2007; 21(10):871–876.PubMedCrossRefGoogle Scholar
  44. 44.
    Malucchi S, Gilli F, Caldano M et al Predictive markers for response to interferon therapy in patients with multiple sclerosis.Neurology 2008; 70:1119–1127.PubMedCrossRefGoogle Scholar
  45. 45.
    Arnon R. The development of COP 1 (Copaxone), an innovative drug for the treatment of multiple sclerosis: personal reflections. Immunology letters 1996; 50:1–15.PubMedCrossRefGoogle Scholar
  46. 46.
    Arnon R & Teiltelbaum D. Desensitization of experimental allergic encephalomyelitis with syntetic peptides analogues. In Davison AN & Cuzner ML (eds). The suppression of experimental Allergic Encephalomyelitis and Multiple Sclerosis; Academic Press, New York 1980:105–117.Google Scholar
  47. 47.
    Teitelbaum D, Aharoni R, Arnon R et al. Specific inhibition of the T cell response to myelin basic protein by the synthetic copolymer GA. Proc Natl Acad Sci USA 1988; 85:9724–9728.PubMedCrossRefGoogle Scholar
  48. 48.
    Sela M, Arnon R, Teitelbaum D. Suppressive activity of GA in EAE and its relevance to multiple sclerosis. Bull Inst Pasteur 1990; 88:303–314.Google Scholar
  49. 49.
    Duda PW, Schmied MC, Cook SL et al. Glatiramer acetate (Copaxone ®) induces degenerate, Th2-polarized immune responses in patients with multiple sclerosis. J Clin Invest 2000; 105:967–976.PubMedCrossRefGoogle Scholar
  50. 50.
    Wekerle H, Linington C, Lassmann H et al. Cellular immune reactivity within the CNS. Trends Neurosci 1986; 9:271–277.CrossRefGoogle Scholar
  51. 51.
    Krogsgaard M, Wucherpfenning KW, Canella B et al. Visualization of myelin basic protein (MBP) T cell epitopes in multiple sclerosis lesions using a monoclonal antibody specific for the human histocompatibility leukocyte antigen (HLA)-DR2-MBP 85-99 complex. J Exp Med 2000; 191:1395–1412.PubMedCrossRefGoogle Scholar
  52. 52.
    Kipnis J, Yoles E, Porat Z et al. T cell immunity to copolymer 1 confers neuroprotection on the damaged optic nerve: possible therapy for optic neuropathies. Proc Natl Acad Sci USA 2000; 97:7446–451.PubMedCrossRefGoogle Scholar
  53. 53.
    Kerschensteiner M, Gallmeier E, Behrens L et al Activated human T cells, B cells, and monocytes produce brain-derived neurotrofic factor (BDNF) in vitro and in brain lesions: a neuroprotective role of inflammation? J Exp Med 1999; 189:865–870.PubMedCrossRefGoogle Scholar
  54. 54.
    Besser M, Vank R. Clonally restricted production of the neurotrophins brain-derived neurotrofic factor and neurotrophin-3 RMNA by human immune cells and Th1/Th2-polarized expression of their receptors. J Immunol 1999; 162:6303–6306.PubMedGoogle Scholar
  55. 55.
    Aharoni R, Teitelbaum D, Sela M et al. Copolymer 1 induces T cells of the T helper type 2 that crossreact with myelin basic protein and suppress experimental autoimmune encephalomyelitis. Proc Natl Acad Sci 1997; 94:10821–10826.PubMedCrossRefGoogle Scholar
  56. 56.
    Aharoni R, Teitelbaum D, Sela M et al. Bystander suppression of experimental autoimmune encephalomyelitis by T cell lines and clones of the Th2 type induced by copolymer 1. J Neuroimmunol 1998; 91:135–146.PubMedCrossRefGoogle Scholar
  57. 57.
    Neuhaus O, Farina C, Wekerle H et al. Mechanisms of action of glatiramer acetate in multiple sclerosis. Neurology 2001; 56:702–708.PubMedGoogle Scholar
  58. 58.
    Bornstein MB, Miller A, Teitelbaum D et al. Multiple Sclerosis: trial of a synthetic polypeptide. Ann Neurol 1982; 11:317–319.PubMedCrossRefGoogle Scholar
  59. 59.
    Bornstein MB, Miller A, Slagle S et al. A pilot trial of COP 1 in exacerbating-remitting multiple sclerosis. New Engl J Med 1987; 317:408–414.PubMedGoogle Scholar
  60. 60.
    Johnson KP, Brooks BR, Cohen JA et al. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of the phase III multicenter, double blind, placebo-controlled trial. Neurology 1995; 45:1269–1276.Google Scholar
  61. 61.
