Skip to main content

Poloxamine Hydrogels: from low Cell Adhesion Substrates to Matrices with Improved Cytocompatibility for Tissue Engineering Applications

  • Chapter
Book cover Hydrogels
  • 2523 Accesses

Abstract

Polyethylene glycol based hydrogels are being considered as tissue substitutes. Here we describe the preparation of synthetic collagen-mimetic material that are stirrer than collagen but that like collagen allow for both cell encapsulation and cell growth on the surface. These materials are poloxamine based hydrogels with and without collagen; poloxamine is a four-arm PEO-PPO block copolymer derivative, Tetronic™ 107.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351

    Article  CAS  Google Scholar 

  2. Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Del Rev 54:3–12

    Article  CAS  Google Scholar 

  3. Moghimi SM, Hunter AC (2000) Poloxamers and poloxamines in nanoparticle engineering and experimental medicine. TIBTECH 18:412–420

    CAS  Google Scholar 

  4. Aliabadi HM, Lavasanifar A (2006) Polymeric micelles for drug delivery. Exp Op Drug Del 3:139–162

    Article  CAS  Google Scholar 

  5. Rassing J, Atwood D (1983) Ultrasonic velocity and light-scattering studies of polyoxyethylene-polyoxypropylene-polyoxyethylene copolymer Pluronic F127 in aqueous solution. Int J Pharm 13:47–55

    Article  Google Scholar 

  6. Vadnere M, Amidon GL, Lindenbaum S et al (1984) Thermodynamic studies on gel—sol transition of some Pluronic polyols. Int J Pharm 22:207–218

    Article  CAS  Google Scholar 

  7. Wang P, Johnston TP. Kinetics of sol-gel transition for poloxamer polyols. J Appl Polym Sci 43:283–292

    Google Scholar 

  8. Mortensen K (1992) Phase behavior of poly (ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock-copolymer dissolved in water. Europhys Lett 19:599–604

    Article  CAS  Google Scholar 

  9. Reeve L (1997) The poloxamers: their chemistry and medical applications. In: Domb A, Kost Y, Wiseman D (ed) Handbook of Biodegradble Polymers (Drug Targeting and Delivery, vol. 7), Harwood Academic Publishers, London, Great Britain

    Google Scholar 

  10. Pec EA, Wout ZG, Johnston TP (1992) Biologicalactivity of urease formulated in poloxamer 407 after intraperitoneal injection in the rat. J Pharm Sci 81:626–630

    Article  CAS  Google Scholar 

  11. Grindel JM, Jaworski T, Piraner O, Emanuele RM, Balasubramanian M (2002) Distribution, metabolism, and excretion of a novel surface-active agent, purified poloxamer 188, in rats, dogs, and humans. J Pharm Sci 91:1936–1947

    Article  CAS  Google Scholar 

  12. Batrakova EV, Li S, Li Y, Alakhov VYu, Elmquist WF, Kabanov AV (2004) Distribution kinetics of a micelle-forming block copolymer Pluronic P85. J Control Rel 100:389–397

    Article  CAS  Google Scholar 

  13. Chiappetta DA, Sosnik A (2007) Poly(ethylene oxide)-Poly(propylene oxide) block copolymer micelles as drug delivery agents: Improved hydrosolubility, stability and bioavailability of drugs. Eur J Pharm Biopharm 66:303–317

    Article  CAS  Google Scholar 

  14. Bromberg LE, Ron ES (1998) Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery. Adv Drug Del Rev 31:197–221

    Article  CAS  Google Scholar 

  15. Kabanov AV, Alkhov VYu (2002) Pluronic®block copolymers in drug delivery: From micellar nanocontainers to biological response modifiers. Critical Rev Therap Drug Carrier Syst 19:1–72

