Advertisement

Distrofie muscolari

  • Lucia Morandi

Riassunto

Le distrofie muscolari sono un gruppo di malattie geneticamente determinate, caratterizzate da una progressiva degenerazione e necrosi delle fibre muscolari con proliferazione di tessuto connettivo perimisiale ed endomisiale. La causa di queste malattie è un’alterazione genetica e la conseguente assenza o ridotta espressione nel muscolo di proteine della membrana muscolare o del citoscheletro. Molte forme di distrofia muscolare presentano fenotipi clinici sovrapponibili o comunque molto simili; in alcune è possibile formulare una diagnosi precisa solo mediante sofisticate tecniche di biologia molecolare.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. 1.
    Koenig M, Monaco AP, Kunkel LM. The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell 1988; 53:219–226.CrossRefPubMedGoogle Scholar
  2. 2.
    Campbell KP, Khal SD. Association of dystrophin and an integral membrane glycoprotein. Nature 1989; 338:259–262.CrossRefPubMedGoogle Scholar
  3. 3.
    Muntoni E, Torelli S, Ferlini A. Dystrophin and mutations: one gene, several proteins, multiple phenotypese. Lancet Neurol 2003; 2:731–740.CrossRefPubMedGoogle Scholar
  4. 4.
    Chamberlain JS, Gibbs RA, Ranier JE et al. Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Res 1988; 16:1141–1156.CrossRefGoogle Scholar
  5. 5.
    Schwartz M, Duno M. Improved molecular diagnosis of dystrophin gene mutations using the multiplex ligation-dependent probe amplification method. Genet Test 2004; 8:361–367.CrossRefPubMedGoogle Scholar
  6. 6.
    Ashton EJ, Yau SC, Deans ZC et al. Simultaneous mutation scanning for gross deletions, duplications and point mutations in the DMD gene. Eur J Hum Genet 2007; 16(1):53–61.CrossRefPubMedGoogle Scholar
  7. 7.
    Muntoni F. Is a muscle biopsy in Duchenne dystrophy really necessary? Neurology 2001; 57:574–575.PubMedGoogle Scholar
  8. 8.
    Ibraghimov-Beskrovnaya O, Campbell KP. Primary structure of dystrophin-associated glycoproteins linking dystrophin to extracellular matrix. Nature 1992; 355:696–702.CrossRefPubMedGoogle Scholar
  9. 9.
    Bushby KMD, Gardner-Medwin D, Nicholson LVB et al. The clinical, genetic and dystrophin characteristics of Becker muscular dystrophy: correlation of phenotype with genetic and protein abnormalities. J Neurol 1993; 240:105–112.CrossRefPubMedGoogle Scholar
  10. 10.
    Bakker JP, de Groot IJ, Beckerman H t al. The effects of knee-ankle-foot orthoses in the treatment of Duchenne muscular dystrophy: review of the literature. Clinical Rehabilitation 2000; 14:343–59.CrossRefPubMedGoogle Scholar
  11. 11.
    Scott OM, Hyde SA, Goddard C et al. Prevention of deformity in Duchenne muscular dystrophy: a prospective study of passive stretching and splintage. Phisiotherapy 1981; 67:177–180. Rideau Y, Duport G, Delaubier et al. Correction précoce des inégalité musculaires dans la myopathie: analise internationale. In problémes en médecine de rééducation: Maladies neuromusculaires de la géenétique à la réadaptation. Paris: Masson; 1996:156–170.Google Scholar
  12. 12.
    Shapiro F, Sethna N, Colan S et al. Spinal fusion in Duchenne muscular dystrophy: a multidisciplinary approach. Muscle & Nerve 1992; 15:604–614.CrossRefGoogle Scholar
  13. 13.
    Manzur AY, Kuntzer T, Pike M, et al. Glucocorticoid corticosteroids for Duchenne muscular dystrophy. Cochrane Database Syst Rev. 2008 Jan 23;(1):CD003725.Google Scholar
  14. 14.
    Mendell JR, Moxley RT, Griggs RC et al. Randomized double-blind, six-month trial of prednisone in Duchenne muscular dystrophy. N Engl J Med 1989; 320:1592–1597.PubMedGoogle Scholar
  15. 15.
    Khan MA. Corticosteroid therapy in Duchenne muscular dystrophy. J Neurol Sci 1993; 120: 8–14.CrossRefPubMedGoogle Scholar
  16. 16.