    Johnson KP, Brooks BR, Cohen JA et al. Extended use of copolymer 1 maintains clinical effect on multiple sclerosis relapse rate and degree of disability. Neurology 1998; 50:701–708.PubMedGoogle Scholar
  62. 62.
    Ford CC, Johnson KP, Lisak RP et al A prospective open-label study of glatiramer acetate: over a decade of continuous use in multiple sclerosis patients. Mult Scler 2006; 12:309–320.PubMedCrossRefGoogle Scholar
  63. 63.
    Comi G, Filippi M, Wolinsky JS and the European/Canadian Glatiramer Acetate Study Group European/Canadian multicenter, double-blind, randomized, placebo-controlled study of the effects of glatiramer acetate on magnetic resonance imaging-measured disease activity and burden in patients with relapsing multiple sclerosis. Ann Neurol 2001; 49(3):290–297.PubMedCrossRefGoogle Scholar
  64. 64.
    Wolinsky JS, Comi G, Filippi M et al. Copaxone’s effect on RMI measured disease activity in relapsing remitting MS is reproducible and sustained. Neurology 2002; 59:1284–1286.PubMedGoogle Scholar
  65. 65.
    Rovaris M, Comi G, Rocca MA, Wolinsky JS, Filippi M and the European/Canadian Glatiramer acetate study group Short-term brain volume changes in relapsingremitting multiple sclerosis. Effect of glatiramer acetate and implications. Brain 2001; 124:1803–1812.PubMedCrossRefGoogle Scholar
  66. 66.
    Filippi M, Rovaris M, Rocca MA, Sormani MP, Wolinsky JS, Comi G and the European/Canadian Glatiramer Acetate Study Group Glatiramer acetate reduces the proportion of new SM lesions evolving into black holes. Neurology 2001; 57:731–733.PubMedGoogle Scholar
  67. 67.
    Schwartz SM. A protective player in the vascular response to injury. Nature Medicine (News and Views) 2001; 7:656–657.CrossRefGoogle Scholar
  68. 68.
    Giancarlo Comi and Massimo Filippi for the PreCISe study group. Treatment with glatiramer acetate delays conversion to clinically definite multiple sclerosis (CDMS) in patients with clinically isolated syn-dromes (CIS). Neurology 2008;70 Suppl 2 (in press): LBS.003.Google Scholar
  69. 69.
    Coyle P, Barkhof F, Chang P et al. Immunogenicity, tolerability and patient disposition in a randomized, assessor-blinded, multicenter study of Interferon beta-1a and Glatiramer Acetate in patients with relapsing-remitting multiple sclerosis: results from the REGARD study. Neurology 2008; 70 suppl 1:S02.006.Google Scholar
  70. 70.
    Bornstein MB, Miller A, Slagle S et al. A placebo-controlled, double-blind, randomized, two-center, pilot trial of Cop 1 in chronic progressive multiple sclerosis. Neurology 1991; 41(4):533–9.PubMedGoogle Scholar
  71. 71.
    Wolinsky JS, Narayana PA, O’Connor P et al. Glatiramer acetate in primary progressive multiple sclerosis: results of a multinational, multicenter, double-blind, placebo-controlled trial. Ann Neurol 2007; 61(1):14–24.PubMedCrossRefGoogle Scholar
  72. 72.
    Korczyn AD & Nisipeanu P. Safety profile of copolymer 1: analysys of cumulative experience in the United States and Israel. J Neurol 1996; 243 (suppl 1): S23–S26.PubMedCrossRefGoogle Scholar
  73. 73.
    Teitelbaum D, Brenner T, Abramsky O et al. Antibodies to glatiramer acetate do not interfere with its biological functions and therapeutic efficacy. Mult Scler 2003; 9(6):592–599.PubMedCrossRefGoogle Scholar
  74. 74.
    Rodriguez M, Lennon VA. Immunoglobulins promote remyelination in the central nervous system. Ann Neurol 1990;27:12–17.PubMedCrossRefGoogle Scholar
  75. 75.
    Dwyer JM. Manipulating the immune system with immune globulin. N Engl J Med 1992; 326:107–116.PubMedGoogle Scholar
  76. 76.
    Achiron A, Pras E, Gilad R et al. Open controlled therapeutic trial of intravenous immune globulin relapsing remitting Multiple Sclerosis. Arch Neurol 1992; 49:1233–1236.PubMedGoogle Scholar
  77. 77.
    Fazekas F, Deisenhammer F, Strasser-Fuchs et al. Randomized placebo-controlled trial of monthly intravenous immunoglobulin therapy in relapsing-remitting multiple sclerosis. Lancet 1997; 349:589–593.PubMedCrossRefGoogle Scholar
  78. 78.