    Article  CAS  Google Scholar 

  16. Kibbe AH (2000) Handbook of Pharmaceutical Excipients. American Pharmaceutical Association, Washington DC

    Google Scholar 

  17. Dong J, Chowdhry BZ, Leharne SA (2003) Surface activity of poloxamines at the interfaces between air-water and hexane-water. Colloids and Surfaces A: Physicochem Eng Aspects 212:9–17

    Article  CAS  Google Scholar 

  18. Sosnik A, Sefton MV (2005) Semi-synthetic collagen/poloxamine matrices for Tissue Engineering. Biomaterials 26:7425–7435

    Article  CAS  Google Scholar 

  19. Barichello JM, Morishita M, Takayama K et al (1999) Absorption of insulin from Pluronic F-127 gels following subcutaneous administration in rats. Int J Pharm 184:189–198

    Article  CAS  Google Scholar 

  20. Scherlund M, Brodin A, Malmsten M (2000) Micellization and gelation in block copolymer systems containing local anesthetics. Int J Pharm 211:37–49

    Article  CAS  Google Scholar 

  21. Are’valo-Silva CA, Eavey, RD, Cao Y et al (2000) Internal support of tissue-engineered cartilage. Arch Otolaryng-Head Neck Surg 126:1448–1452

    CAS  Google Scholar 

  22. Kamil SH, Vacanti MP, Aminuddin BS et al (2004) Tissue Engineering of a human sized and shaped auricle using a mold. Laryngoscope 114:867–870

    Article  CAS  Google Scholar 

  23. Cao Y, Rodriguez A, Vacanti Metal (1998) Comparative study of the use of poly(glycolic acid), calcium alginate and pluronics in the engineering of autologous porcine cartilage. J Biomater Sci Polym Ed 9:475–487

    Article  CAS  Google Scholar 

  24. Saim, AB, Cao Y, Weng Y et al (2000) Engineering autogenous cartilage in the shape of a helix using an injectable hydrogel scaffold. Laryngoscope 110:1694–1697

    Article  CAS  Google Scholar 

  25. Are’valo-Silva CA, Cao Y, Vacanti M et al (2000) Influence of growth factors on tissue-engineered pediatric elastic cartilage. Arch Otolaryng-Head Neck Surg 126:1234–1238

    CAS  Google Scholar 

  26. Are’valo-Silva CA, Cao Y, Weng Y et al (2001) The effect of fibroblast growth factor and transforming growth factor-fl on porcine chondrocytes and tissue-engineered autologous elastic cartilage. Tissue Engineering 7:81–88

    Article  CAS  Google Scholar 

  27. Cao YL, Lach E, Kim TH et al (1998) Tissue-engineered nipple reconstruction. Plastic Reconst Surg 102:2293–2298

    Article  CAS  Google Scholar 

  28. Weng Y, Cao Y, Silva CA et al (2001) Tissue-engineered composites of bone and cartilage for mandible condylar reconstruction. J Oral Maxillofacial Surg 59:185–190

    Article  CAS  Google Scholar 

  29. Weinand C, Pomerantseva I, Neville CM et al (2006) Hydrogel-β-TCP scaffolds and stem cells for tissue engineering bone. Bone 38:555–563

    Article  CAS  Google Scholar 

  30. Komiyama T, Nakao Y, Toyama Y et al (2004) Novel technique for peripheral nerve reconstruction in the absence of an artificial conduit. J Neurosci Methods 134:133–140

    Article  Google Scholar 

  31. Liu VA, Jastromb WE, Bhatia SN (2002) Engineering protein and cell adhesivity using PEO-terminated triblock polymers. J Biomed Mater Res 60:126–134

    Article  CAS  Google Scholar 

  32. Kamil SH, Eavey RD, Vacanti MP et al (2004) Tissue-engineered cartilage as a graft source for laryngotracheal reconstruction: A pig model. Arch Otolaryng-Head Neck Surg 130:1048–1051

    Article  Google Scholar 

  33. Terada S, Yoshimoto H, Fuchs JR et al (2005) Hydrogel optimization for cultured elastic chondrocytes seeded onto a polyglycolic acid scaffold. J Biomed Mater Res 75A: 906–917