    Bonifati MD, Ruzza G, Bonometto P, Berardinelli A, Gorni K, Orcesi S, Lanzi G, Angelini C. A multicenter, double-blind, randomized trial of deflazacort versus prednisone in Duchenne muscular dystrophy. Muscle & Nerve 2000; 23:1344–1347.CrossRefGoogle Scholar
  17. 17.
    Bianchi ML, Mazzanti A, Galbiati E et al. Bone mass and bone metabolism in children with Duchenne muscular dystrophy. Neuromusc Disord 2000; 10:377–378.Google Scholar
  18. 18.
    Alman BA, Raza SN, Biggar WD. Steroid treatment and the development of scoliosis in males with Duchenne muscular dystrophy. J Bone Joint Surg Am 2004; 86-A(3):519–524.PubMedGoogle Scholar
  19. 19.
    Markham LW, Kinnett K, Wong BL, Woodrow Benson D. et al. Corticosteroid treatment retards development of ventricular dysfunction in Duchenne muscular dystrophy. Neuromuscul Disord. 2008 May;18(5):365–370.CrossRefPubMedGoogle Scholar
  20. 20.
    Manzur AY, Kinali M, Muntoni F. Update on the management of Duchenne muscular dystrophy. Arch Dis Child 2008; online 30-7-2008.Google Scholar
  21. 21.
    Wagner KR, Lechtzin N, Judge DP. Current treatment of adult Duchenne muscular dystrophy. Biochimica et Biophysica Acta 2007; 1772:229–237.PubMedGoogle Scholar
  22. 22.
    Bushby K, Muntoni F, Bourke J.P. 107th ENMC international workshop: the management of cardiac involvement in muscular dystrophy and myotonic dystrophy. Neuromuscul. Disord. 2003; 13:166–172.CrossRefPubMedGoogle Scholar
  23. 23.
    Duboc D, Meune C, Lerebours G et al. Perindopril preventive treatment on mortality in Duchenne muscular dystrophy: 10 years’follow-up. Am Heart J 2007; 154:596–602.CrossRefPubMedGoogle Scholar
  24. 24.
    Ozawa E, Noguchi I, Mizuno Y et al. From dystrophinopathy to sarcoglycanopathy: evolution of a concept of muscular dystrophy. Muscle & Nerve 1998; 21:421–438.CrossRefGoogle Scholar
  25. 25.
    Chae J, Minami N, Jin Y et al. Calpain 3 gene mutation: genetic and clinico-pathological findings in limbgirdle muscular dystrophy. Neuromusc Disord 2001; 11:547–555.CrossRefPubMedGoogle Scholar
  26. 26.
    Liu J, Aoki M, Illa I et al. Dysferlin, a novel skeletal muscle gene, is mutated in Myoshi myopathy and limb girdle muscular dystrophy. Nat Genet 1998; 20: 21–36.Google Scholar
  27. 27.
    Norwood F, de Visser M, Eymard B, Lochmüller H, Bushby K; EFNS Guideline Task Force. EFNS guideline on diagnosis and management of limb girdle muscular dystrophies. Eur J Neurol. 2007 Dec;14(12):1305–1312.CrossRefPubMedGoogle Scholar
  28. 28.
    Limb-girdle muscular dystrophy: diagnostic evaluation, frequency and clues to pathogenesis. Neuromuscul Disord. 2008 Jan;18(1):34–44.Google Scholar
  29. 29.
    van Deutekom JCT, Bakker E, Lemners RJ et al. Evidence for subtelomeric exchange of 3.3 kb tandemly repeatedy units between chromosome 4q35 and 10q26: implication for genetic counselling and etiology of FSHD1. Hum Mol Genet 1996; 5:1997–2003.CrossRefPubMedGoogle Scholar
  30. 30.
    Kissel JT, McDermott MP, Mendell JR et al. FSH-DY Group. Randomized, double-blind, placebo-controlled trial of albuterol facioscapulohumeral dystrophy. Neurology 2001; 23, 57:1434–1440.Google Scholar
  31. 31.
    Bunch WH, Siegel IM. Scapulothoracic arthrodesis in facioscapulohumeral muscular dystrophy. J Bone Joint Surg 1993; 75:372–376.PubMedGoogle Scholar
  32. 32.
    Wagner RK, Fleckenstein JL, Amato AD et al. A phase I/II trial of MYO-029 in adult subjects with muscular dystrophy. Ann Neurol 2008; 63:561–571.CrossRefPubMedGoogle Scholar
  33. 33.
    Bione S, Maestrini E, Rivella S et al. Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy. Nat Genet 1994; 8:323–327.CrossRefPubMedGoogle Scholar
  34. 34.
    Bonne G, Di Barletta MR, Varnous et al. Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreyfuss muscular dystrophy. Nat Genet 1999; 21: 285–88.CrossRefPubMedGoogle Scholar
  35. 35.