    Lewanska M, Siger-Zajdel M, Selmaj K. No difference in efficacy of two different doses of intravenous immunoglobulins in MS: clinical and MRI assessment. Eur J Neurol 2002;9:565–572.PubMedCrossRefGoogle Scholar
  79. 79.
    Sorensen PS, Wanscher B, Jensen CV et al. Intravenous immunoglobulin G reduces MRI activity in relapsing multiple sclerosis. Neurology 1998; 50:1273–1281.PubMedGoogle Scholar
  80. 80.
    Sorensen PS, Fazekas F, Lee M. Intravenous immunoglobulin G for the treatment of relapsing-remitting multiple sclerosis: a meta analysis. Eur J Neurol 2002;9; 557–563.PubMedCrossRefGoogle Scholar
  81. 81.
    Haas J, Maas-Enriquez M, Hartung HP. Intravenous immunoglobulins in the treatment of relapsing remitting multiple sclerosis — results of a retrospective multicenter observational study over five years. Mult Scler 2005;11:562–567.PubMedCrossRefGoogle Scholar
  82. 82.
    Fazekas F, Sørensen PS, Filippi M et al. MRI results from the European Study on Intravenous Immunoglobulin in Secondary Progressive Multiple Sclerosis (ESIMS). Mult Scler. 2005; 11(4):433–440.PubMedCrossRefGoogle Scholar
  83. 83.
    Pöhlau D, Przuntek H, Sailer M et al. Intravenous immunoglobulin in primary and secondary chronic progressive multiple sclerosis: a randomized placebo controlled multicentre study. Mult Scler. 2007; 13(9):1107–1117.PubMedCrossRefGoogle Scholar
  84. 84.
    Achiron A, Kishner I, Sarova-Pinhas I et al. Intravenous immunoglobulin treatment following the first demyelinating event suggestive of multiple sclerosis: a randomized, double-blind, placebo-controlled trial. Arch Neurol 2004; 61:1515–1520.PubMedCrossRefGoogle Scholar
  85. 85.
    Dudesek A, Zettl UK. Intravenous immunoglobulins as therapeutic option in the treatment of multiple sclerosis. J Neurol. 2006; 253 Suppl 5:V50–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Achiron A, Kishner I, Dolev M et al. Effect of intravenous immunoglobulin treatment on pregnancy and postpartum-related relapses in multiple sclerosis. J Neurol 2004; 251:1133–1137.PubMedCrossRefGoogle Scholar
  87. 87.
    Spina CA. Azathioprine as an immune modulating drug: clinical applications. Clin Immunol 1984; All 4:415–446.CrossRefGoogle Scholar
  88. 88.
    Yudkin PL, Ellison GW, Ghezzi A et al. Overview of azathioprine treatment in multiple sclerosis. Lancet 1991; 338:1051–1055.PubMedCrossRefGoogle Scholar
  89. 89.
    Palace J, Rotwell P New treatments and azathioprine in multiple sclerosis. Lancet 1997; 350:261.PubMedCrossRefGoogle Scholar
  90. 90.
    British and Dutch Multiple Sclerosis Azathioprine Trial Group. Double-masked trial of azathioprine in multiple sclerosis. Lancet 1988; 2:179–183.Google Scholar
  91. 91.
    Casetta I, Iuliano G, Filipppini G. Azathioprine for multiple sclerosis. Cochrane Database Syst Rev. 2007; (4):CD003982.Google Scholar
  92. 92.
    Ventre JJ, Guillot M, Confavreux C et al. Side effects of azathioprine (Imurel). Apropos of 313 patients treated for multiple sclerosis. Review of the literature Therapie 1985; 40:195–202.Google Scholar
  93. 93.
    La Mantia L, Mascoli N, Milanese C. Safety profile in multiple sclerosis patients. Neurol Sci. 2007; 28(6):299–303.PubMedCrossRefGoogle Scholar
  94. 94.
    Weinblatt ME, Kaplan H, Germain BF et al. Methotrexate in rheumatoid arthritis. A five year prospective multicenter study. Arthr Rheum 1994;37: 1492–1498.CrossRefGoogle Scholar
  95. 95.
    Currier RD, Haerer AF, Meydrech EF et al Low dose oral methotrexate treatment of multiple sclerosis: a pilot study. J Neurol Neurosurg Psychiatry 1993; 56:1217–1218.PubMedCrossRefGoogle Scholar
  96. 96.
    Goodkin DE, Rudick RA, Vanderbrug-Medendorp S et al. Low-dose (7,5 mg) oral methotrexate reduces the rate of progression in chronic progressive multiple sclerosis. Ann Neurol 1995; 37:30–40.PubMedCrossRefGoogle Scholar
  97. 97.
    Goodkin DE, Rudick RA, Vanderbrug-Medendorp S et al. Low dose oral methotrexate in chronic progressive multiple sclerosis. Neurology 1996; 47:1153–1157.PubMedGoogle Scholar
  98. 98.