    Article  CAS  Google Scholar 

  34. Zhou G, Liu W, Cui L et al (2005) In vivo chondrogenesis of BMSCs at nonchondrogenesis site by co-transplantation of BMSCs and chondrocytes with pluronic as biomaterial. Key Eng Mater 288–289:1–6

    Google Scholar 

  35. Chua KH, Aminuddin BS, Fuzina NH et al (2005) Insulin-Transferrin-Selenium prevent human chondrocyte dedifferentiation and promote the formation of high quality tissue engineered human hyaline cartilage. Eur Cells Mater 9:58–67

    CAS  Google Scholar 

  36. Ruszymah BHI, Chua K, Latif MA et al (2005) Formation of in vivo tissue engineered human hyaline cartilage in the shape of a trachea with internal support. Tnt J Ped Otorhinolaryng 69:1489–1495

    Article  Google Scholar 

  37. Roberts A, Wyslouzil, BE, Bonassar L (2005) Aerosol delivery of mammalian cells for tissue engineering. Biotech Bioeng 91:801–807

    Article  CAS  Google Scholar 

  38. Xu X, Lou J, Tang T et al (2005) Evaluation of different scaffolds for BMP-2 genetic orthopedic tissue engineering. J Biomed Mater Res-Part B 75:289–303

    Article  CAS  Google Scholar 

  39. Weinand I, Pomerantseva C, Neville R et al (2006) Hydrogel-fl-TCP scaffolds and stem cells for tissue engineering bone. Bone 38:555–563C

    Article  CAS  Google Scholar 

  40. Cortiella J, Nichols JE, Kojima K et al (2006) Tissue-engineered lung: An in vivo and in vitro comparison of polyglycolic acid and pluronic F-127 hydrogel/somatic lung progenitor cell constructs to support tissue growth. Tissue Eng 12:1213–1225

    Article  CAS  Google Scholar 

  41. Lee YJ, Kim IA, Park SA et al (2007) A tissue engineering based approach to regeneration of intervertebral disc. Key Eng Mat 342–343:397–400

    Article  Google Scholar 

  42. Monroy A, Kojima K, Ghanem M et al (2007) Tissue engineered cartilage “bioshell” protective layer for subcutaneous implants. Int J Ped Otorhinolaryng 71:547–552

    Article  Google Scholar 

  43. Hu H-L, Cao Y-L, Chen T-T et al (2007) Tissue engineered allogeneic carriage induces local immune privilege in rabbits. J Clin Rehab Tissue Eng Res 11:2757–2760

    CAS  Google Scholar 

  44. Idrus RBH, Hui CK, Ibrahim FW et al (2007) The expansion potential of human nasal septum chondrocytes for the formation of engineered cartilage. Science Asia 33:145–152

    Article  Google Scholar 

  45. Jeong JH, Moon YM, Kim SO et al (2007) Human cartilage tissue engineering with pluronic and cultured chondrocyte sheet. Key Eng Mat 342–343:89–92

    Article  Google Scholar 

  46. Vashia AV, Keramidarisa E, Abbertona KM et al (2008) Adipose differentiation of bone marrow-derived mesenchymal stem cells using Pluronic F-127 hydrogel in vitro. Biomaterials 29:573–579

    Google Scholar 

  47. Thonhoff JR, Lou DI, Jordan PM et al (2008) Compatibility of human fetal neural stem cells with hydrogel biomaterials in vitro. Brain Res 1187:42–51

    Article  CAS  Google Scholar 

  48. Dumortier G, Grosslord JL, Agnely F et al (2006) A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm Res 23:2709–2728

    Article  CAS  Google Scholar 

  49. Cohn D, Sosnik A, Levy A (2003) Improved reverse thermo-responsive polymeric systems. Biomaterials 24:3707–3714

    Article  CAS  Google Scholar 

  50. Cohn D, Lando G, Sosnik A et al (2006) PEO-PPO-PEO based poly (ether ester urethane)s as degradable thermo-responsive multiblock copolymers. Biomaterials 27:1718–1727