    Di Barletta R, Ricci E, Galluzzi G et al. Different mutations in the LMNA gene cause autosomal dominant and autosomal recessive Emery-Dreifuss muscular dystrophy. Am J Hum Genet 2000; 66:1407–1412.CrossRefGoogle Scholar
  36. 36.
    Harper PS. Myotonic Dystrophy. 2nd ed. London: WB Saunders: 1989.Google Scholar
  37. 37.
    Vlachopapadopoulou E, Zachwieja JJ, Gertner JM et al. Metabolic and clinical response to recombinant human insulin-like growth factor I in myotonic dystrophy — a clinical research center study. J Clin Endocrinol Metab Dec 1995; 80:3715–3723.CrossRefGoogle Scholar
  38. 38.
    Griggs RC, Pandya MS, Florence JM. Randomized controlled trial of testosterone in myotonic dystrophy. Neurology 1989; 39:19–22.Google Scholar
  39. 39.
    Moxley III RT, Thornton A, Sansone V. Therapeutic trials and clinical assessment in myotonic dystrophy. Muscle & Nerve 1998; (Suppl. 7):S45.Google Scholar
  40. 40.
    Sugino M, Ohsawa N, Ito T et al. A pilot study of dehydroepiandrosterone sulfate in myotonic dystrophy. Neurology 1998; 51:586–589.PubMedGoogle Scholar
  41. 41.
    Sunada Y, Saito F, Higuchi I et al. Deficiency of a 180-kDa extracellular matrix protein in Fukuyama type congenital muscular dystrophy skeletal muscle. Neuromuscul Disord Feb 2002; 12: 117–20.CrossRefGoogle Scholar
  42. 42.
    Tezak Z, Prandini P, Boscaro M et al. Clinical and molecular study in congenital muscular dystrophy with partial laminin alpha 2 (LAMA2) deficiency. Hum Mutat Feb 2003; 2:103–111.CrossRefGoogle Scholar
  43. 43.
    Brockington M, Yuva Y, Prandini P et al. Mutations in the fukutin-related protein gene FKRP identify limb girdle muscular dystrophy 2I as a milder allelic variant of congenital Muscular dystrophy MDC1C. Hum Mol Genet 2001; 10:2851–2859.CrossRefPubMedGoogle Scholar
  44. 44.
    Chang S, Ishikawa T, Nonaka I et al. Merosin-positive congenital muscular dystrophy with early orthopaedic problems in relation to Ullrich’s disease. No To Hattatsu Mar 2003; 35: 159–64.Google Scholar
  45. 45.
    Tubridy N, Fontaine B, Eymard B. Congenital myopathies and congenital muscular dystrophies. Current opinion in Neurology 2001; 14:575–582.CrossRefPubMedGoogle Scholar
  46. 46.
    Klein A; Clement E; Mercuri E; Muntoni F. Differential diagnosis of congenital muscular dystrophies. Eur J Paediatr Neurol. Sep 2008; 12:371–377.CrossRefGoogle Scholar
  47. 47.
    Messina S, Hartley L, Main M, et al. Pilot trial of salbutamol in central core and multi-minicore diseases. Neuropediatrics, 2004; 35:262–266.CrossRefPubMedGoogle Scholar
  48. 48.
    Munsat TL. Workshop report, International SMA collaboration. Neuromusc Disord 1991: 1–81.Google Scholar
  49. 49.
    Lefebvre S, Burglen L, Reboullet S et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 1995; 80:155–165.CrossRefPubMedGoogle Scholar
  50. 50.
    Wang CH, Finkel RS, Bertini ES et al. Participants of the International Conference on SMA Standard of Care. Consensus statement for standard of care in spinal muscular atrophy. J Child Neurol. 2007 Aug;22(8):1027–1049.CrossRefPubMedGoogle Scholar
  51. 51.
    Merlini L, Solari A, Vita G et al. Role of gabapentin in spinal muscle atrophy: results of a multicenter, randomised italian study. J Child Neurol 2003; 18:537–541.CrossRefPubMedGoogle Scholar
  52. 52.
    Mercuri E, Bertini E, Messina S et al. Randomised double blind, placebo-controlled trial of phenylbutyrate in spinal muscular atrophy. Neurology 2007; 68:51–55.CrossRefPubMedGoogle Scholar
  53. 53.
    Kinali M, Mercuri E, Main M et al. Pilot trial of albuterol in spinal muscular atrophy. Neurology, 2002; 59:609–610.PubMedGoogle Scholar
  54. 54.
    Angelozzi C, Borgo F, Tiziano FD et al. Salbutamol increases SMNmRNA and protein levels in spinal muscular atrophy cells. J Med Genet, 2008; 45:29–31.CrossRefPubMedGoogle Scholar
  55. 55.
    Slonim AE, Coleman RA, McElligot MA et al. Improvement of muscle function in acid maltase deficiency by high-protein therapy. Neurol 1983; 33:34–38.Google Scholar