    Olek MJ, Hohol MD, Weiner HL et al. Methotrexate in the treatment of multiple sclerosis. [Letter] Ann Neurol 1996; 39:684.PubMedCrossRefGoogle Scholar
  99. 99.
    Moody DJ, Fahey JL, Grable E et al. Administration of monthly pulses of cyclophosphamide in multiple sclerosis patients. Delayed recovery of several immune parameters following discontinuation of longterm cyclophosphamide treatment. J Neuroimmunol 1987;14(Suppl 2):175–182.PubMedCrossRefGoogle Scholar
  100. 100.
    Carter JL, Hafler DA, Dawson DM et al. Immunosuppression with high-dose IV cyclophosphamide and ACTH in progressive multiple sclerosis: cumulative 6-year experience in 164 patients. Neurology 1988; 38 (Suppl 2):9–14.PubMedGoogle Scholar
  101. 101.
    Hauser SL, Dawson DM, Lehrich JR et al. Intensive immunosuppression in progressive multiple sclerosis. A randomized, three-arm study of high dose intravenous cyclophosphamide, plasma exchange and ACTH. N Engl J Med 1983; 308:173–180.PubMedGoogle Scholar
  102. 102.
    The Canadian Cooperative Multiple Sclerosis Study Group The Canadian cooperative trial of cyclophospamide and plasma exchange in progressive multiple sclerosis. Lancet 1991; 337:441–446.Google Scholar
  103. 103.
    Weiner HL, Mackin GA, Orav E et al. Intermittent cyclophosphamide pulse therapy in progressive multiple sclerosis: final report of the Northeast Cooperative Multiple Sclerosis Treatment Group. Neurology 1993; 43:910–918.PubMedGoogle Scholar
  104. 104.
    Zephir H, De Seze J, Duhamel A et al. Treatment of progressive forms of multiple sclerosis by cyclophosphamide: a cohort study of 490 patients. J Neurol Sci 2004; 218:73–77.PubMedCrossRefGoogle Scholar
  105. 105.
    Weiner HL and Cohen JA. Treatment of multiple sclerosis with cyclophosphamide: critical review of clinical and immunological effects. Mult Scler 2002; 8:142–154.PubMedCrossRefGoogle Scholar
  106. 106.
    Perini P, Calabrese M, Rinaldi L et al. The safety profile of cyclophosphamide in multiple sclerosis therapy. Expert Opin Drug Saf. 2007;6(2):183–190.PubMedCrossRefGoogle Scholar
  107. 107.
    Fidler JM, Dejoy SQ et al. Selective immunomodulation by the antineoplastic agent mitoxantrone. I Suppression of B lymphocyte function. J Immunol 1986; 137:727–732.PubMedGoogle Scholar
  108. 108.
    Fidler JM, Dejoy SQ, Smith FR et al. Selective immunomodulation by the antineoplastic agent mitoxantrone. II Nonspecific adherent suppressor cells derived from mitoxantrone. J Immunol 1986b; 136:2747–2754.PubMedGoogle Scholar
  109. 109.
    Edan G, Miller D, Clanet M et al. Therapeutic effect of mitoxantrone combined with methylprednisolone in multiple sclerosis: a randomised multicentre study of active disease using MRI and clinical criteria. J Neurol Neurosurg Psychiatry 1997; 62(2):112–118.PubMedCrossRefGoogle Scholar
  110. 110.
    Millefiorini E, Gasperini C, Pozzilli C et al. Randomized placebo-controlled trial of mitoxantrone in relapsing-remitting multiple sclerosis: 24 month clinical and RMI outcome. J Neurol 1997; 244:153–159.PubMedCrossRefGoogle Scholar
  111. 111.
    Hartung HP, Gonsette R, Kwiecinski H et al. Mitoxantrone in progressive multiple sclerosis: a placebocontrolled, double-blind, randomized, multicenter trial. Lancet 2002; 360(9350):2018–2025.PubMedCrossRefGoogle Scholar
  112. 112.
    Rodegher M, Esposito F, Radaelli M, Moiola L, Rocca M, Straffi L, Martinelli Boneschi F, Martinelli V, Filippi M, Comi G. Clinical and neuroradiological response to mitoxantrone in a large group of multiple sclerosis patients. J Neurol 2007; 254 (suppl 3): O217.Google Scholar
  113. 113.
    Gonsette RE. Mitoxantrone in progressive multiple sclerosis: when and how to treat? J Neurol Sci 2003;206:203–208.PubMedCrossRefGoogle Scholar
  114. 114.
    Neuhaus O, Kieseier BC and Hartung HP. Therapeutic role of mitoxantrone in multiple sclerosis. Pharmacol Ther. 2006; 109:198–209.PubMedCrossRefGoogle Scholar
  115. 115.