    Article  CAS  Google Scholar 

  51. Cohn D, Sosnik A, Malal R et al (2007) Chain extension as a strategy for the development of improved reverse thermo-responsive polymers. Poym Adv Tech 18:731–736

    Article  CAS  Google Scholar 

  52. Cohn D, Sosnik A (2003) Novel reverse thermo-responsive injectable poly(ether carbonate)s J Mat Sci Mater Med 14:175–180

    Article  CAS  Google Scholar 

  53. Sosnik A, Cohn D (2005) Reverse thermo-responsive poly(ethylene oxide) and poly(propylene oxide) multiblock copolymers. Biomaterials 26:349–357

    Article  CAS  Google Scholar 

  54. Sosnik A, Cohn D, San Roman J et al (2003) Crosslinkable PEO-PPO-PEO-based reverse thermo-responsive gels as potentially injectable materials. J Biomater Sci Pol Ed 14:227–239

    Article  CAS  Google Scholar 

  55. Cohn D, Sosnik A, Garty S (2005) Smart hydrogels for in situ-generated implants. Biomacromolecules 6:1168–1175

    Article  CAS  Google Scholar 

  56. Sosnik A, Cohn D (2004) Ethoxysilane-capped PEO-PPO-PEO triblocks: a new family of reverse thermo-responsive polymers. Biomaterials 25:2851–2858

    Article  CAS  Google Scholar 

  57. Slavin S, Gurevitch O, Kullkarni BG et al (2006) Compositions comprising bone marrow cells, demineralized bone matrix and various site-reactive polymers for use in the induction of bone and cartilage formation, US Pt Appl #20060177387

    Google Scholar 

  58. Armstrong JK, Chowdry BZ, Snowden MJ et al (2001) The effect of pH and concentration upon aggregation transitions in aqueous solutions of poloxamine T701. Int J Pharm 229:57–66

    Article  CAS  Google Scholar 

  59. Dong J, Chowdry BZ, Leharne SA (2003) Solubilisation of polyaromatic hydrocarbons in aqueous solutions of poloxamine T803. Colloids and Surfaces A: Physicochem Eng Aspects 246:91–98

    Article  CAS  Google Scholar 

  60. Dong J, Armstrong J, Chowdry BZ et al (2004) Thermodynamic modelling of the effect of pH upon aggregation transitions in aqueous solutions of the poloxamine, T701. Therm Acta 417:201–206

    Article  CAS  Google Scholar 

  61. Storm G, Belliot SO, Daemen T et al (1995) Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Del Rev 17:31–48

    Article  CAS  Google Scholar 

  62. Redhead HM, Davis SS, Ilium L (2001) Drug delivery in poly(lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: In vitro characterisation and in vivo evaluation. J Control Rel 70:353–363

    Article  CAS  Google Scholar 

  63. Sumide T, Tsuchiya T (2003) Effects of multipurpose solutions (MPS) for hydrogel contact lenses on gap-junctional intercellular communication (GJIC) in rabbit corneal keratocytes. J Biomed Mater Res-Part B 64:57–64

    Article  CAS  Google Scholar 

  64. Alvarez-Lorenzo C, Gonzalez-Lopez CJ, Fernandez-Tarrio M et al (2007) Tetronic micellization, gelation and drug solubilization: Influence of pH and ionic strength. Eur J Pharm Biopharm 66:244–252

    Article  CAS  Google Scholar 

  65. Chiappetta DA, Degrossi J, Teves S et al (2008) Triclosan-loaded poloxamine micelles for enhanced antibacterial activity against biofilm (in press)

    Google Scholar 

  66. Cellesi F, Tirelli N, Hubbell JA (2004) Towards a fully-synthetic substitute of alginate: development of a new process using thermal gelation and chemical cross-linking. Biomaterials 25:5115–5124