  56. 56.
    Margolis ML, Hill AR. Acid malatase deficiency in an adult. Evidence for improvement in respiratory function with high-protein therapy. Am Rev Respir Dis 1986; 134:328–331.PubMedGoogle Scholar
  57. 57.
    Isaacs H, Savage N, Badenhorst M et al. Acid maltase deficiency: a case study and review of the pathophysiological changes and proposed therapeutic measures. J Neurol Neurosurg Psychiatry 1986; 49:1011–1018.CrossRefPubMedGoogle Scholar
  58. 58.
    Van den Hout JM, Reuser AJ, de Klerk JB, Arts WF, Smeitink JA, Van der Ploeg AT. Enzyme therapy for Pompe disease with recombinant human alpha-glucodsidase from rabbit milk. J Inherit Metab Dis 2001; 24:266–274.CrossRefPubMedGoogle Scholar
  59. 60.
    Recombinant human acid-alpha glucosidase enzyme therapy for infantile glycogen storage disease type II: results of a phase I/II clinical trial. Genet Med 2001; 3:132–138.Google Scholar
  60. 61.
    Erl DD, Kishnani PS, Chen YT. Glycogen storage disease types I and II: treatment updates. J Inherit Metab Dis. 2007 Apr; 30(2):159–164.CrossRefGoogle Scholar
  61. 62.
    Di Mauro S, Tsujino S. Non-lysosomal glycogenoses. In: Engel AG, Franzini-Armstrong C (eds) Myology-Basic and Clinical New York: McGraw-Hill 1994; vol. 2: 1554–1576.Google Scholar
  62. 63.
    Vorgerd M, Grehl T, Jager M et al. Creatine therapy in Myophosphorylase deficiency (McArdle disease): a placebo-controlled cross over trial. Arch Neurol 2000; 57:956–966.CrossRefPubMedGoogle Scholar
  63. 64.
    Phoenix J, Hopkins P, Bertram C, Beynon RJ, Quinlivan RCM, Edwards RHT. Effect of vitamin B6 supplementation in McArdle’s disease: a strategic case study. Neuromuscul Disord 1998; 8:210–212.CrossRefPubMedGoogle Scholar
  64. 65.
    Di Donato S. Disorders of lipid metabolism affecting skeletal muscle: carnitine deficiency sindromes, defects in the catabolic pathway, and chanarin disease. In: Engel AG, Franzini-Armstrong C eds. Myology-Basic and Clinical. Vol. 2. New York: McGraw-Hill, Inc; 1994:1587–1609.Google Scholar
  65. 66.
    Zeviani M, Tiranti V, Piantadosi C. Mitochondrial disorders. Medicine Baltimore 1998; 77:59–72.CrossRefPubMedGoogle Scholar
  66. 67.
    Shapira AH. Primary and secondary defects of the mitochondrial respiratory chain. J Inherit Metab Dis 2002; 25: 207–214.CrossRefGoogle Scholar
  67. 68.
    Di Mauro S, Schon EA. Mitochondrial respiratorychain diseases. N Engl J Med 2003; 348:2656–2658.CrossRefGoogle Scholar
  68. 69.
    Rossi FH, Okun M, Yachins A et al.Corticosteroid treatment of mitochondrial encephalomyopathy. Neurology 2002; 8:313–315.CrossRefGoogle Scholar
  69. 70.
    Tarnopolsky MA. Clinical use of creatine in neuromuscular and neurometabolic disorders. Subcell Bioch 2007;46:183–204.CrossRefGoogle Scholar
  70. 71.
    Haller RG, Wyrick P, Taivassalo T, Vissing J. Aerobic conditioning: an effective therapy in McArdle’s disease. Ann Neurol 2006; 59:922–928.CrossRefPubMedGoogle Scholar
  71. 72.
    Taivassalo T, Gardner J, Taylor RW, et al. Endurance training and detraining in mitochondrial myopathies due to single large-scale mtDNA deletions. Brain, 2006; 129:3391–4001.CrossRefPubMedGoogle Scholar
  72. 73.
    Slonim AE, Bulone L, Goldberg T, et al. Modification of the natural history of adult-onset acid maltase deficiency by nutrition and exercise therapy. Muscle Nerve, 2007; 35:70–77.CrossRefPubMedGoogle Scholar
  73. 74.
    Sveen ML, Jeppesen TD, Hauerslev S, et al. Endurance training-An effective and safe treatment for patients with LGMD2I. Neurology, 2007; 68:59–61.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2009

Authors and Affiliations

  • Lucia Morandi
    • 1
  1. 1.Dipartimento di Neuroscienze Cliniche Unità Operativa Malattie Neuromuscolari e NeuroimmunologiaFondazione Istituto Neurologico “C. Besta”Milano

Personalised recommendations