    Jammohammed R, Milligan DW. Mitoxantrone induced congestive heart failure in patients previously treated with anthracyclines. Br J Haematol 1989; 71:292–293.CrossRefGoogle Scholar
  116. 116.
    Gonsette RE. Mitoxantrone immunotherapy in multiple sclerosis. Mult Scler 1996; 1: 329–332.PubMedGoogle Scholar
  117. 117.
    Voltz R, Starck M, Zingler V et al. Mitoxantrone therapy in multiple sclerosis and acute leukaemia: a case report out of 644 treated patients. Mult Scler 2004; 10: 472–474.PubMedCrossRefGoogle Scholar
  118. 118.
    Beutler E Cladribine (2-chlorodeoxyadenosine). Lancet 1992; 340:952–56.PubMedCrossRefGoogle Scholar
  119. 119.
    Sipe JC, Romine J, Koziol JA et al. Cladribine in treatment of chronic progressive multiple sclerosis. Lancet 1994; 344:9–13.PubMedCrossRefGoogle Scholar
  120. 120.
    Rice GPA, Filippi M, Comi G, and Cladribrine MRI Study Group. Cladribine and progressive MS: clinical and MRI outcomes of a multicenter controlled trial. Neurology 2000; 54:1145–1155.PubMedGoogle Scholar
  121. 121.
    Filippi M, Rovaris M, Rice GPA et al. The effect of Cladribrine on T1 “black hole” changes in progressive. MS J Neurol Sci 2000; 176:42–44.CrossRefGoogle Scholar
  122. 122.
    Wagner S, Adams H, Sobel DF et al. New hypointense lesions on RMI in relapsing-remitting multiple sclerosis patients. Eur Neurol 2000; 43(4):194–200PubMedCrossRefGoogle Scholar
  123. 123.
    Brousil JA, Roberts RJ, Schlein AL. Cladribine: an investigational immunomodulatory agent for multiple sclerosis. Ann Pharmacother. 2006; 40(10):1814–1821.PubMedCrossRefGoogle Scholar
  124. 124.
    Kappos L, Antel J, Comi G, et al. Oral fingolimod (FTY 720) for relapsing multiple sclerosis. N Engl J Med 2006; 355:1124–1140.PubMedCrossRefGoogle Scholar
  125. 125.
    Comi G, O’Connor P, Montalban X et al. Oral FTY720 (Fingolimod) in patients with relapsing multiple sclerosis. 3-year extension shows sustained low relapses rate and MRI activity. Neurology 2008; 70 (suppl 1): S12.005.Google Scholar
  126. 126.
    Muraro PA, Bielekova B. Emerging therapies for Multiple Sclerosis. Neurotherapeutics 2007; 4:676–692.PubMedCrossRefGoogle Scholar
  127. 127.
    Sheremata WA, Vollmer TL, Stone LA et al. A safety and pharmacokinetic study of intravenous natalizumab in patients with MS. Neurology 1999; 52(5):1072–1074.PubMedGoogle Scholar
  128. 128.
    Polman CH, O’Connor PW, Havrdova E et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 2006; 354: 899–910.PubMedCrossRefGoogle Scholar
  129. 129.
    Rudick RA, Stuart WH, Calabresi PA et al. Natalizumab plus interferon beta-1a for relapsing multiple sclerosis. N Engl J Med 2006; 354:911–923.PubMedCrossRefGoogle Scholar
  130. 130.
    Koralnik IJ. New insights into progressive multifocal leukoencephalopathy. Curr Opin Neurol 2004; 17:365–370.PubMedCrossRefGoogle Scholar
  131. 131.
    Yousry TA et al. Evaluation of patients treated with natalizumab for progressive multifocal leukoencephalopathy. N Eng J Med 2006; 354:924–933.CrossRefGoogle Scholar
  132. 132.
    Calabresi PA, Giovannoni G, Confavreux C et al and AFFIRM and SENTINEL Investigators The incidence and significance of anti-natalizumab antibodies: results from AFFIRM and SENTINEL. Neurology 2007; 69(14):1391–1403.PubMedCrossRefGoogle Scholar
  133. 133.
    Coles AJ, Cox A, Le Page E, et al. The window of therapeutic opportunity in multiple sclerosis: evidence from monoclonal antibody therapy. J Neurol 2006; 253:98–108.PubMedCrossRefGoogle Scholar
  134. 134.
    Jones JL, Coles AJ. Campath-1H treatment of multiple sclerosis. Neurodegener Dis. 2008;5(1):27–31.PubMedCrossRefGoogle Scholar
  135. 135.