    Article  CAS  Google Scholar 

  67. Cellesi F, Weber W, Fussenegger M et al (2004) Towards a fully synthetic substitute of alginate: Optimization of a thermal gelation/chemical cross-linking scheme (“tandem” gelation) for the production of beads and liquid-core capsules. Biotechn Bioeng 88:740–749

    Article  CAS  Google Scholar 

  68. Winblade ND, Schmokel H, Baumann M et al (2002) Sterically blocking adhesion of cells to biological surfaces with a surface-active copolymer containing poly(ethylene glycol) and phenylboronic acid. J Biomed Mater Res 59:618–631

    Article  CAS  Google Scholar 

  69. Llanos GR, Sefton MV (1993) Immobilization of poly (ethylene glycol) onto a poly (vinyl alcohol) hydrogel. 2. Evaluation of thrombogenicity. J Biomed Mater Res 27:1383–1391

    Article  CAS  Google Scholar 

  70. McGuigan AP, Sefton MV (2006) Vascularised organoid engineered by modular assembly enables blood perfusion. Proc Natl Acad Sci USA 103:11461–11466

    Article  CAS  Google Scholar 

  71. Lee CH, Singla A, Lee Y (2001) Biomedical applications of collagen. Int J Pharm 221:1–22

    Article  CAS  Google Scholar 

  72. Sosnik A, Brodersen P, Sodhi RNS et al (2006) Surface study of collagen/poloxamine hydrogelsby a ‘deep freezing’ ToF-SIMS approach. Biomaterials 27:2340–2348

    Article  CAS  Google Scholar 

  73. Sosnik A, Leung B, McGuigan AP et al Collagen/poloxamine hydrogels: Cytocompatibility of embedded HepG2 cells and surface attached endothelial cells. Tissue Eng 11:1807–1816

    Google Scholar 

  74. Margiotta MS, Robertson FS, Greco RS (1992) The adherence of endothelial cells to Dacron induces the expression of the intercellular adhesion molecule (ICAM-1). Ann Surg 216: 600–604

    Article  CAS  Google Scholar 

  75. Cenni E, Granchi D, Ciapetti G et al (1997) Expression of adhesion molecules on endothelial cells after contact with knitted Dacron. Biomaterials 18:489–494

    Article  CAS  Google Scholar 

  76. Granchi D, Cenni E, Verri E et al (1998) Adhesive protein expression on human endothelial cells after in vitro contact with woven Dacron. Biomaterials 19:93–98

    Article  CAS  Google Scholar 

  77. Sosnik A, Sefton MV (2005) Poloxamine hydrogels with a quaternary ammonium modification to improve cell attachment. J Biomed Mater Res-Part A 75:295–307

    Article  CAS  Google Scholar 

  78. Sosnik A, Sefton MV (2006) Methylation of poloxamine for enhanced cell adhesion. Biomacromolecules 7:331–338

    Article  CAS  Google Scholar 

  79. Sosnik A, Leung BM, Sefton MV (2008) Lactoyl-poloxamine/collagen matrix for cell-containing modules. J Biomed Mater Res-Part A (in press)

    Google Scholar 

  80. Leung BM (2005) A modular vascularized Tissue Engineering construct containing smooth muscle cells and endothelial cells. M.Sc. Thesis. University of Toronto, Toronto, Canada

    Google Scholar 

  81. Leung BM, Sefton MV (2007) A modular Tissue Engineering construct containing smooth muscle cells and endothelial cells. Ann Biomed Eng 35:2039–2049

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Italia, Milan

About this chapter

Cite this chapter

Sosnik, A., Khan, O.F., Butler, M., Sefton, M.V. (2009). Poloxamine Hydrogels: from low Cell Adhesion Substrates to Matrices with Improved Cytocompatibility for Tissue Engineering Applications. In: Hydrogels. Springer, Milano. https://doi.org/10.1007/978-88-470-1104-5_8

Download citation

Publish with us

Policies and ethics