    Rastetter W, Molina A, White CA. Rituximab: expanding role in therapy for lymphomas and autoimmune diseases. Annu Rev Med 2004; 55:477–503.PubMedCrossRefGoogle Scholar
  136. 136.
    Cross AH, Stark JL, Lauber J et al. Rituximab reduces B cells and T cells in cerebrospinal fluid of multiple sclerosis patients. J Neuroimmunol 2006;.180:63–70.PubMedCrossRefGoogle Scholar
  137. 137.
    Pelosini M, Focosi D, Rita F et al. Progressive multifocal leukoencephalopathy: report of three cases in HIV-negative hematological patients and review of literature. Ann Hematol. 2008; 87(5):405–412.PubMedCrossRefGoogle Scholar
  138. 138.
    Bielekova B, Richert N, Howard T, et al. Humanized anti-CD25 (daclizumab) inhibits disease activity in multiple sclerosis patients failing to respond to interferon-beta. Proc Natl Acad Sci USA 2004; 101:8705–8708.PubMedCrossRefGoogle Scholar
  139. 139.
    Rose JW, Watt HE, White AT, Carlson NG. Treatment of multiple sclerosis with an anti-interleukin-2 receptor monoclonal antibody. Ann Neurol 2004; 56:4–867.CrossRefGoogle Scholar
  140. 140.
    Kaufman MD, Wynn DR, Montalban X et al. A phase 2 randomized, double-blinded, placebo-controlled, multicenter study of subcutaneous Daclizumab, a humanized anti-CD-25 monoclonal antibody in patients with active, relapsing forms of multiple sclerosis — week 44 results. Neurology 2008; 70 suppl 1:PL01.003.Google Scholar
  141. 141.
    Muraro PA, Martin R. Immunological questions on hematopoietic stem cell transplantation for multiple sclerosis. Bone Marrow transplantation 2003; 32:S41–S4.PubMedCrossRefGoogle Scholar
  142. 142.
    Muraro PA, Douek DC. Renewing the T cell repertoire to arrest autoimmune aggression Trends in Immunology 2006; 27:61–67.PubMedCrossRefGoogle Scholar
  143. 143.
    Saccardi R, Kozak T, Bocelli-Tyndall C et al and Autoimmune Diseases Working Party of EBMT Autologous stem cell transplantation for progressive multiple sclerosis: update of the European Group for Blood and Marrow Transplantation autoimmune diseases working party database. Mult Scler 2006; 12(6):814–823.PubMedCrossRefGoogle Scholar
  144. 144.
    Capello E, Saccardi R, Murialdo A et al and Italian GITMO-Neuro Intergroup on ASCT for Multiple Sclerosis Intense immunosuppression followed by autologous stem cell transplantation in severe multiple sclerosis. Neurol Sci 2005; 26 Suppl 4:S200–S203.PubMedCrossRefGoogle Scholar
  145. 145.
    Le Page E, Comi G, Filippi M et al. Comparison of two therapeutic strategies in aggressive relapsing-remitting MS: Mitoxantrone as induction for 6 months followed by interferon-β-1b versus interferon-ß-1b. A 3-year randomized trial. Neurology 2008;70 Suppl 1:S22.004.Google Scholar
  146. 146.
    Gold R Combination therapies in multiple sclerosis. J Neurol. 2008; 255 Suppl 1:51–60.PubMedCrossRefGoogle Scholar
  147. 147.
    Smith DR, Weinstock-Guttman B, Cohen JA et al. A randomized blinded trial of combination therapy with cyclophosphamide in patients-with active multiple sclerosis on interferon beta. Mult Scler 2005;11(5):573–582.PubMedCrossRefGoogle Scholar
  148. 148.
    O’Connor PW, Li D, Freedman MS et al. A Phase II study of the safety and efficacy of teriflunomide in multiple sclerosis with relapses Neurology 2006; 28, 66(6):894–900.CrossRefGoogle Scholar
  149. 149.
    Weinshenker BG. Natural history of multiple sclerosis. Ann Neurol 1994; 36 Suppl: S6–11.CrossRefGoogle Scholar
  150. 150.
    Runmarker B, Andersen O. Prognostic factors in a multiple sclerosis incidence cohort with twenty-five years of follow-up. Brain 1993; 116:117–134.PubMedCrossRefGoogle Scholar
  151. 151.
    Filippi M, Horsfield MA, Morissey SP et al. Quantitative brain RMI lesion load predicts the course of clinically isolated syndromes suggestive of multiple sclerosis. Neurology1994; 44:4, 635–641.PubMedGoogle Scholar
  152. 152.
    Riordan JI, Thompson AJ, Kingsley PE et al. The prognostic value of brain RMI in clinically isolated syndromes of the CNS. A 10-year follow-up. Brain 1998; 121: 495–503.CrossRefGoogle Scholar
  153. 153.
    Brex PA, O’ Riordan JI, Miszkiel KA et al. Multisequence RMI in clinically isolated syndromes and the early development of SM. Neurology 1999; 53: 1184–1190.PubMedGoogle Scholar
  154. 154.
    Sciacca FL, Ferri C, Vandenbroeck K et al. Relevance of interleukin 1 receptor antagonist intron 2 polymorphism in Italian SM. Neurology 1999; 52: 1896–1898.PubMedGoogle Scholar
  155. 155.
    Fukazawa T, Yanagawa T, Kikuchi S et al. CTLA-4 gene polymorphism may modulate disease in Japanese multiple sclerosis patients.J Neurol Sci 1999; 171:1, 49–55.PubMedCrossRefGoogle Scholar
  156. 156.
    Yu BM, Johnson MJ, Tuohy VK. A predictable sequential determinant spreading cascade invariably accompanies progression of experimental autoimmune encephalomylitis: a basis for peptide-specific therapy after onset of clinical disease. J Exp Med 1996; vol. 183: 1777–1788.PubMedCrossRefGoogle Scholar
  157. 157.
    Thuoy VK, Weinstock-Guttman B, Kinkel RP. Diversity and plasticity of self recognition during the development of multiple sclerosis. J Clin Invest 1997; 99:1682–1690.CrossRefGoogle Scholar
  158. 158.
    Balashov KE, Smith DR, Khoury SJ et al. Increased interleukin 12 production in progressive multiple sclerosis: induction by activated CD4+ T cells via CD40 ligand. Proc Natl Acad Sci 1997; USA 94: 599–603.PubMedCrossRefGoogle Scholar
  159. 159.
    Whitaker JN, Beverly AL, Bartolucci AA et al (1999) Urinary myelin basic-protein-like material in patients with multiple sclerosis durin IFN beta-1b treatment. Arch Neurol 1999; 56: 687–691.PubMedCrossRefGoogle Scholar
  160. 160.
    Lucchinetti CF, Bruck W, Rodriguez M et al. Distinct patterns of multiple sclerosis pathology indicates heterogeneity on pathogenesis. Brain Pathol 1996; 6: 259–274.PubMedCrossRefGoogle Scholar
  161. 161.
    Lassmann H. Neuropathology in multiple sclerosis: new concepts. Mult Scler 1998; 4(3):93–98.PubMedGoogle Scholar
  162. 162.
    Tourbah A, Stievenart JL, Gout O et al. Localized proton magnetic resonance spectroscopy in relapsing remitting versus secondary progressive multiple sclerosis. Neurology 1999; 22 53(5):1091–1097.Google Scholar
  163. 163.
    Matthews PM, De Stefano N, Narayanan S et al. Putting magnetic resonance spectroscopy studies in context: axonal damage and disability in multiple sclerosis. Semin Neurol 1998; 18(3):327–336.PubMedCrossRefGoogle Scholar
  164. 164.
    Rocca MA, Mastronardo G, Rodegher M et al. Longterm changes of magnetization transfer-derived meas-ures from patients with relapsing-remitting and secondary progressive multiple sclerosis. AJNR Am J Neuroradiol 1999; 20(5):821–827.PubMedGoogle Scholar
  165. 165.
    Filippi M, Rocca MA, Minicucci L et al. Magnetization transfer imaging of patients with definite SM and negative conventional RMI. Neurology 1999; 10 52(4):845–848.Google Scholar
  166. 166.
    Filippi M, Campi A, Colombo B et al. A spinal cord RMI study of benign and secondary progressive multiple sclerosis. J Neurol 1996; 243 (7):502–505.PubMedCrossRefGoogle Scholar
  167. 167.
    Rudick RA, Fisher E, Lee JC et al. Use of the brain parenchymal fraction to measure whole brain atrophy in relapsing-remitting MS. Multiple Sclerosis Collaborative Research Group Neurology 1999 53(8):1698–1704.Google Scholar
  168. 168.
    Dastidar P, Heinonen T, Lehtimaki T et al. Volumes of brain atrophy and plaques correlated with neurological disability in secondary progressive multiple sclerosis. J Neurol Sci 1999; 1 165(1):36–42.CrossRefGoogle Scholar
  169. 169.
    Van Waesberghe JH, Kampphorst W, De Groot CJ et al. Axonal loss in multiple sclerosis lesions: magnetic resonance imaging insihights into substrates of disability. Ann Neurol 1999; 46:747–754.PubMedCrossRefGoogle Scholar
  170. 170.
    Beck RW, Cleary PA, Trobe JD et al (1993) The effect of corticosteroids for acute optic neuritis on the subsequent development of multiple sclerosis. N Engl J Med 1993; 329:1764–1769.PubMedCrossRefGoogle Scholar
  171. 171.
    The Once Weekly IFN for SM Study Group. Evidence of Interferon Beta 1a dose response in relapsing-remitting MS: The OWIMS study. Neurology 1999; 53:679–686.Google Scholar
  172. 172.
    Ghezzi A, Pozzilli C, Liguori M et al. Prospective study of multiple sclerosis with early onset. Mult Scler 2002; 8:115–118.PubMedCrossRefGoogle Scholar
  173. 173.
    Simone IL, Carrara D, Tortorella C et al. Course and prognosis in early-onset MS: comparison with adult onset forms. Neurology 2002; 59:1922–1928.PubMedGoogle Scholar
  174. 174.
    Mikaeloff Y, Moreau T, Debouverie M. et al. Interferon-beta treatment in patients with childhood-onset multiple sclerosis. Journal of Pediatrics 2001; 139:443–446.PubMedCrossRefGoogle Scholar
  175. 175.
    Kornek B, Bernert G, Ballassy C. Glatiramer Acetate treatment in patients with Childhood and juvanile onset Multiple Sclerosis Neuropediatrics 2003; 34:120–125.Google Scholar
  176. 176.
    Ghezzi A. Immunomodulatory Treatment of Early Onset MS (ITEMS) Group. Immunomodulatory treatment of early onset multiple sclerosis: results of an Italian Co-operative Study. Neurol Sci 2005; 26 Suppl 4:S183–S186.PubMedCrossRefGoogle Scholar
  177. 177.
    Ghezzi A, Amato MP, Capobianco et al and ITEMS. Treatment of early onset multiple sclerosis with intramuscoular interferon beta 1a: long-term results. Neurol Sci 2007; Jun; 28(3):127–132.PubMedCrossRefGoogle Scholar
  178. 178.
    Wingerchuk DM, Hogancamp WF, O’Brien PC et al. The clinical course of neuromyelitis optica (Devic’s syndrome). Neurology 1999; 53: 1107–1114.PubMedGoogle Scholar
  179. 179.
    De Seze J, Stoikovic T, Ferriby D et al. Devic’s neuromyelitis optica: clinical, laboratory RMI and outcome profile. J Neurol Sci 2002; 197: 57–61.PubMedCrossRefGoogle Scholar
  180. 180.
    Mandler RN, Ahmed W, Dencoff JE (1998) Devic’s neureomyelitis optica: a prospective study of seven patients treated with prednisolone and azatioprine. Neurology 1998; 51:1219–1220.PubMedGoogle Scholar
  181. 181.
    Cross SA. Rethinking neuromyelitis optica (Devic Disease). J Neuroophtalmol 2007; 27(1):57–60.Google Scholar
  182. 182.
    Wingerchuk DM, Weinshenker BG. Neuromyelitis optica. Curr Treat Options Neurol 2008; 10(1):55–66.PubMedCrossRefGoogle Scholar
  183. 183.
    Karaarslan E, Altintas A, Senol U et al. Balò concentric sclerosis: clinical and radiological features of five cases. AJNR 2001; 22:1326–1367.Google Scholar
  184. 184.
    Wood DD, Bilbao JM, O’Connors P et al. Acute multiple sclerosis (Marburg type) is associated with developmentally immature myelin basic protein. Ann Neurol 1996; 40:18–24.PubMedCrossRefGoogle Scholar
  185. 185.
    McAlpine D. Acute disseminated encephalomyelitis: its sequelae and its relationship to disseminated sclerosis. Lancet 1937; 846–852.Google Scholar
  186. 186.
    Hynson IL, Kornberg AJ, Coleman LT et al.Clinical and neuroradiological features of acute disseminated encephalomyelitis in children. Neurology 2001; 56:1308–1312.PubMedGoogle Scholar
  187. 187.
    Tselis A. Acute disseminated encephalomyelitis. Curr Treat Options Neurol 2001; 3(6):537–542.PubMedCrossRefGoogle Scholar
  188. 188.
    Menge T, Kieseier BC, Nessler S, Hemmer B, et al. Acute disseminated encephalomyelitis: an acute hit against the brain Curr Opin Neurol 2007; 20(3):247–254.PubMedCrossRefGoogle Scholar
  189. 189.
    Rodriguez M, Karnes WE, Bartleson JD et al. Plasmapheresis in acute episodes of fulminant CNS inflammatory demyelination. Neurology 1993; 43: 1100–1104.PubMedGoogle Scholar
  190. 190.
    Martinelli V, Comi G. Induction versus escalation therapy. Neurol Sci 2005; 26:S193–S199.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2009

Authors and Affiliations

  • Giancarlo Comi
    • 1
  • Lucia Moiola
    • 1
  1. 1.Dipartimento di NeurologiaIstituto Scientifico “San Raffaele”Milano

Personalised recommendations